Oblique supine position versus prone position for percutaneous nephrolithotomy: a systematic review and meta-analysis

Hu Wang, Zhan Yang, Xueliang Chang, Yaxuan Wang, Jingdong Li, Zhenwei Han

Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, China

Videosurgery Miniinv 2023; 18 (2): 244–253 DOI: https://doi.org/10.5114/wiitm.2023.126453

Abstract

Introduction: To compare the efficacy and safety of percutaneous nephrolithotomy (PCNL) in the oblique supine position (OSP) and the prone position (PP).

Aim: To perform a systematic review and meta-analysis to evaluate the efficacy and safety of OSP versus PP for PCNL. *Material and methods:* A systematic literature search of PubMed, Ovid, SCOPUS, and citation lists was conducted to identify eligible comparative studies up to November 2022. All studies comparing OSP versus PP for PCNL were included. Statistical analysis was performed with the Collaboration's Review Manager (RevMan) 5.4 software.

Results: Overall, eight studies were included involving 1185 patients (OSP = 634; PP = 551). There were no statistically significant differences between OSP and PP in age (WMD = -0.95 years; 95% CI: -2.12 to 0.21; p = 0.83) or proportion of male patients (OR = 0.02; 95% CI: -0.03 to 0.08; p = 0.43). We found that OSP was performed more frequently for smaller stone size and patients with higher BMI (WMD = -0.1 cm, 95% CI: -0.18 to -0.02; p = 0.01) and patients with higher BMI (WMD = 0.66 kg/m²; 95% CI: 0.29 to 1.03; p = 0.0005). The operation time was shorter in OSP than PP (WMD = -14 min; 95% CI: -27.00 to -1.00; p = 0.03). The reduction of hemoglobin was lower in OSP than PP (WMD = -0.39 g/dI; 95% CI: -0.60 to -0.13; p = 0.03). There was no significant difference in stone-free rate and hospitalization between the two groups (OR = 1.32; 95% CI: 0.98 to 1.78; p = 0.07; WMD = -5.99 h; 95% CI: -17.15 to 5.16; p = 0.29). The overall complications were fewer in OSP than in PP (OR = 0.59; 95% CI: 0.43 to 0.81; p = 0.001), but no difference was observed between the positions with regard to the major complications (Clavien-Dindo score ≥ 3) (OR = 0.76; 95% CI: 0.43 to 1.34; p = 0.35).

Conclusions: OSP showed non-inferior stone-free rate, blood loss, and hospitalization compared with PP. OSP may be superior in terms of operative time and complications than PP.

Key words: oblique supine position, prone position, percutaneous nephrolithotomy, meta-analysis.

Introduction

Percutaneous nephrolithotomy (PCNL) is one of the standard surgical procedures for treatment of large renal and upper ureteral tract stones [1]. It has replaced the traditional open surgery due to its advantages of small trauma, high stone clearance rate, fewer complications and rapid postoperative recovery. However, it could lead to serious complications [2], such as intraoperative and postoperative bleeding, postoperative urinary tract infection, perirenal abscess and urine leakage. Misalignment of puncture location could also cause damage to surrounding organs or tissues such as colon and pleura.

The prone position (PP) is the classic position for PCNL, which provides a large puncture surface area and a wide space for instrument manipulation. However, PP would cause hemodynamic changes, venti-

Address for correspondence

Zhenwei Han, Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, China, e-mail: hanzhenwei@hebmu.edu.cn

lation dysfunction, and spinal cord and peripheral nerve injury [3]. Patients should first take the lithotomy position for placement of the ureteral catheter, and then change to PP for lithotripsy. In this way, the surgeons have to reposition and disinfect the operation area, which increases the workload and operation time. More importantly, a retrograde endoscopic procedure cannot be performed at the same time. If a double J stent needs to be placed from the lower urinary tract, the patient will need to be placed back in the lithotomy position again, which might lead to iatrogenic injury and longer operation time [4]. Furthermore, severe spine disease and ankylosing spondylitis are relative contraindications for prone PCNL. In addition, this position is not suitable for patients with severe cardiopulmonary disease and morbid obesity [5].

Valdivia et al. first reported their experience with PCNL in the supine position and described the advantages of this technique in 1987 [6]. The risk of cardiovascular and respiratory complications is lower in the supine position [7]. In addition, because the operation time is shorter, the anesthesia procedure is safer and requires less anesthetic. However, the supine position has its own disadvantages. First, it has a limited puncture surface area. Second, the depth between the skin and the kidney is deeper. Third, it is difficult to approach the upper renal calyx [8]. These factors motivated surgeons to improve PCNL positions, such as the Valdivia position and obligue supine position (OSP) [9]. The OSP could provide a wider puncture area, more space for nephroscopic manipulation like the PP, and no need to change position during the operation [10].

However, whether OSP is superior to PP remains controversial. Therefore, we performed this meta-analysis to systematically evaluate the current data comparing the efficacy and safety of PP and OSP during PCNL.

Aim

The objective of this meta-analysis was to investigate the efficacy and safety of OSP and PP in PCNL

Material and methods

This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (PRISMA).

Search strategy

This systematic literature review was performed up to November 2022 using PubMed, Ovid and Web of Science databases to identify relevant studies comparing OSP versus PP during PCNL The search strategy was: "(Percutaneous nephrolithotomy OR PCNL) AND (oblique supine position OR supine position OR modified Valdivia position) AND (prone position)". We also manually screened the list of references from the related literature to identify other eligible studies.

Inclusion and exclusion criteria

The inclusion criteria were the comparative study of the OSP and PP during PCNL for adults aged 18 and above. The language of included studies was restricted to English. Exclusion criteria were non-comparative studies, studies on children, and studies without primary data (i.e. reviews, commentaries, conference abstracts).

Data extraction

Extraction of data was performed independently by two authors with a predefined data extraction form. Any discrepancy was resolved in consultation with the third author. They determined the relevance of the article by reading titles and abstracts. We compared preoperative demographic characteristics as well as perioperative and postoperative outcomes between the two procedures. The following information was extracted: baseline demographic characteristics (age, gender, BMI, and stone size), surgical outcomes (operation time, hemoglobin drop, hospitalization, stone-free rate) and complications (major complications are defined as Clavien-Dindo score \geq 3).

Quality assessment

Two researchers independently evaluated the evidence level of included studies according to the Oxford Centre for Evidence-based Medicine. The risk of bias for the 5 RCTs was assessed. Only 1 study [11] was regarded as high risk because of using the unblind clinical trial (Figure 1). Any disagreements were settled by consensus with the third researcher.

