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A b s t r a c t

Recent studies have demonstrated that alterations in cardiac metabolism occur in
ischemic heart disease and heart failure. This suggests that there is an increased
utilization of non-carbohydrate substrates for energy production with a resultant
reduction in the efficiency of myocardial oxygen consumption. A direct approach to
modifying cardiac energy metabolism could involve altering substrate utilization.
Trimetazidine, which acts by selectively inhibiting mitochondrial 3-ketoacyl-coenzyme
A thiolase, (an enzyme involved in β-oxidation) is an antianginal drug that shifts the
preference for energy substrate away from fatty acid metabolism and towards
glucose metabolism. It has a reduces ischemia-reperfusion damage and left
ventricular function by reducing cell damage, tissue inflammation and left ventricle
remodeling. Recent research has demonstrated that the anti-inflammatory action
of trimetazidine reduces long-term mortality in patient with ischemic cardiomyopathy.

KKeeyy  wwoorrddss:: trimetazidine, coronary artery disease, inflammation, reperfusion injury,
heart metabolism.

Introduction

Ischemic heart disease remains the major cause of mortality in developed
countries [1] and, since 1990, has become the most frequent cause of chronic
heart failure [2]. There is no doubt that the extended use of coronary
angioplasty, thrombolitic therapy and coronary artery bypass surgery has had
a fundamental impact on limiting cardiovascular mortality and improving the
quality of life. Angiotensin converting enzyme (ACE) inhibitors, β-blockers,
nitrates, angiotensin type 1 receptor blockers, anti-platelet and lipid-decreasing
agents are currently the keytstones of pharmacologic management,
supplemented by lifestyle changes [3]. However, side-effects of chronic drug
treatment may affect compliance. This reduces the number of fully-treated
patients and thus affect their quality-of-life. Despite the range therapeutic
options that are available, mortality rates remain high, and many patients
continue to have troublesome symptoms. An additional strategy could be to
treat the metabolic causes and effects of myocardial ischemia [4].

Heart metabolism

The myocardium depends on oxygen to support high energy phosphate
production by oxidative phosphorylation. This is the only metabolic process
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that can generate adequate energy for the heart.
When the amount of oxygen is unable to meet the
requests for mitochondrial respiration, the high energy
phosphates production goes down and lactate, the
end-product of anaerobic glycolysis, accumulates
which encourges the deleterious effects of intracellular
acidosis [5]. In the normal heart, adenosine-
triphosphate (ATP) is produced by the metabolism of
fatty acids and carbohydrates with fatty acids
contributing about 60 to 80% of ATP [6]. Fatty acid
oxidation is directly related to plasma free fatty acid
(FFA) oxidation, while glucose and lactate uptakes are
inversely related to plasma FFA concentration. Fatty
acids are not as efficient a source of myocardial
energy as glucose, requiring 10% more oxygen to
produce an equivalent amount of ATP [7]. The
oxidation of fatty acids is regulated by:
i) the concentration of FFA in plasma,
ii) the activity of carnitine palmitolyl transferase-I

(CPT-I), and
iii) the enzymes that catalyze fatty acid β-oxidation

in mitochondria [8-10].

Because high levels of fatty acids inhibit glucose
oxidation, a favorable approach to treating ischemic
heart disease could be to stimulate glucose
oxidation or to inhibit fatty acid oxidation. Unlike
other pharmacological approaches there would not
be any direct effects on heart rate, arterial blood
pressure or coronary flow. Pharmacologic agents
that inhibit fatty acid oxidation include β-oxidation
inhibitors such as the 3-ketoacyl-coenzyme A
thiolase (3-KAT) inhibitor trimetazidine.

Myocardial damage in ischemic heart disease:
the pathophysiological relevance of inflammation

Early reperfusion has been shown to be useful to
preventing cell death after coronary artery occlusion.
It is generally accepted that the prompt reopening
of the occluded vessel, either by mechanical
(coronary angioplasty or bypass surgery) or
pharmacological means (thrombolitic drugs), should
be performed as soon as possible in patients with
acute coronary syndromes (ACS) [11-13]. The aims
of therapeutic management of ACS are plaque
stabilization and reduction of reperfusion damage.

