Aprotinin use in cardiac surgery, 2006

Benjamin P. Bidstrup

John Flynn Medical Centre, Tugun, Queensland, Australia

Kardiochirurgia i Torakochirurgia Polska 2006; 3 (4): 412–414

Cardiac surgeons face many challenges with a changing patient population. Bleeding is a major risk for death during cardiac surgery, and the use of blood products is a predictor of short-term morbidity (e.g. renal failure) and long-term mortality and morbidity [1, 2]. Many strategies have been explored to help reverse the effects of cardiopulmonary bypass – its effects on clotting factors and platelets – and of antplatelet agents. Aprotinin was first reported to reduce blood loss and the need for transfusion in non only coronary bypass surgery (CABG) but also high-risk cases [3]. Considerable publicity surrounded the recent publication in the New England Journal of Medicine of an observational study entitled “The risk associated with aprotinin in cardiac surgery” authored by Mangano and colleagues [4]. This was followed some time later by limited correspondence [5-7]. Somewhat surprisingly, there was a wealth of interest shown by the lay press and law firms in many countries, with the non-competing issue of safety data on EACA and TA [10] and further comments re some possible explanations [12].-in-analyses, and why there is little comment about these divergent results. Levi showed in 1999 a reduction in mortality [9] and both Henry in a Cochrane Review [10] and Sedrakyan [11] (CABG only) demonstrated reductions in stroke, bleeding and reoperations for bleeding. None of these analyses showed increases in renal impairment or myocardial infarction or heart failure, stroke or encephalopathy. Neither of the lysine analogues was associated with an increased risk of these events.

Readers will ask why this report differs from hundreds of previously published articles, including several meta-analyses, and why there is little comment about these divergent results. Levi showed in 1999 a reduction in mortality [9] and both Henry in a Cochrane Review [10] and Sedrakyan [11] (CABG only) demonstrated reductions in stroke, bleeding and reoperations for bleeding. None of these analyses showed increases in renal impairment or myocardial infarction or heart failure, stroke or encephalopathy. Neither of the lysine analogues was associated with an increased risk of these events.

In examining this report, many inconsistencies are evident. Not all drugs were available in all countries during the time frame of the data collection. Not all drugs were licensed for the use for which they had been administered. What was the basis for use of each of the drugs? It is clear from
the tables that there were large variations in the patient characteristics (co-variates) of each group. Patients in the treated groups had higher occurrences of hepatic dysfunction, renal dysfunction, pulmonary disease and diabetes. In an earlier report from the same group, significant inter-country differences were noted. This does not appear to have been included in the analysis [13]. Some 691 patients were excluded from the analysis for inadequate dosing, multiple drugs or no validation of drug type or dose. A safety study is based on an intention to treat policy and as such these would be included. An earlier report indicated that the mortality in this excluded subset was 7.2% (50/691 deaths) as compared with 2.6% in this study [14]. The endpoints are composite, making further analysis difficult. An intention to treat policy would include most of these.

Mangano used propensity scores to match each group. This method relies on collected or observed co-variates to produce a score which can be included in an analysis. It is considered, when done appropriately, to be a useful alternative to a randomised controlled trial, especially when that may be difficult or expensive to perform. However, any statistical adjustment in an observational study relies on a lack of hidden bias. Failure to account for treatment selection bias can result in biased estimation of the true treatment effect. This may be confounded by provider and subject preferences. The subjects in each group may differ systematically, being sicker or healthier. The limitations of this method can be seen in this study, as a number of confounders are evident.

Transfusion practices vary enormously from centre to centre. Despite numerous consensus statements and guidelines and despite a lack of evidence supporting transfusion, patients continue to be exposed to the significant risks of blood replacement. Blood products remain a scarce resource the world over. And in many countries about 20% of blood is used in cardiac surgery. In many centres over 50% of patients receive no transfusion. The Australian National Database Report for 2004-2005 shows that 42.1% of patients received red cell transfusion [15]. Other data indicate that 10-20% of patients receive about 80% of blood products. A high risk for transfusion group can be identified and therapies to reduce their exposure can be more appropriately delivered. These will likely include advanced age, preoperative anaemia, small body size (red cell mass) non-CABG, urgent operations, preoperative anti-thrombotic agents, acquired or congenital clotting disorders and multiple comorbidities. Aprotinin has been shown to be highly effective at transfusion reduction [11]. No data on transfusions are given in this manuscript apart from a comment re fresh frozen plasma and red cell transfusion increasing the risk of the renal composite outcome.

Renal dysfunction after cardiac surgery is a constant concern. The need for dialysis increases mortality significantly. In a previous publication from the same group, they indicated a rate of 7.7% for renal dysfunction, with 1.4% overall requiring dialysis [16]. This study reports a rate of 8% for the composite renal outcome in the aprotinin group.

Why there is such a lower rate in the no drug group is not clear. The STS has reported a rate of 3.53% in their study of over 500,000 patients for new dialysis [17]. No comment was made on the lack of association of aprotinin with renal dysfunction from the same group reporting on more than 800 patients having aortic surgery with deep hypothermic circulatory arrest [18].

The recommendations of Mangano cannot be sustained by this publication. There are no data on transfusion effects of each of the drugs. No authority has recommended withdrawal of aprotinin. The cardiac surgical team should weigh up the potential harmful effects of withholding aprotinin in high-risk patients as part of a planned strategy for blood conservation, with abundant evidence of safety data against a single observational study with significantly flawed methodology. The results of studies such as the BART study being conducted in Canada are eagerly awaited as these are powered to look at relatively infrequent events such as renal dialysis and myocardial infarction in a high transfusion risk group.

References