Statistical analysis

A meta-analysis was performed using Cochrane Collaboration's Review Manager (RevMan) 5.4 software (Cochrane Collaboration, Oxford, UK). For con-

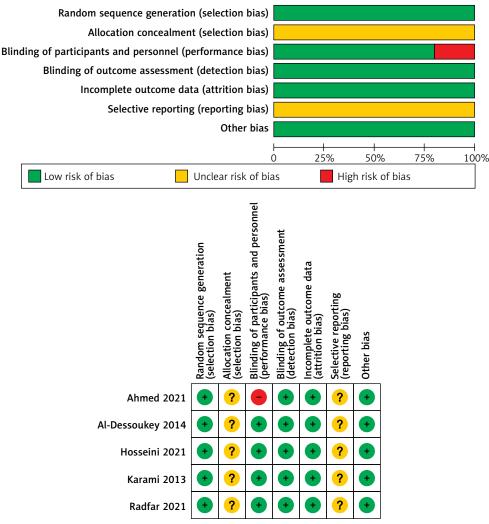


Figure 1. Graph indicating risk of bias in each included RCT

tinuous outcomes, the weighted mean difference (WMD) with 95% confidence interval (CI) was used. For dichotomous outcomes, the odds ratio (OR) with a 95% confidence interval (CI) was calculated. According to the heterogeneity levels, the random effect or fixed effect model was used to calculate the summary risk estimates. Statistical heterogeneity was defined based on the Cochrane Q p value or l^2 statistic. If $p \ge 0.1$ or $l^2 < 50\%$, a fixed-effects model was used, while if p < 0.1 or $l^2 \ge 50\%$, a random-effects model was used. When the p-value was less than 0.05, it was considered statistically significant. To assess publication bias, funnel plots were examined.

Results

Overall, 8 articles [11–18] (5 randomized controlled trials [11, 13, 16–18] and 3 retrospective studies [12,

14, 15]) were included for further study, including 1185 patients (OSP = 634, PP = 551), as shown in Figure 2. The basic characteristics and quality assessment of included studies are summarized in Table I.

All the eight studies including 1185 patients (OSP = 634, PP = 551) reported age, gender, BMI, and stone size. The results showed no statistically significant difference between OSP and PP for age (WMD = -0.95 years; 95% CI: -2.12 to 0.21; p = 0.11) and proportion of male patients (OR = 0.02; 95% CI: -0.03 to 0.08; p = 0.43), while OSP was associated with higher BMI (WMD = 0.66 kg/m²; 95% CI: 0.29 to 1.03; p = 0.0005) and smaller stone size (WMD = -0.01 cm, 95% CI: -0.18 to 0.02; p = 0.01) compared with PP (Figure 3).

Seven studies including 985 patients (OSP = 534, PP = 451) reported the stone-free rate. Meta-analy-

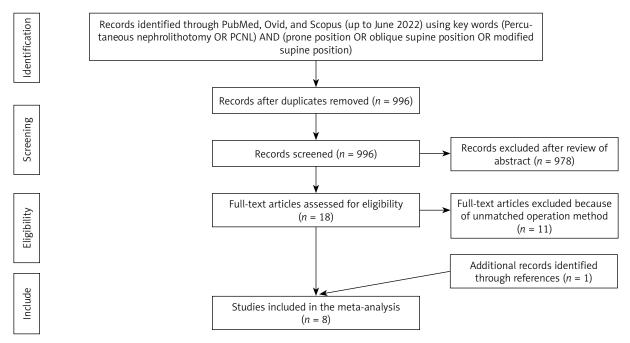


Figure 2. PRISMA flow diagram of the search strategy and identification of studies included in this study

Reference	Study period	Study design	Study origin	Group	Case	Age [years]	Gender (male)	Stone size [cm]	BMI [kg/m²]	LE
Ahmed 2021	2017–2019	RCT	Egypt	OSP PP	61 63	46.49 45.62	38/61 45/63	2.83 3.29	28.62 27.09	1b
Al-Dessoukey 2014	2011–2012	RCT	Egypt	OSP PP	101 102	34.86 37.21	68/101 68/102	3.86 3.93	27.24 26.87	1b
Arrabl-Martin 2012	2000–2011	RNT	Spain	OSP PP	31 32	45.00 47.00	19/31 18/32	4.95 5.30	30.00 27.00	2a
Hosseini-2021	NA	RCT	Iran	OSP PP	31 29	47.45 47.70	16/31 18/29	3.20 3.13	31.04 31.00	1b
Jones 2016	2009–2014	RNT	Australia	OSP PP	160 76	50.60 54.40	91/160 41/76	2.29 2.28	31.00 28.00	2a
Karami 2013	2010–2011	RCT	Iran	OSP PP	50 50	40.70 41.50	31/50 31/50	2.75 2.83	27.00 26.10	1b
Melo 2019	2011–2016	RNT	Brazil	OSP PP	100 99	50.71 47.66	43/100 33/99	2.87 3.03	26.97 27.10	3a
Radfar 2021	2017–2019	RCT	Iran	OSP PP	100 100	42.34 44.03	61/100 54/100	2.71 2.78	26.64 25.11	1b

Table I. Basic characteristics of included studies

BMI – body mass index, OSP – oblique supine position, PP – prone position, RNT – retrospective nonrandomized trial, RCT – randomized controlled trial, NA – not available, LE –level of evidence.

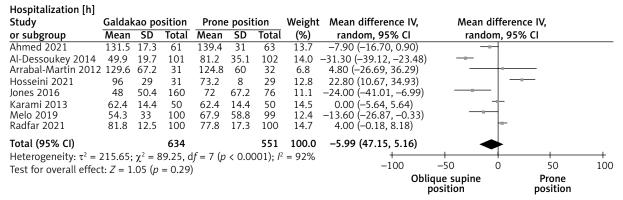
sis of these studies showed that there was no significant difference in stone-free rate between OSP and PP (OR = 1.32; 95% CI: 0.98 to 1.78; p = 0.07). All the eight studies including 1185 patients (OSP = 634, PP = 551) reported the operation time. The meta-analysis of our study showed that OSP was associated with shorter operation time compared with PP (WMD = -14 min; 95% CI: -27.00 to -1.00; p = 0.03). All the eight studies including 1185 patients (OSP = 634, PP = 551) reported the hospitalization. The meta-analysis of our study showed no significant difference between the OSP and PP (WMD =

