Ceragenins – a new weapon to fight multidrug resistant bacterial infections

Cerageniny – nowe perspektywy w zwalczaniu infekcji wywołanych przez wielooporne szczepy bakteryjne

Urszula Surel1, Katarzyna Niemirowicz1, Michal Marzec2, Paul B. Savage1, Robert Bucki1,4

1Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
Head of Department: Prof. Adam Krętowski
2Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
Head of Department: Prof. David B. Roth
3Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
Head of Department: Prof. Greg Burton
4Department of Pathophysiology and Infection Microbiology, Institute of Nursing and Obstetrics, Faculty of Health Sciences, Jan Kochanowski University, Kielce, Poland
Head of Department: Prof. Stanisław Głuszek MD, PhD

Studia Medyczne 2014; 30 (3): 207–213

Key words: microbiology, antibacterial activity, cationic lipids.
Słowa kluczowe: mikrobiologia, aktywność przeciwbakteryjna, lipidy kationowe.

Abstract

Growing antibiotic resistance among pathogenic microorganisms is one of the most challenging problems. Often, a single mutation in a bacterial cell leads to the formation of a new drug resistance mechanism. The ceragenins are a novel class of antibacterial activity, offering great promise in future treatment of infections. These cationic antimicrobial lipids are net positively charged molecules that are electrostatically attracted to the negatively charged membranes of bacteria, certain viruses, fungi, and protozoa. After membrane insertion, they interfere with membrane organisation, resulting in membrane dysfunction and cell death. This review focuses on the broad spectrum of antibacterial activity of ceragenins, and their potential to become a new group of antibiotics for prevention and treatment of infections, especially those caused by multidrug-resistant bacteria.

Streszczenie

Stale narastająca oporność bakterii na antybiotyki jest jednym z najtrudniejszych problemów. Często pojedyncza mutacja w komórce bakteryjnej prowadzi do powstania i rozwoju nowego mechanizmu, nadającego bakteriom oporność na antybiotyki. Cerageniny (pochodne kwasu cholowego) są analogami naturalnych kationowych peptydów przeciwbakterijnych oferujących nowe możliwości w leczeniu infekcji bakteryjnych. Mają one dodatni ładunek powierzchniowy, dzięki czemu oddziałują elektrostatycznie z negatywnie naładowaną powierzchnią bakterii, wirusów, grzybów i pierwotniaków. Po insercji w strukturę lipidową błony mikroorganizmów zaburzają jej funkcję, co w efekcie prowadzi do śmierci komórki. W niniejszej pracy przedstawiono szerokie spektrum aktywności przeciwdrobnoustrojowej ceragenin i ich potencjał w zwalczaniu infekcji, w szczególności powodowanych przez wielooporne szczepy bakteryjne.

Multidrug-resistance

The widespread inappropriate use of antibiotics is considered the major factor driving the increasing number of multidrug-resistant bacterial strains. Antibiotic treatment is very often prescribed as a preventative treatment and is given with disregard to the importance of the commensal microbiota that colonise the skin, gut, and mucosal surfaces of the human body [1]. According to the U.S. Center for Disease Control and Prevention (CDC), every year drug-resistant bacteria infect more than two million people nationwide, and a large percentage of those infections occur with involvement of multidrug-resistant bacteria. Additionally, some of those infections are acquired in health care facilities (health care-associated infections, HCAIs). Multidrug-resistant pathogens usually cause infections in more vulnerable individuals, especially immunocompromised and immunosuppressed patients, and those with burn injuries, cancer, or genetic disorders such as cystic fibrosis (CF) or Down’s syndrome [2, 3]. Drug resistance is considered the most important cause of expansion of tuberculosis...
Ceragenins

Produced by shark *Squalus acanthias* and described in 1993, squalamine is considered to be the first natural representative of the ceragenin family (Figures 1 A and 1 B). It exhibits potent bactericidal activity against both Gram-negative and Gram-positive bacteria. Furthermore, it is fungicidal by inducing osmotic lysis of the protozoa cell. The discovery of squalamine in the shark implicates a steroid molecule as a potential host-defence agent in vertebrates and provides insight into the chemical design of a family of broad-spectrum antibiotics [13]. In contrast to the sterol nature of fish squalamine, all mammals are equipped with cationic antibacterial peptides (CAPs) that represent the first line of defence against invasive pathogens [14, 15]. Physicochemical properties of squalamine and CAPs are similar because both are amphiphilic with net positive charge. Both are attractive candidates for clinical development of new antibiotics for three reasons: 1) a non-specific ability to induce dysfunction of the membranes of the pathogen (membrane permeabilisation and depolarisation), 2) speed of action, and 3) the difficulty of bacteria to develop a resistance mechanism [16–20].