PPllaaqquuee  ddeevveellooppmmeenntt  aanndd  ddeessttaabbiilliizzaattiioonn

Previously considered a cholesterol accretion
disease, atherosclerosis is now considered to be 
a complex inflammatory process. When coronary
endothelium encounters certain bacterial products or
risk factors such as hyperlipidemia, vasoconstrictive
hormones, products of glycoxidation associated with
diabetes, or inflammatory cytokines derived from
adipose tissue (metabolic syndrome, obesity), these
cells increase the expression of adhesion molecules

that endorse the adhesion of leukocytes to the inner
surface of the artery [14]. Transmigration of the
adherent leukocytes depends on the expression of
chemoattractant cytokines regulated by signals
associated with risk factors for atherosclerosis. Once
resident in the arterial intima, leukocytes promote
inflammation by interacting with endothelial cells and
smooth muscle cells (SMCs) [14]. This results 
in a localised inflammatory process with cell
proliferation and secretion of matrix metallopro-
teinases (MMPs) [15]. These proteinases modulate
numerous functions of vascular cells, including
activation, proliferation, migration, and cell death,
together with neoangiogenesis and left ventricle and
extracellular matrix remodeling. In addition to
proliferation, cell death (commonly related to
apoptotic processes) commonly occurs in the
atherosclerotic lesions. The death of lipid-laden
macrophages can lead to extracellular deposition of
tissue factor (TF). The extracellular lipid that
accumulates in the intima, forms the classic, lipid-rich
necrotic core of the atherosclerotic plaque [16].
According to autopsy studies, rupture of the plaque’s
protective fibrous cap causes coronary thrombosis
and acute coronary syndromes [17-19]. Disrupted
plaques provoke thrombosis in several ways. First,
contact with collagen in the plaque’s extracellular
matrix triggers platelet activation. Second, TF
produced by macrophages and SMCs activates the
coagulation cascade [20]. The disrupted plaque
represents a stimulus to both thrombosis and
coagulation. These pathways reinforce each other, as
thrombin generation amplifies the activation of
platelets and other cells in the plaque. Conversion of
fibrinogen to fibrin and release of von Willebrand
factor from activated platelets can provide the cross-
linking molecular bridges between platelets. Finally,
the occurrence of distal embolization explains in part
the no-reflow phenomenon that can complicate both
spontaneous and iatrogenic (coronary angioplasty,
thrombolysis) plaque disruption and prevent the
effective reperfusion of distal microcirculation [14]. 
A variety of biomarkers linked to inflammation could
predict plaque destabilization and coronary events
recurrence [21]. These markers include acute-phase
reactants (C-reactive protein), pro- and anti-
inflammatory cytokines, cell adhesion molecules,
MMPs, and other markers of activation of platelets
and white cells, including soluble CD40 ligand and
myeloperoxidase [14]. Furthermore, data obtained
from several databases support the importance of
the anti-inflammatory and immune system in
modulating effects of drugs normally used in patients
with CAD (aspirin, statins) [22, 23].

RReeppeerrffuussiioonn  iinnjjuurryy

Reperfusion injury may affect various aspects of
myocardial and endothelial function, with different
and complex pathophysiological consequences 
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[24, 25]. The term encompasses several events
including:
a) microvascular damage,
b) reperfusion arrhythmias,
c) reversible myocardial mechanical dysfunction

(stunning), and
d) cell death (due to apoptosis or necrotic processes).

Oxidative stress, intracellular calcium overload,
neutrophil activation, metabolic alterations, and
excessive intracellular osmotic load have all been
proposed to explain the pathogenesis and the
consequences of inflammatory injury in ischemic-
reperfused myocardium.
11))  OOxxiiddaattiivvee  ssttrreessss::  The increase of reactive oxygen

species during ischemia-reperfusion and the
adverse effects of oxyradicals on myocardium
have been well established. Although several
experimental studies have demonstrated the
cardioprotective effects of antioxidants, larger
clinical studies have so far failed to confirm such
earlier results. The importance of various
endogenous antioxidants in reperfusion injury is
evident from the decrease in their activity that
occurs at the time of myocardial damage, and
from the reduction in cardiac damage during
ischemia-reperfusion that has been reported
when antioxidants are administered [26].