Age [year]					
Study	Galdakao positi		_ 0	Mean difference IV,	Mean difference IV,
or subgroup	Mean SD Tot		. ,	fixed, 95% Cl	fixed, 95% Cl
Ahmed 2021	46.49 13.47 6		8.0	0.87 (-3.24, 4.98)	
Al-Dessoukey 2014 Arrabal-Martin 2012	34.86 18.97 10 45 6.5 3		6.2 10.8	-2.35(-7.00, 2.30)	
Hosseini 2021	47.45 7.16 3		7.7	-2.00 (-5.54, 1.54) -0.25 (-4.45, 3.95)	
Jones 2016	50.6 17.2 16		7.3	-3.80 (-8.12, 0.52)	
Karami 2013	40.7 8.4 50		11.9	-0.80 (-4.17, 2.57)	
Melo 2019	50.71 12.12 10		11.5	3.05 (-0.38, 6.48)	
Radfar 2021	42.34 6.62 10	0 44.03 7.22 100	36.7	–1.69 (–3.61, 0.23)	
T					
Total (95% CI)	63		100.0	-0.95 (-2.12, 0.21)	
Heterogeneity: $\chi^2 = 1$				-1	0 -5 0 5 10
Test for overall effec	1: 2 = 1.61 (p = 0.1)	1)			Oblique supine Prone
					position position
Gender (male)					
Study Obli	que supine positi	on Prone position	Weight	Risk difference	Risk difference
or subgroup	Events Total	Events Total	(%)	M–H, fixed, 95% CI	M–H, fixed, 95% CI
Ahmed 2021	38 61	45 63	10.7	-0.09 (-0.26, 0.07)	
Al-Dessoukey 2014	68 101	68 102	17.6	0.01 (-0.12, 0.14)	+
Arrabal-Martin 2012		18 32	5.5	0.05 (-0.19, 0.29)	
Hosseini 2021	16 31	18 29	5.2	-0.10 (-0.35, 0.14)	
Jones 2016	91 160	41 76 31 50	17.8	0.03 (-0.11, 0.17)	
Karami 2013 Melo 2019	31 50 43 100	33 99	8.7 17.2	0.00 (-0.19, 0.19) 0.10 (-0.04, 0.23)	
Radfar 2021	61 100	54 100	17.2	0.07 (-0.07, 0.21)	
	01 100	51 100	17.5	0.07 (0.07, 0.21)	
Total (95% CI)	634	551	100.0	0.02 (-0.03, 0.08)	•
Total events	367	308			
Heterogeneity: $\chi^2 = -$					
Test for overall effec	t: Z = 0.79 (p = 0.4	3)		-1.0	-0.5 0 0.5 1.0
					ique supine Prone
					position position
BMI [kg/m ²]					
Study	Galdakao positi			Mean difference IV,	Mean difference IV,
Study or subgroup	Mean SD Tot	al Mean SD Tota	ī (%)	fixed, 95% CI	Mean difference IV, fixed, 95% Cl
Study or subgroup Ahmed 2021	Mean SD Tot 28.62 4.02 6	al Mean SD Tota 27.09 2.77 63	ī (%) 9.3	fixed, 95% Cl 1.53 (0.31, 2.75)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014	Mean SD Tot 28.62 4.02 6 27.24 3.56 10	Al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102	i (%) 9.3 15.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3	Al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32	i (%) 9.3 15.0 1.4 1.4	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021	Mean SD Tot 28.62 4.02 6 27.24 3.56 10	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29	i (%) 9.3 15.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76	(%) 9.3 15.0 1.4 53.9	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99	I (%) 9.3 15.0 1.4 53.9 3.0 3.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99	I (%) 9.3 15.0 1.4 53.9 3.0 4.9	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100		fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021 Total (95% CI)	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.64 6.32 10	al Mean SD Total 1 27.09 2.77 63 1 26.87 3.41 102 2 7 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551	I (%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 7.1	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021 Total (95% CI) Heterogeneity: χ^2 =	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.64 6.32 10 26.64 6.32 10 312.44, df = 7 (p = 63	al Mean SD Total 1 27.09 2.77 63 1 26.87 3.41 102 2 7 5.4 32 3 1 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 551 0.09); $l^2 = 44\%$ 551		fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13)	
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021 Total (95% CI)	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.64 6.32 10 26.64 6.32 10 312.44, df = 7 (p = 63	al Mean SD Total 1 27.09 2.77 63 1 26.87 3.41 102 2 7 5.4 32 3 1 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 551 0.09); $l^2 = 44\%$ 551		fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13)	fixed, 95% CI
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021 Total (95% CI) Heterogeneity: χ^2 =	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.64 6.32 10 26.64 6.32 10 312.44, df = 7 (p = 63	al Mean SD Total 1 27.09 2.77 63 1 26.87 3.41 102 2 7 5.4 32 3 1 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 551 0.09); $l^2 = 44\%$ 551		fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13)	fixed, 95% Cl
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021 Total (95% CI) Heterogeneity: χ^2 =	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 51 26.97 4.61 10 26.64 6.32 10 12.44, df = 7 (p = 63 t: Z = 3.49 (p = 0.0) 0.00	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 551	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03)	fixed, 95% CI