The advantageous properties of squalamine and CAPs were used in the development of a new class of synthetic antibacterial molecules including ceragenins. Ceragenins are cholic acid derivates [16] that are similar in antibacterial activity to conditioned amino acid (derivatives of cholic acid marked with L-arginine), which was first synthesised in 1979 [21]. Like antibacterial peptides [22, 23], ceragenins display positive charges arranged on one face and hydrophobic residues on the other [16]. Ceragenins are also known as cationic steroid antibiotics (CSAs) and can be separated into two categories: polymyxin mimics, and squalamine and its mimics. Polymyxin mimics are characterised structurally by the attachment of three amine groups, via tethers, to a steroid nucleus. The second group consists of squalamine and its mimics, where the position of the polyamine and sulphate groups are reversed. Squalamine and its mimics can accept facially amphiphilic conformations in the presence of membrane molecules by passing the polyamine chain common to these compounds over the face of the steroid [24, 25]. CSA-13 is a lead compound from the ceragenin family, which is relatively simple to prepare and purify at a low cost [17, 19].

The broad spectrum of CSA-13 antibacterial activity includes activity against multidrug-resistant *P. aeruginosa* [26], vancomycin-resistant *S. aureus* [27] *H. pylori* [28], carbapenem-resistant *Acinetobacter baumannii* [29], and periodontopathic bacteria such as *Streptococcus mutans* and *Porphyromonas* species [30] (Table 1). Significant activity of CSA-13 against cariogenic and periodontopathic bacteria correlate with its ability to bind bacteria lipopolysaccharide and lipoteichoic acid linked to erythrocytes [30]. CSA-13 is also active against vaccinia virus (VV) [31] and *Trypanosoma cruzi* [32]. Although some forms of ceragenins are effective against both Gram-negative and Gram-positive bacteria (Figures 1 C and 1 D). Surprisingly, it is
not the cell wall, but the high content of phosphatidylethanolamine in most Gram-negative bacteria that provide them with resistance [17]. Ceragenins with a hydrophobic chain are bactericidal at low concentrations and match the antibacterial activity of polymyxin B against Gram-positive bacteria [24]. Recently, antimicrobial nanoparticles were synthesised using ceragenins and they were introduced as multifunctional theranostics [33]. Different applications of ceragenins include contact lenses, hydrogels with an antibacterial innate immune function [34], polymeric coating applied to implanted devices to prevent perioperative device-related infections [35], different applications of ceragenins include contact lenses, hydrogels with an antibacterial innate immune function [34], polymeric coating applied to implanted devices to prevent perioperative device-related infections [35], different applications of ceragenins include contact lenses, hydrogels with an antibacterial innate immune function [34], polymeric coating applied to implanted devices to prevent perioperative device-related infections [35], different applications of ceragenins include contact lenses, hydrogels with an antibacterial innate immune function [34], polymeric coating applied to implanted devices to prevent perioperative device-related infections [35],

Table 1. Susceptibility of selected bacteria strains to CSA-13 administration expressed as minimal inhibitory concentration (MIC)

