It is well known that acute alveolar haemorrhage (AAH) is attributed to capillaritis in most cases with microscopic polyangiitis (MPA). In this article, we explore the cause of alveolar haemorrhage in MPA patients. In the present study, we extracted four autopsy cases of MPA with AAH. Patient’s sex and age, cause of alveolar haemorrhage, therapy, follow-up duration, and cause of death were investigated. As a result, alveolar haemorrhage was caused by diffuse alveolar damage (DAD) due to candidiasis or influenza virus infection, haemorrhagic infarct due to aspergillosis, capillaritis due to MPA, vasculitis due to cytomegalovirus (CMV), and herpes simplex virus (HSV) infection. All patients received corticosteroid therapy, and one patient additionally underwent administration of cyclophosphamide. The duration of follow-up ranged from one to 26 months with a mean of eight months. All patients died of respiratory failure. In summary, clinicians and pathologists should recognise some causes of alveolar haemorrhage in MPA patients, which include DAD, haemorrhagic infarct, virus-associated vasculitis, or MPA-associated capillaritis.

Key words: alveolar haemorrhage, microscopic polyangiitis.
Table I. Summary of four cases with microscopic polyangiitis (MPA) with alveolar hemorrhage

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Cause of Alveolar Hemorrhage</th>
<th>Therapy</th>
<th>Follow-up (Months)</th>
<th>Cause of Death</th>
<th>UIP</th>
<th>Other Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>F</td>
<td>DAD due to candidiasis</td>
<td>SAID</td>
<td>1</td>
<td>Respiratory failure</td>
<td>+</td>
<td>Crescentic</td>
</tr>
<tr>
<td>83</td>
<td>F</td>
<td>Hemorrhagic infarct due to aspergillosis</td>
<td>SAID, CPA</td>
<td>2</td>
<td>Respiratory failure</td>
<td>+</td>
<td>Crescentic</td>
</tr>
<tr>
<td>73</td>
<td>F</td>
<td>DAD due to influenza</td>
<td>SAID</td>
<td>26</td>
<td>Respiratory failure</td>
<td>+</td>
<td>IgA nephropathy</td>
</tr>
<tr>
<td>88</td>
<td>M</td>
<td>Capillaritis due to MPA, CMV and HSV</td>
<td>SAID</td>
<td>3</td>
<td>Respiratory failure</td>
<td>+</td>
<td>Crescentic</td>
</tr>
</tbody>
</table>


Material and methods

After we reviewed 40 autopsy cases between January 2014 and March 2018, we selected four cases of MPA with AAH. Patient’s sex and age, cause of alveolar haemorrhage, therapy, follow-up duration, and cause of death were examined. All surgically resected organs were fixed in formalin and embedded in paraffin. Thick sections were cut into 4-mm slices and stained with haematoxylin and eosin. For the detection of mycosis, periodic acid-Aschiff and Grocott stains were performed. Antibodies against aspergillus (polyclonal, 1 : 200, Biocare Medical, CA, USA), cytomegalovirus (CCH2, 1 : 200, DAKO, Glostrup, Denmark), and herpes simplex virus (polyclonal, 1 : 40, Biogenex, CA, USA) were employed in the present study. For the immunohistochemistry, BenchMark Ultra (Ventana Medical Systems, Inc., Tucson, AZ, USA) was employed as an autostainer. Tissue specimens of nasal cavity, lung, and oesophagus with aspergillus, cytomegalovirus, and herpes simplex virus infection were used as positive controls, respectively. Written, informed consent was obtained from all bereaved of patients.

Results

The clinicopathological data were summarised in Table I. The sex ratio of male versus female was 1 : 3. The age of patients ranged from 73 to 88 years with a mean age of 81 years. Representative chest X-ray is shown in Fig. 1. Macroscopically, haemorrhage was observed in pulmonary parenchyma (Fig. 2). Microscopically, haemorrhage was identified in the alveolar spaces (Fig. 3A). The cause of alveolar haemorrhage included diffuse alveolar damage (DAD) (Fig. 3B) due to candidiasis or influenza virus infection,
haemorrhagic infarct (Fig. 3C) due to aspergillosis, capillaritis due to MPA (Fig. 3D), and vasculitis due to cytomegalovirus (CMV) (Fig. 3E) and herpes simplex virus (HSV) (Fig. 3F) infection. All patients received corticosteroid therapy. Additionally, one patient underwent administration of cyclophosphamide. The duration of follow-up ranged from one to 26 months with a mean of eight months. All patients died of respiratory failure. All patients demonstrated usual interstitial pneumonia. Among four patients, three patients had ANCA-related glomerulonephritis and pulmonary hypertension. Two patients were diagnosed with neurofibroma.
Discussion

It is difficult for clinicians to identify the cause of alveolar hemorrhage in patients with MPA. Pulmonary capillaritis is often observed in systemic lupus erythematosus but is also seen in MPA [6]. Patients with MPA tend to suffer from various infectious diseases such as miosis, pneumocystis jirovecii, or cytomegalovirus [6, 7, 8, 9]. In general, clinicians should consider capillaritis due to MPA if the disease state of MPA is active. On the other hand, physicians need to consider the effect of infectious disease if immunosuppression exists to some extent in hosts because of SAID or immunosuppressive agents. In the present study, we found a variety of patterns of alveolar haemorrhage in MPA, such as DAD due to candidiasis or influenza virus infection, haemorrhagic infarct MPA-induced capillaritis, and CMV- or HSV-induced vasculitis. It is very important for clinicians to recognise these possibilities because the therapeutic modality is quietly different among these causes. These pathological conditions result in respiratory failure and subsequent fatal outcome.

To the best of our knowledge, there is no report on pulmonary haemorrhagic infarct in MPA. Thus, this is the first report on pulmonary haemorrhagic infarct due to aspergilliosis in an MPA patient. Previously, a case of pleuritis due to aspergilliosis was reported in a patient with MPA. This phenomenon was caused by prior spontaneous pneumothorax [10].

Additionally, there are a few reports on coinfection of CMV and HSV in the lung. Among them, two patients received lung transplantation and one patient was an immunocompromised host [11, 12, 13]. To our knowledge, this is the first report on coinfection of CMV and HSV in an MPA patient.

In contrast, whenever clinicians encounter alveolar haemorrhage, they should consider the possibility of MPA [14, 15]. Clinicians should bear in mind that alveolar haemorrhage may appear in chronic and asymptomatic fashion [16].

In conclusion, clinicians and pathologists should recognise some causes of alveolar haemorrhage in MPA patients, which include DAD, haemorrhagic infarct, virus-associated vasculitis, or MPA-associated capillaritis.

The authors declare no conflict of interest.

References


Address for correspondence
Naoto Kuroda
Department of Pathology
Kochi Red Cross Hospital
Shin-honmachi 2-13-51, Kochi City
Kochi 780-8562, Japan
e-mail: kurochankochi@yahoo.co.jp