Study or subgroup Ahmed 2021 Al-Dessoukey 2014 Arrabal-Marlin 2012 Hosseini 2021 Jones 2016 Karami 2013 Melo 2019 Radfar 2021 Total (95% CI) Heterogeneity: χ^2 = Test for overall effect	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 51 26.97 4.61 10 26.64 6.32 10 12.44, df = 7 (p = 63 t: Z = 3.49 (p = 0.0) 0.00	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 551	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroup	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 5 26.97 4.61 10 26.64 6.32 10 12.44, df = 7 (p = 63 t: Z = 3.49 (p = 0.0) 63 Galdakao positio Mean SD	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 005) 005)	I (%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 100.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) an difference IV, ked, 95% Cl	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Study	$\begin{tabular}{ c c c c c c } \hline Mean & SD & Tot \\ \hline 28.62 & 4.02 & 6 \\ 27.24 & 3.56 & 10 \\ 30 & 7.1 & 3 \\ 31.4 & 1.09 & 3 \\ 31 & 9.2 & 16 \\ 27 & 4.5 & 56 \\ 26.97 & 4.61 & 10 \\ 26.64 & 6.32 & 10 \\ \hline & 63 \\ 12.44, df = 7 (p = 1 \\ C = 3.49 (p = 0.6 \\ \hline & 63 \\ C = 3.49 (p = 0.6 \\ \hline & 63 \\ C = 3.49 \\ \hline & 7.49 \\ \hline$	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 005) 005)	I (%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 100.0 (%) fix 7.4 -0.46	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 4.20 5 (-0.74, -0.18)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Al-Dessoukey 2014	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10 12.44, df = 7 (p = 63 12.44, df = 7 (p = 0.0 Galdakao positio Mean SD Total 2.83 1.02 61 3.86 1.42 101	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 005) n Prone position W W Mean SD Total 3.29 0.46 63 3.93 1.26 102	I (%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 100.0 (%) fix 7.4 -0.46 4.3 -0.07	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 4.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 5 (-0.74, -0.18) 7 (-0.44, 0.30)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =Test for overall effectStudyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10 63 12.44, df = 7 (p = 63 12.44, df = 7 (p = 0.0 Galdakao positio 63 Mean SD Total 2.83 1.02 61 3.86 1.42 101 4.95 1.54 31	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 005) m Mean SD Total 3.29 0.46 63 3.93 1.26 3.93 1.26 102 5.3 1.34 32	$\begin{array}{c c} \hline (\%) \\ \hline 9.3 \\ 15.0 \\ 1.4 \\ 53.9 \\ 3.0 \\ 4.9 \\ 7.1 \\ 5.4 \\ \hline 100.0 \\ \hline \\ \hline \\ (\%) & fix \\ 7.4 & -0.46 \\ 4.3 & -0.01 \\ 1.1 & -0.32 \\ \hline \end{array}$	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 4.000 (-0.74, -0.18) 7 (-0.74, -0.18) 7 (-0.44, 0.30) 5 (-1.06, 0.36) -	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: $\chi^2 =$ Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10 Galdakao positio Mean SD Total 2.83 1.02 61 3.86 1.42 101 4.95 1.54 31 3.2 0.69 31	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.009); $l^2 = 44\%$ 551 0.09); $l^2 = 44\%$ 551 3.93 1.26 3.29 0.46 63 3.93 1.26 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 3.13 0.97 29	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 (%) fix 7.4 100.0 (%) fix 7.4 100.0	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 4.000 (0.29, 1.03) 0.66 (0.2	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021Jones 2016	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 55 26.97 4.61 10 26.64 6.32 10 Galdakao positio Mean SD 2.83 1.02 61 3.86 1.42 101 4.95 1.54 31 3.2 0.69 31 3.29 1.35 160	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 551 0.05) 76 63 9 0.46 63 3.29 0.46 63 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 (%) fix 7.4 -0.3 1.1 -0.3 3.2 0.01	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) (-0.74, -0.18) 7 (-0.44, 0.30) 5 (-1.06, 0.36) - (-0.36, 0.50) (-0.35, 0.37)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Ahmed 2021Hosseini 2021Jones 2016Karami 2013	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 5 26.97 4.61 10 26.64 6.32 10 63 12.44, df = 7 (p = 63 12.44, df = 7 (p = 63 12.83 1.02 61 3.86 1.42 101 4.95 1.54 31 3.2 0.69 31 2.29 1.35 160 2.75 3.6 50	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 551 0.09); $l^2 = 44\%$ 005) W Mean SD Total 3.29 0.46 63 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 (%) fix 7.4 -0.3 3.2 0.07 4.6 0.3	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) (-0.74, -0.18) 7 (-0.44, 0.30) 5 (-1.06, 0.36) - ' (-0.36, 0.50) (-0.35, 0.37) 8 (-1.49, 1.33)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019	$\begin{tabular}{ c c c c c } \hline Mean & SD & Tot \\ \hline 28.62 & 4.02 & 6 \\ 27.24 & 3.56 & 10 \\ 30 & 7.1 & 3 \\ 31.4 & 1.09 & 3 \\ 31 & 9.2 & 16 \\ 27 & 4.5 & 51 \\ 26.97 & 4.61 & 10 \\ 26.64 & 6.32 & 10 \\ \hline & 63 \\ 12.44, df = 7 (p = \\ t & Z = 3.49 (p = 0.0 \\ \hline \hline & 63 \\ 12.44, df = 7 (p = \\ t & Z = 3.49 (p = 0.0 \\ \hline & 63 \\ 12.44, df = 7 (p = \\ 100 \\$	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 005) 0 Mean SD Total 3.29 0.46 63 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50 3.03 1.17 99	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 (%) 7.4 -0.46 4.3 -0.01 3.2 0.3 -0.02 5.5	