<table>
<thead>
<tr>
<th>Bacteria strain (*clinical isolate)</th>
<th>MIC [mg/l]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus MRSA</td>
<td>0.5</td>
<td>[20]</td>
</tr>
<tr>
<td>Staphylococcus aureus VISA</td>
<td>1</td>
<td>[20]</td>
</tr>
<tr>
<td>Staphylococcus aureus VRSA</td>
<td>1.1</td>
<td>[20]</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 25923 VRSA</td>
<td>0.4</td>
<td>[18]</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 25923</td>
<td>0.3</td>
<td>[18]</td>
</tr>
<tr>
<td>Streptococcus salivarius ATCC 13419</td>
<td>0.7</td>
<td>[44]</td>
</tr>
<tr>
<td>Streptococcus mutans ATCC 35668</td>
<td>0.7</td>
<td>[44]</td>
</tr>
<tr>
<td>Staphylococcus epidermidis*</td>
<td>0.35</td>
<td>[44]</td>
</tr>
<tr>
<td>Streptococcus pneumoniae*</td>
<td>0.35</td>
<td>[44]</td>
</tr>
<tr>
<td>Streptococcus pyogenes*</td>
<td>0.7</td>
<td>[44]</td>
</tr>
<tr>
<td>Lactobacillus casei ssp. casei ATCC 393</td>
<td>22.4</td>
<td>[44]</td>
</tr>
<tr>
<td>Staphylococcus aureus Xen 29</td>
<td>1.4</td>
<td>[44]</td>
</tr>
<tr>
<td>Enterococcus faecalis ATCC 29212</td>
<td>2.8</td>
<td>[44]</td>
</tr>
<tr>
<td>Haemophilus influenzae*</td>
<td>0.35</td>
<td>[44]</td>
</tr>
<tr>
<td>Moraxella catarrhalis ATCC 23246</td>
<td>1.4</td>
<td>[44]</td>
</tr>
<tr>
<td>Helicobacter pylori*</td>
<td>0.7</td>
<td>[44]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa Xen 5</td>
<td>5.6</td>
<td>[44]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>2</td>
<td>[52]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 27853</td>
<td>2</td>
<td>[18]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa 316*</td>
<td>4</td>
<td>[26]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa 71*</td>
<td>8</td>
<td>[26]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa 727*</td>
<td>1</td>
<td>[26]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa R1130</td>
<td>4</td>
<td>[26]</td>
</tr>
<tr>
<td>Neisseria meningitidis (B)</td>
<td>0.7</td>
<td>[44]</td>
</tr>
<tr>
<td>Neisseria meningitidis (C)</td>
<td>0.7</td>
<td>[44]</td>
</tr>
<tr>
<td>Acinetobacter baumannii ATCC 19606</td>
<td>3</td>
<td>[18]</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>1.6</td>
<td>[29]</td>
</tr>
<tr>
<td>Pseudomonas canginivalis</td>
<td>3.2</td>
<td>[30]</td>
</tr>
<tr>
<td>Pseudomonas circumdentaria</td>
<td>0.8</td>
<td>[30]</td>
</tr>
</tbody>
</table>

Ceragenins in treatment of cystic fibrosis lung infections

Cystic fibrosis is an autosomal-recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene of chromosome 7. Chronic lung infections caused in about 70% of CF adult patients by P. aeruginosa are the major cause of death in the course of CF lung disease. Treatment of lung infections to reduce inflammation and lung injury is of major importance in the management of CF. The CF individuals are extremely susceptible to bacterial infections of the respiratory tract due to very viscous, dehydrated sputum accumulating in the airways. Frequent and intensive antibiotic therapy is required to maintain lung function, to increase...
Figure 1. Squalamine: aminosterol molecules with potent broad spectrum of bactericidal activity isolated from tissues of the dogfish shark Squalus acantbias by Dr. Michael Zasloff [13] (panel A). Lead molecules of ceragenin family (panel B). EM image of E. coli cells before (panel C) and after treatment with CSA-13 for 1 h at 37°C (panel D)
Ceragenins – a new weapon to fight multidrug resistant bacterial infections

Studia Medyczne 2014; 30/3

Ceragenins are a promising class of molecules for the development of new treatments against infections caused by multidrug-resistant pathogens including resistant strains of *P. aeruginosa* within a biofilm.

Conclusions

Ceragenins are a promising class of molecules for the development of new treatments against infections caused by multidrug-resistant pathogens including resistant strains of *P. aeruginosa* within a biofilm.

References


52. Bozkurt-Guzel C, Savage PB, Gerceker AA. In vitro activities of the novel ceragenin CSA-13, alone or in combination with colistin, tobramycin, and ciprofloxacin, against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. Chemotherapy 2011; 57: 505-10

Address for correspondence:

Prof. Robert Bucki
Department of Pathophysiology and Infection Microbiology
Faculty of Health Sciences
Jan Kochanowski University
ul. IX Wieków 19, Kielce, Poland
Fax: +48 85 748 54 83
E-mail: mikro.nano@umb.edu.pl