22))  IInnffllaammmmaattoorryy  cchhaannggeess::  The inflammatory processes
that characterize early and late reperfusion, are
factors in the process that lead to tissue damage.
Neutrophils feature prominently in the inflammatory
component of post-ischemic injury. Ischemia-
reperfusion prompts a release of oxygen free
radicals, cytokines and other pro-inflammatory
mediators that activate both the neutrophils and
the coronary vascular endothelium [27, 28].
Activation of these cells promotes the expression
of adhesion molecules on both neutrophils and
the endothelium which recruit neutrophils on the
endothelial surface and initiate a specific cascade
of cell-cell interactions. Neutrophils adhere to the
vascular endothelium and subsequently migrate
across the endothelium, to interact directly i with
interstitial matrix and myocytes [29-33]. This
specific series of events is a prerequisite for the
full expression of reperfusion injury, including
endothelial dysfunction, microvascular collapse,
impairment of blood flow (no-reflow phenomenon),
myocardial infarction and apoptosis [34]. Pharma-
cological therapies can target the different stages
in this critical series of events. Effective targets for
pharmacologic agents include:
a) inhibiting the release or accumulation of pro-

inflammatory mediators;
b) altering neutrophil or endothelial cell activation;

and
c) attenuating adhesion molecule expression on

the endothelium, neutrophils and myocytes [28].

Both nitric oxide (NO) and adenosine, two
fundamental regulators of coronary flow and
endothelial function, exhibit a wide-range of
effects against neutrophil-mediated events.
These agents can therefore be used to tackle
several critical points in the ischemia-
reperfusion response, and offer greater benefit
than agents acting at one single point in the
pathogenetic cascade [35-37]. The intense
inflammatory response following reperfusion
has been implicated as a factor not only in the
extension of tissue injury [27], but also in tissue
repair. Myocardial injury initiates a cascade of
cellular and humoral responses that ultimately
facilitate tissue repair. The early generation of
complement-derived chemotactic factors does
not depend upon reperfusion, but reperfusion
of the infarcted myocardium accelerates other
cellular and cytokine responses, thus providing
the potential for post-reperfusion injury [38].

33))  EEnnddootthheelliiaall  ffuunnccttiioonn::  Alterations of endothelial
function are pivotal in the development of
reperfusion damage and the no-reflow pheno-
menon. Here the enhanced release or increased
bioavailability of nitric oxide (NO) appears to be
central. Besides its well known vasodilatory effects,
NO reduces microvascular dysfunction [39], platelet
adhesion and aggregation [40], and leukocyte
adherence or emigration [41, 42]. NO also reacts
with superoxide to form peroxynitrite, which is 
a strong cytotoxic agent. Because of this, the role
of NO in ischemia-reperfusion damage and
myocardial dysfunction remains controversial.
Several investigators have reported that the
administration of NO donors prevents reperfusion
injury [43]. Removing NO by pharmacologically
inhibiting NO synthases (NOS), or by breeding
transgenic endothelial and inducible NOS (eNOS
and iNOS) knockout mouse models have been
shown to exacerbate reperfusion injury [42-44]. It
is plausible that the biological role of eNOS and
iNOS are different in ischemia-reperfusion
conditions. The basal NO production in the
picomolar range prevents deterioration and/or
restore endothelial function in the coronary
microcirculation. Conversely, the burst of NO
production in the nanomolar range that occurs
during reperfusion by an increase of iNOS activity
promotes lipid peroxidation and oxidative cell
damage [26].

44))  MMeettaabboolliicc  cchhaannggeess::  A metabolic protection of the
ischemic myocardium appears to be an important
factor in limiting reperfusion damage [45]. Major
metabolic changes occurring during the early hours
of myocardial infarction include increased secretion
of catecholamines and production of circulating
FFA. Under normal conditions, the myocardium
depends on aerobic metabolism, with FFA as the
preferred energy source. During ischemia-
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reperfusion, FFA levels are greatly increased, and
exert a toxic effect on the myocardium. This results
in increased membrane damage, endothelial
dysfunction, tissue inflammation and decreased
cardiac function [46]. Decreasing plasma FFA levels
and cardiac fatty acid oxidation, together with
stimulating glucose and lactate uptake might
reduce these detrimental effects. This might be
achieved by the administrating glucose-insulin-
potassium (GIK) solutions at the time of
reperfusion [47, 48] and inhibiting fatty acid
oxidation with 3-KAT inhibitors.