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Ahmed 2021Hosseini 2021Jones 2016Karami 2013	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 5 26.97 4.61 10 26.64 6.32 10 63 12.44, df = 7 (p = 63 12.44, df = 7 (p = 63 12.83 1.02 61 3.86 1.42 101 4.95 1.54 31 3.2 0.69 31 2.29 1.35 160 2.75 3.6 50	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 005) 0 Mean SD Total 3.29 0.46 63 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50 3.03 1.17 99	(%) 9.3 15.0 1.4 53.9 3.0 4.9 7.1 5.4 100.0 (%) 7.4 -0.46 4.3 -0.01 3.2 0.3 -0.02 5.5	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) (-0.74, -0.18) 7 (-0.44, 0.30) 5 (-1.06, 0.36) - ' (-0.36, 0.50) (-0.35, 0.37) 8 (-1.49, 1.33)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% Cl)Heterogeneity: χ^2 =Test for overall effectStone size [cm]Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019	$\begin{tabular}{ c c c c c } \hline Mean & SD & Tot \\ \hline 28.62 & 4.02 & 6 \\ 27.24 & 3.56 & 10 \\ 30 & 7.1 & 3 \\ 31.4 & 1.09 & 3 \\ 31 & 9.2 & 16 \\ 27 & 4.5 & 51 \\ 26.97 & 4.61 & 10 \\ 26.64 & 6.32 & 10 \\ \hline & 63 \\ 12.44, df = 7 (p = \\ t & Z = 3.49 (p = 0.0 \\ \hline \hline & 63 \\ 12.44, df = 7 (p = \\ t & Z = 3.49 (p = 0.0 \\ \hline & 63 \\ 12.44, df = 7 (p = \\ 100 \\$	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 25.11 5.18 100 4 551 0.09); $l^2 = 44\%$ 551 0.05) 72 63 1 90.46 63 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50 3.03 1.17 99 2.78 0.34 100	$\begin{array}{c} \hline (\%) \\ \hline 9.3 \\ 15.0 \\ 1.4 \\ 53.9 \\ 3.0 \\ 4.9 \\ 7.1 \\ 5.4 \\ \hline 100.0 \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ $	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =Test for overall effectStudyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10 63 12.44, df = 7 (p = 63 12.44, df = 7 (p = 63 12.43 1.02 61 3.86 1.42 101 4.95 1.54 31 3.20 0.69 31 2.29 1.35 160 2.75 3.6 50 2.87 1.18 100 2.71 0.3 100 634	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.009); $l^2 = 44\%$ 551 0.09); $l^2 = 44\%$ 551 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50 3.03 1.17 99 2.78 0.34 100 10 30); $l^2 = 17\%$ 551 1 30); $l^2 = 17\%$ 551 1	$\begin{array}{c} \hline (\%) \\ \hline 9.3 \\ 15.0 \\ 1.4 \\ 53.9 \\ 3.0 \\ 4.9 \\ 7.1 \\ 5.4 \\ \hline 100.0 \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ $	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 5 (-1.06, 0.36) 5 (-1.06, 0.36) 5 (-1.06, 0.36) 5 (-0.35, 0.37) 8 (-1.49, 1.33) 6 (-0.49, 0.17) 7 (-0.16, 0.02) 0 (-0.18, -0.02)	fixed, 95% CI
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =Test for overall effectStudyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10 63 12.44, df = 7 (p = 63 12.44, df = 7 (p = 63 12.43 1.02 61 3.86 1.42 101 4.95 1.54 31 3.20 0.69 31 2.29 1.35 160 2.75 3.6 50 2.87 1.18 100 2.71 0.3 100 634	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.009); $l^2 = 44\%$ 551 0.09); $l^2 = 44\%$ 551 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50 3.03 1.17 99 2.78 0.34 100 10 30); $l^2 = 17\%$ 551 1 30); $l^2 = 17\%$ 551 1	$\begin{array}{c} \hline (\%) \\ \hline 9.3 \\ 15.0 \\ 1.4 \\ 53.9 \\ 3.0 \\ 4.9 \\ 7.1 \\ 5.4 \\ \hline 100.0 \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ $	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) (-0.74, -0.18) 7 (-0.44, 0.30) 5 (-1.06, 0.36) 5 (-1.06, 0.36) 5 (-1.06, 0.37) 8 (-1.49, 1.33) 6 (-0.49, 0.17) 7 (-0.16, 0.02) 0 (-0.18, -0.02) -1	fixed, 95% Cl
Studyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Marlin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =Test for overall effectStudyor subgroupAhmed 2021Al-Dessoukey 2014Arrabal-Martin 2012Hosseini 2021Jones 2016Karami 2013Melo 2019Radfar 2021Total (95% CI)Heterogeneity: χ^2 =	Mean SD Tot 28.62 4.02 6 27.24 3.56 10 30 7.1 3 31.4 1.09 3 31 9.2 16 27 4.5 50 26.97 4.61 10 26.64 6.32 10 63 12.44, df = 7 (p = 63 12.44, df = 7 (p = 63 12.43 1.02 61 3.86 1.42 101 4.95 1.54 31 3.20 0.69 31 2.29 1.35 160 2.75 3.6 50 2.87 1.18 100 2.71 0.3 100 634	al Mean SD Total 27.09 2.77 63 1 26.87 3.41 102 27 5.4 32 31 0.91 29 0 28 7.2 76 0 26.1 4.1 50 0 27.1 5.4 99 0 25.11 5.18 100 4 551 0.009); $l^2 = 44\%$ 551 0.09); $l^2 = 44\%$ 551 3.93 1.26 102 5.3 1.34 32 3.13 0.97 29 2.28 1.28 76 2.83 3.6 50 3.03 1.17 99 2.78 0.34 100 10 30); $l^2 = 17\%$ 551 1 30); $l^2 = 17\%$ 551 1	$\begin{array}{c} \hline (\%) \\ \hline 9.3 \\ 15.0 \\ 1.4 \\ 53.9 \\ 3.0 \\ 4.9 \\ 7.1 \\ 5.4 \\ \hline 100.0 \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 10.0 \\ \hline \\ $	fixed, 95% Cl 1.53 (0.31, 2.75) 0.37 (-0.59, 1.33) 3.00 (-0.12, 6.12) 0.40 (-0.11, 0.91) 3.00 (0.84, 5.16) 0.90 (-0.79, 2.59) -0.13 (-1.53, 1.27) 1.53 (-0.07, 3.13) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 0.66 (0.29, 1.03) 5 (-0.74, -0.18) 7 (-0.44, 0.30) 5 (-1.06, 0.36) 5 (-1.06, 0.36) 5 (-1.06, 0.37) 8 (-1.49, 1.33) 6 (-0.49, 0.17) 7 (-0.16, 0.02) 0 (-0.18, -0.02) -1	fixed, 95% CI

Figure 3. Forest plots of demographic characteristics of oblique supine position (OSP) vs. prone position (PP) for percutaneous nephrolithotomy (PCNL)

SD – *standard deviation, CI* – *confidence interval.*

Operation time [mi	nj										
Study	Galdal	kao po	sition	Prone	e posit	ion	Weight	Mean difference IV,	Mean difference I	V,	
or subgroup	Mean	SD	Total	Mean	SD	Total	(%)	random, 95% Cl	random, 95% Cl		
Ahmed 2021	55.3	20.7	61	98.5	9.2	63		-43.20 (-48.87, -37.53)			
Al-Dessoukey 2014	86.2	33.7	101	111.7		102		-25.50 (-35.58, -15.42)			
Arrabal-Martin 2012		21.6	31	105	34.5	32		-32.00 (-46.17, -17.83)			
Hosseini 2021	68.7	4.6	31	57.5	5.1	29	13.5	11.20 (8.74, 13.66)		-	
Jones 2016	93	45.5	160	123	49.5	76		-30.00 (-43.17, -16.83)			
Karami 2013	74.4	26.9	50	68.7	37.4	50	12.0	5.70 (-7.07, 18.47)		—	
Melo 2019	120.9		100	123.5	45.1	99	11.9	-2.60 (-15.75, 10.55)			
Radfar 2021	61.4	6.4	100	59.2	7.8	100	13.5	2.20 (0.22, 4.18)			
Total (95% CI)			634			551	100.0	-14.00 (-27.00, -1.00)			
Heterogeneity: $\tau^2 =$	325 48	$\gamma^2 = 3$		df = 7 (n < 0			,			
Test for overall effect					ριο.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	-5	i0 –25 0	25	50
rest for overall ener		(p	0.05)					2	Oblique supine	Prone	50
									position	position	
									•	•	
Hemoglobin drop [§	g/dl]										
Study	Galda	kao po	sition	Prone	e posit	ion	Weight Mean difference IV,		Mean difference I	V,	
or subgroup	Mean	SD	Total	Mean	SD	Total	(%)	random, 95% Cl	random, 95% Cl		
Ahmed 2021	0.19	0.27	61	0.73	1.1	63	24.9	-0.54 (-0.82, -0.26)			
Al-Dessoukey 2014	1.03	2.2	101	2.18	4.66	102	4.8	–1.15 (–2.15, –0.15) —			
Hosseini 2021	2.11	1.91	31	2.67	1.44	29	6.3	–0.56 (–1.41, 0.29)			
Karami 2013	0.8	2	50	0.8	2	50	7.3	0.00 (-0.78, 0.78)			
Melo 2019	1.97	1.22	100	2.34	1.39	99	20.0	–0.37 (–0.73, –0.01)			
Radfar 2021	0.28	0.28	100	0.45	0.32	100	36.7	–0.17 (–0.25, –0.09)	-		
			442			442	100.0				
Total (95% CI)	0.04	. 11	443	F (0.05)	443	100.0	-0.36 (-0.60, -0.13)			
Heterogeneity: $\tau^2 =$					0.05);	$l^{2} = 56$	%	-3	2 -1 0	1	2
Test for overall effec	ct Z = 3.	02 (p	= 0.003)					Oblique supine	Prone	-
									position	position	
<i>. .</i> .									•	•	
Stone-free rate				-							
· _	Galdaka	-			ne pos		Weigh	-	Odds ratio M–H,		
or subgroup	Event		tal		ents '		(%)	fixed, 95% Cl	fixed, 95% Cl		
Ahmed 2021	46	6			1	63	13.4	(, , , , , , , , , , , , , , , , , , ,	+		
Al-Dessoukey 2014	89	1(39	102	14.2				
Arrabal-Martin 2012			1		24	32	6.2	1.39 (0.42, 4.60)			
Hosseini 2021	27		1		26	29	4.7	0.78 (0.16, 3.82)			
Jones 2016	112		50		8	76	20.8				
Karaml 2013	44		0		6	50	7.4	0.64 (0.17, 2.41)			
Melo 2019	35	10	00	3	8	99	33.4	0.86 (0.49, 1.54)			


Total events 378 302 Heterogeneity: $\chi^2 = 8.11$, df = 6 (p = 0.23); $l^2 = 26\%$ Tot for everyll effect. Z = 1.80 (p = 0.03)

534

Total (95% CI)

Operation time [min]

Test for overall effect: Z = 1.80 (p = 0.07)

100.0

1.32 (0.98, 1.78)

0.1

Oblique supine

position

10

Prone

position

1

100

451

Figure 4. Forest plots of surgical outcomes of oblique supine position (OSP) vs. prone position (PP) for percutaneous nephrolithotomy (PCNL)

SD – *standard deviation, CI* – *confidence interval.*

-5.99 h; 95% CI: -17.15 to 5.16; p = 0.00001). Six studies including 886 patients (OSP = 443, PP = 443) reported the hemoglobin drop. The results showed that OSP was associated with significantly less hemoglobin drop (WMD = -0.36 g/dl; 95% CI: -0.60 to -0.13; p = 0.003) (Figure 4).

All the eight studies including 1185 patients (OSP = 634, PP = 551) reported complications. The results of this meta-analysis showed that OSP was associated with fewer overall complications (OR = 0.59; 95% CI: 0.43 to 0.81; p = 0.001). while there was no significant difference between OSP and PP with regard to Clavien-Dindo score \geq 3 complications (OR = 0.76; 95% CI: 0.43 to 1.34; p = 0.35) (Figure 5) (Supplementary Figures S1 and S2).

Discussion

Renal stones are very common in urinary tract stones, and are more difficult to manage than stones in other locations. Currently, PCNL is the standard surgical procedure for the treatment of large renal stones, which has higher safety and efficacy than other procedures [19, 20].

PP is the classic position during PCNL, which provides a fixed renal anatomy. It is easier for surgeons to identify the renal anatomy and select the appropriate puncture point. However, PP requires repositioning from the lithotripsy to the prone position during surgery. In addition, a retrograde endoscopic procedure cannot be performed at the same time. Importantly, PP would cause hemodynamic changes

Complications									
Study	Galdakao	position	Prone p	osition	Weight	Odds ratio M–H,	Odds rati	o M–H,	
or subgroup	Events	Total	Events	Total	(%)	fixed, 95% CI	fixed, 9	5% CI	
Ahmed 2021	23	61	28	63	17.8	0.76 (0.37, 1.55)			
Al-Dessoukey 2014	l 10	101	16	102	14.9	0.59 (0.25, 1.37)			
Arrabal-Martin 201	2 8	31	10	32	7.6	0.77 (0.26, 2.29)			
Hosseini 2021	3	31	4	29	3.9	0.67 (0.14, 3.29)		_	
Jones 2016	13	160	14	76	18.1	0.39 (0.17, 0.88)			
Karami 2013	11	50	10	50	8.1	1.13 (0.43, 2.96)		—	
Melo 2019	9	100	23	99	21.8	0.33 (0.14, 0.75)			
Radfar 2021	5	100	8	100	7.9	0.61 (0.19, 1.92)			
Total (95% CI)		634		551	100.0	0.59 (0.43, 0.81)	•		
Total events	82		113						
Heterogeneity: χ^2 =	= 5.38, d <i>f</i> =	7 (p= 0.61)); $I^2 = 0\%$			-+	-+		
Test for overall effe	ect: Z = 3.2	2(p = 0.001))			0.005	0.1 1	10	200
							ue supine osition	Prone position	