Trimetazidine: anti-inflammatory effects 
in patients with coronary artery disease

Trimetazidine is a piperazine derivative (1-[2,3,4-tri-
methoxybenzil] piperazine dihydrocloride) with anti-
ischemic properties. Trimetazidine exerts myocardial
anti-ischemic effects independent ofchanges in oxygen
supply-to-demand ratio. In conditions of ischemia or
hypoxia, trimetazidine maintains cellular functions by
selectively inhibiting mitochondrial long-chain 3-KAT
[49]. As a consequence, fatty acid β-oxidation is

reduced and glucose utilization is stimulated. There is
a consequent improvement in mitochondrial function
anda reduction in calcium overload and intracellular
acidosis. Trimetazidine also has antioxidant effects,
protects the endothelium, preserves high-energy
phosphates and has an anti-inflammatory action
(Figure 1) [50].

A proinflammatory state is recognized in coronary
artery disease and chronic heart failure. The degree
of immune activation corresponds to disease severity
and prognosis. In patients with heart failure and
ischemic heart disease, greater concentrations of 
C-reactive protein have been related to higher rates
of mortality, cardiovascular events and hospitalization
rate [14, 51, 52]. In diabetics or in patients with insulin-
resistance the inflammatory state is increased with
a consequential worsened prognostic outlook [53].

In clinical and experimental conditions, trimeta-
zidine reduces inflammation and improves endothelial
function in acute (ischemia-reperfusion damage,
coronary angioplasty, thrombolysis) and chronic
conditions (ischemic cardiomyopathy, stable angina)
(Figure 2). In experimental models of cardiac ischemia-

FFiigguurree  11..  Potential anti-inflammatory effects of trimetazidine in patients with ischemic heart disease (IHD). Various
clinical conditions (i.e. diabetes, ischemic heart disease and heart failure) are characterized by an intensive
inflammation of myocyte and extracellular matrix. Trimetazidine reduces fatty acid oxidation and stimulates glucose
utilization by selective inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase (3-KAT). The coupling
of glycolysis with glucose oxidation is improved, and production of adenosine triphosphate (ATP) is increased. The
deleterious effects of acidosis and intracellular calcium overload in ischemic, hypoxic, and overstretched cells are
limited or abolished. Trimetazidine exerts an anti-inflammatory effect by rapidly restoring the phosphorylation
processes, preserving the phosphocreatine (PCr)/ATP ratio, protecting cardiac cells against intracellular acidosis,
preventing intracellular accumulation of sodium and calcium ions, and, finally, by reducing oxidative damage. All
these properties protect the myocardial cell against necrotic and apoptotic cell death and reduce tissue inflammation
and endothelial dysfunction. CoA – coenzyme A, PDH – pyruvate dehydrogenase, PL – phospholipids

RREEDDUUCCTTIIOONN  OOFF  IISSCCHHEEMMIIAA--RREEPPEERRFFUUSSIIOONN
DDAAMMAAGGEE
• Oxidative stress
• Mitochondrial damage
• Vascular damage
• Endothelial function
• Necrosis and Apoptosis

MMIICCRROOVVAASSCCUULLAARR  SSTTUUNNNNIINNGG
• Endothelial nitric oxide preservation
• Microvascular permeability

HHIIBBEERRNNAATTIINNGG  AANNDD  SSTTUUNNNNEEDD
MMYYOOCCAARRDDIIUUMM
• PCr/ATP ratio
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FFiigguurree  22..  Potential endothelial protective effects of trimetazidine during ischemia-reperfusion. During ischemia and
reperfusion the endothelial cell is early damaged; a morphological (cell swelling) and functional deterioration occurs.
Apoptosis processes are responsible for the death of numerous cells damaged during ischemia. Microvascular
permeability increases determining interstitial edema and alteration in coronary microcirculation (no-reflow
phenomenon). There alterations are partly reversible (microvascular stunning). Trimetazidine exerts a direct effect of
endothelial function by increasing endothelial nitric oxide production and availability and by reducing endothelin-1
release. M – mitochondrium, C – coronary artery, EC – endothelial cell, NO – nitric oxide, eNOS – endothelial nitric oxide