Study Galdakao position		Prone position		Weight	Odds ratio M–H,	Odds ratio I	М—Н,		
or subgroup	Events Total		Events Total		(%)	fixed, 95% Cl	fixed, 95%	CI	
Ahmed 2021	7	61	7	63	21.9	1.04 (0.34, 3.15)			
Al-Dessoukey 2014	3	101	7	102	24.2	0.42 (0.10, 1.65)			
Arrabal-Martin 2012	2 0	31	0	32		Not estimable			
Hosseini 2021	1	31	2	29	7.2	0.45 (0.04, 5.25)		_	
Jones 2016	1	160	1	76	4.8	0.47 (0.03, 7.64)			
Karami 2013	3	50	2	50	6.7	1.53 (0.24, 9.59)			
Melo 2019	8	100	9	99	29.8	0.87 (0.32, 2.35)			
Radfar 2021	0	100	1	100	5.4	0.33 (0.01, 8.20) —			
Total (95% CI)		634		551	100.0	0.76 (0.43, 1.34)	•		
Total events	23		29						
Heterogeneity: $\chi^2 =$	2.21, df =	6 (p = 0.90)); $l^2 = 0\%$			⊢			
Test for overall effe	ct: 7 = 0.9	4(n = 0.35)				0.001 0	.1 1	10	1000
		. (- 0.55)				Oblique posi	e supine ition	Prone position	

Figure 5. Forest plots of complications of oblique supine position (OSP) vs. prone position (PP) for percutaneous nephrolithotomy (PCNL)

SD – standard deviation, CI – confidence interval.

Clautian Dinda coara > 2

and ventilation dysfunction. Compared with the PP, the risk of cardiovascular and respiratory complications is lower in the supine position. Some studies reported that the supine position was more suitable for obese patients [4, 5]. However, the puncture surface area and nephroscopic manipulation space are limited in the supine position, while the OSP could provide a wider puncture area, more space for manipulation of instruments, and no need to change position during the operation. More importantly, the OSP would reduce cardiovascular and respiratory risks and facilitate patient management for the anesthesiologist [7].

Many studies have reported that the PP was associated with a higher stone-free rate compared with the supine position [21-23]. This might be related to the following reasons. First, the PP could provide a larger surface area for renal puncture and a wider space for instrument manipulation [24]. Second, it is easier to approach the upper renal calyx in PP [25]. However, our study found that OSP was associated with a comparable stone-free rate with the PP. The reasons could be multifaceted. First, the OSP provided a larger flank exposure area for puncture, and a wider space between the last rib and the iliac crest during PCNL [26]. Second, the instruments could approach the upper renal calyx easily in OSP [8]. Third, the OSP could provide the possibility of simultaneous PCNL and ureteroscopic procedures, which would significantly improve the stone-free rate [27]. Fourth, the sheath angle of the OSP was horizontal or downward, which accelerated the evacuation of the stone fragment. Fifth, due to the lower angle of OSP, the lower renal perfusion pressure could prevent debris from migrating to the ureter and other calyces [28]. However, the smaller stone size in OSP might be the reason for a higher stone-free rate. Therefore, more randomized controlled studies are needed to confirm this result.

One of the most important advantages of OSP is that there is no need to change position during PCNL. Our meta-analysis showed significant shorter operation time in OSP, which was consistent with previous studies [29, 30]. This might be mainly due to the absence of repositioning and re-sterilization. In addition, the simultaneous PCNL ureteroscopic procedure was also associated with shorter operative time [4]. The smaller stone size in OSP could be associated with shorter operation time. However, BMI was larger in OSP, which would increase the surgical difficulty and prolong operation time. Therefore, the result of shorter operation time in OSP is reliable.

The hemoglobin drop reflects intraoperative blood loss. Although we found less blood loss in OSP, the difference of 0.36 g/dl was clinically meaning-less. Kamphuis *et al.* demonstrated that blood loss was directly related to the dilatation size [31]. On the other hand, the shorter operation time might also be the reason for less intraoperative blood loss [32].

Complications are a very important indicator to evaluate the safety of a surgical procedure. We graded complications using the modified Clavien-Dindo score classification system [33–35]. Our results showed that OSP was associated with a superior overall complication rate and noninferior major complication rate. The reasons for these results might be as follows. First, PP might be associated with increased cardiovascular and respiratory risks, especially in morbidly obese patients [5]. Second, computed tomography (CT) showed that the colon was closer to the kidney in PP compared with OSP [36, 37], which resulted in a lower risk of colon injury in OSP [38]. Third, lower renal calyceal pressure seemed to reduce urinary tract infections and urine leakage.

There are several limitations in this study. First, the small sample size of included studies resulted in high heterogeneity. Second, three studies were retrospective, and the retrospective nature limited the reliability of the results. Third, the stone size and BMI were not consistent, which might have led to biased results. Fourth, the definition of stone-free rate was not consistent, which might have led to heterogeneity. Finally, the short follow-up time limited the assessment of long-term complications.

Conclusions

Compared with the PP, the OSP may be associated with non-inferior stone-free rate, blood loss, and hospitalization. Furthermore, the OSP might be superior in operative time and complications than PP during PCNL, especially for patients with severe cardiopulmonary disease, anesthesia risk and morbid obesity. More well-designed randomized controlled trials are required to validate these results.

Acknowledgments

This work has been supported by the Hebei Province Natural Science Foundation (H2020206146).

Conflict of interest

The authors declare no conflict of interest.

References

- Ghani KR, Andonian S, Bultitude M, et al. Percutaneous nephrolithotomy: update, trends, and future directions. Eur Urol 2016; 70: 382-96.
- Kyriazis I, Panagopoulos V, Kallidonis P, et al. Complications in percutaneous nephrolithotomy. World J Urol 2015; 33: 1069-77.
- 3. Atkinson CJ, Turney BW, Noble JG, et al. Supine vs prone percutaneous nephrolithotomy: an anaesthetist's view. BJU Int 2011; 108: 306-8.
- 4. Falahatkar S, Moghaddam AA, Salehi M, et al. Complete supine percutaneous nephrolithotripsy comparison with the prone standard technique. J Endourol 2008; 22: 2513-7.
- Sofer M, Giusti G, Proietti S, et al. Upper calyx approachability through a lower calyx access for prone versus supine percutaneous nephrolithotomy. J Urol 2016; 195: 377-82.
- Valdivia Uría JG, Lachares Santamaría E, Villarroya Rodríguez S, et al. Percutaneous nephrolithectomy: simplified technic (preliminary report). Arch Espanol Urol 1987; 40: 177-80.
- de la Rosette JJ, Tsakiris P, Ferrandino MN, et al. Beyond prone position in percutaneous nephrolithotomy: a comprehensive review. Eur Urol 2008; 54: 1262-9.
- Giusti G, De Lisa A. PCNL in the prone position VS PCNL in the modified supine Double-S position: is there a better position? A prospective randomized trial. Urolithiasis 2020; 48: 63-9.
- 9. Zhao Z, Fan J, Liu Y, et al. Percutaneous nephrolithotomy: position, position, position! Urolithiasis 2018; 46: 79-86.
- 10. Nuño de la Rosa I, Palmero JL, Miralles J, et al. A comparative study of percutaneous nephrolithotomy in supine position and endoscopic combined intrarenal surgery with flexible instrument. Actas Urol Espanol 2014; 38: 14-20.
- 11. Ahmed AF, Gomaa A, Daoud A, et al. Split-leg modified lateral versus prone position in percutaneous nephrolithotomy: a prospective, randomized trial. World J Urol 2021; 39: 1247-56.
- 12. Melo PAS, Vicentini FC, Perrella R, et al. Comparative study of percutaneous nephrolithotomy performed in the traditional prone position and in three different supine positions. Int Braz J Urol 2019; 45: 108-17.
- 13. Hosseini SR, Fatahi B, Fakhr Yasseri AM. Comparison outcomes of percutaneous nephrolithotomy in prone and flank position in obese patients: a randomized clinical trial. Urologia 2022; 89: 580-4.
- 14. Jones MN, Ranasinghe W, Cetti R, et al. Modified supine versus prone percutaneous nephrolithotomy: surgical outcomes from a tertiary teaching hospital. Investig Clin Urol 2016; 57: 268-73.
- 15. Arrabal-Martin M, Arrabal-Polo MA, Lopez-Leon V, et al. The oblique supine decubitus position: technical description and comparison of results with the prone decubitus and dorsal supine decubitus positions. Urol Res 2012; 40: 587-92.
- Al-Dessoukey AA, Moussa AS, Abdelbary AM, et al. Percutaneous nephrolithotomy in the oblique supine lithotomy position and prone position: a comparative study. J Endourol 2014; 28: 1058-63.

- 17. Karami H, Mohammadi R, Lotfi B. A study on comparative outcomes of percutaneous nephrolithotomy in prone, supine, and flank positions. World J Urol 2013; 31: 1225-30.
- Radfar MH, Nasiri M, Shemshaki H, et al. A study on comparative outcomes of totally ultrasonography-guided percutaneous nephrolithotomy in prone versus flank position: a randomized clinical trial. World J Urol 2021; 39: 4241-6.
- 19. Wiesenthal JD, Ghiculete D, RJ DAH, et al. A comparison of treatment modalities for renal calculi between 100 and 300 mm2: are shockwave lithotripsy, ureteroscopy, and percutaneous nephrolithotomy equivalent? J Endourol 2011; 25: 481-5.
- 20. Valdivia JG, Scarpa RM, Duvdevani M, et al. Supine versus prone position during percutaneous nephrolithotomy: a report from the clinical research office of the endourological society percutaneous nephrolithotomy global study. J Endourol 2011; 25: 1619-25.
- Yuan DB, Liu YD, Rao HF, et al. Supine Versus prone position in percutaneous nephrolithotomy for kidney calculi: a meta-analysis. J Endourol 2016; 30: 754-63.
- 22. Birowo P, Tendi W, Widyahening IS, et al. Supine versus prone position in percutaneous nephrolithotomy: a systematic review and meta-analysis. F1000Res 2020; 9: 231.
- 23. Zhang X, Xia L, Xu T, et al. Is the supine position superior to the prone position for percutaneous nephrolithotomy (PCNL)? Urolithiasis 2014; 42: 87-93.
- 24. Karaolides T, Moraitis K, Bach C, et al. Positions for percutaneous nephrolithotomy: thirty-five years of evolution. Arab J Urol 2012; 10: 307-16.
- 25. Hoznek A, Rode J, Ouzaid I, et al. Modified supine percutaneous nephrolithotomy for large kidney and ureteral stones: technique and results. Eur Urol 2012; 61: 164-70.
- 26. Desoky EA, Allam MN, Ammar MK, et al. Flank free modified supine position: a new modification for supine percutaneous nephrolithotomy. Arab J Urol 2012; 10: 143-8.
- 27. Nuno de la Rosa I, Palmero JL, Miralles J, et al. A comparative study of percutaneous nephrolithotomy in supine position and endoscopic combined intrarenal surgery with flexible instrument. Actas Urol Esp 2014; 38: 14-20.
- Wang Y, Hou Y, Jiang F, et al. Percutaneous nephrolithotomy for staghorn stones in patients with solitary kidney in prone position or in completely supine position: a single-center experience. Int Braz J Urol 2012; 38: 788-94.
- 29. Li J, Gao L, Li Q, et al. Supine versus prone position for percutaneous nephrolithotripsy: a meta-analysis of randomized controlled trials. Int J Surg 2019; 66: 62-71.
- Yuan D, Liu Y, Rao H, et al. Supine versus prone position in percutaneous nephrolithotomy for kidney calculi: a meta-analysis. J Endourol 2016; 30: 754-63.
- Kamphuis GM, Baard J, Westendarp M, et al. Lessons learned from the CROES percutaneous nephrolithotomy global study. World J Urol 2015; 33: 223-33.
- Lee JK, Kim BS, Park YK. Predictive factors for bleeding during percutaneous nephrolithotomy. Korean J Urol 2013; 54: 448-53.
- Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-13.

- 34. Rassweiler JJ, Rassweiler MC, Michel MS. Classification of complications: is the Clavien-Dindo classification the gold standard? Eur Urol 2012; 62: 256-8; discussion 59-60.
- 35. de la Rosette JJ, Opondo D, Daels FP, et al. Categorisation of complications and validation of the Clavien score for percutaneous nephrolithotomy. Eur Urol 2012; 62: 246-55.
- 36. Tuttle DN, Yeh BM, Meng MV, et al. Risk of injury to adjacent organs with lower-pole fluoroscopically guided percutaneous nephrostomy: evaluation with prone, supine, and multiplanar reformatted CT. J Vasc Interv Radiol 2005; 16: 1489-92.
- 37. Desoky EAE, Eliwa AM, Fawzi AM, et al. Radiologic relation of the colon to the trajectory of percutaneous nephrolithotomy access in prone versus flank-free modified supine position: a prospective study of intra and interindividual influencing factors. Urology 2018; 115: 71-5.
- 38. De Sio M, Autorino R, Quarto G, et al. Modified supine versus prone position in percutaneous nephrolithotomy for renal stones treatable with a single percutaneous access: a prospective randomized trial. Eur Urol 2008; 54: 196-202.

Received: 7.02.2023, accepted: 24.02.2023