reperfusion, trimetazidine reduces neutrophil
accumulation in reperfused myocardium [54]. Tritto
et al. [55] reported that trimetazidine inhibits
neutrophil activation in vitro and reduced cardiac
oxygen radical production at reflow, independent 
of direct scavenger effects. Thus, trimetazidine can
protect post-ischemic hearts from neutrophil-
mediated injury. Recently, in ischemic-reperfused rat
hearts, we demonstrated that trimetazidine reduced
cellular damage and preserved endothelial function
and the expression of eNOS [56]. This effect could
partially explain the anti-inflammatory effects of the
drug. In a rabbit model of ischemia-reperfusion,
Ruixing et al. reported that trimetazidine also
prevented cardiomyocyte apoptosis and ischemia-
reperfusion injury via its’ antioxidant properties [57].

These anti-inflammatory effects are also evident in
patients with long-standing ischemic cardiomyopathy.
In these patients long-term trimetazidine treatment
reduces the systemic inflammation as evaluated by
plasma C-reactive protein [58] determination. It has
been also observed that trimetazidine is able to reduce
the release of endothelin-1 in patients with ischemic
cardiomyopathy and heart failure [59]. Growth factors,
vasoactive substances, and mechanical stress result
in increased levels of endothelin-1. Despite the
recognized adaptive advantage of endothelin-1 in
supporting the contractility of the failing heart,
persistent increases in its expression in the failing
heart are associated with an increased severity of
myocardial dysfunction [60]. The preservation of eNOS
production and its bioavailability appears to be a critical

factor in the decrease inendothelin-1 release and the
preservation of endothelial function. Recently,
Belardinelli et al. reported that trimetazidine improved
endothelium-dependent relaxation in patients 
with ischaemic cardiomyopathy. This effect was
associated with antioxidant properties as measured
by a reduction in plasma malondialdehyde and lipid
hydroperoxide levels [61]. Also, Monti et al. [62]
reported that trimedazidine had significant metabolic
and endothelial protective effects in forearm skeletal
muscle in diabetic patients with ischemic cardio-
myopathy.

Kuralay et al., reported that trimetazidine
suppressed inflammatory markers (tumor necrosis
factor-α, NO products, C-reactive protein) before and
after percutaneous transluminal coronary angioplasty
(PTCA). This anti-inflammatory effect was also
associated with an improvement of global and
regional wall motion after PTCA [63]. Administration
of trimetazidine limited the harmful effects of
reperfusion and protected myocytes and endothelial
cells by optimizing their metabolism during the PTCA
procedures. Trimetazidine maintains the integrity of
cell membranes as well as mitochondrial structure
and ensures the protection of myocardial cells that
are at risk. Furthermore, it is known that myocardial
cells exposed to chronic reduction in blood flow have
structural and metabolic alterations (hibernation).
More specifically, ATP resynthesis is reduced, glycogen
accumulates, and a loss of contractile function takes
place. Therefore it is possible that trimetazidine helps
chronic post-ischemic stunned cells to normalize their

TTrriimmeettaazziiddiinnee  aanndd  rreeppeerrffuussiioonn  iinnjjuurryy::  eennddootthheelliiaall  pprrootteeccttiioonn
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metabolism and function [63]. It is also possible that
hibernating myocardial cells improve their energy
metabolism after trimetazidine administration
because of a more efficient utilization of glucose with
reduced oxygen availability [64].

Similar results were also obtained in patient during
coronary artery bypass surgery where pre-treatment
with trimetazidine alleviated malondialdehyde
production and preserved endogenous antioxidant
capacity [65].

The question as to whether the anti-inflammatory
effects of trimetazidine improve prognosis is still
under investigation. In patients with ischemic left
ventricular dysfunction and multivessel coronary
artery disease, El-Kady et al. [66] reported that survival
at 2 years was 92% among patients treated with
trimetazidine and 62% among those treated with
placebo. In a recent post-hoc analysis obtained from
the Villa Pini d’Abruzzo trimetazidine trial, we reported
that trimetazidine treatment could reduce all-cause
mortality (17% compared with 39% in controls) and
hospitalization (47% vs. controls) [67].

In conclusions, recent findings have demonstrated
that trimetazidine exerts a significant anti-inflamma-
tory effect in patients with ischemic heart disease.
This effect, related to the metabolic, anti-oxidative,
and endothelial protective effects of the drug,
probably improve prognosis and quality of life.
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