Bloch-Sulzberger syndrome: a case report

Anna Rosińska-Więckowicz, Magdalena Czarnecka-Operacz

Department of Dermatology, Poznan University of Medical Sciences, Poland
Head: Prof. Wojciech Silny MD, PhD

Abstract

Incontinentia pigmenti (IP, Bloch-Sulzberger syndrome) is a very rare genodermatosis characterized by typical skin lesions accompanied by dental, central nervous system, bone and ocular abnormalities. Incontinentia pigmenti is usually observed among women, as this X-linked dominantly inherited disorder is lethal in males. The hallmark feature of IP is cutaneous eruption along the lines of Blaschko, usually accompanied by neurological disorders. Apart from clinical features of the disease, skin biopsy is the best diagnostic tool to confirm the diagnosis. We present a case of a newborn with typical vesicular and then verrucous lesions affecting the lower legs.

Key words: incontinentia pigmenti, Bloch-Sulzberger syndrome.

Introduction

Incontinentia pigmenti (IP, Bloch-Sulzberger syndrome) is a very rare X-linked dominantly inherited genodermatosis predominant among females as it is usually lethal in males [1-6]. There are however single reports of male patients with IP and XXY karyotype [7, 8]. Incontinentia pigmenti was first described by Garrod in 1906 [9], and further defined by Bardach [10], Bloch in 1926 [11], Sulzberger in 1928 [12] and Siemens in 1929 [13], however only the names of Bloch and Sulzberger feature in the eponym. Incontinentia pigmenti is a multisystem, ectodermal disorder characterized by skin lesions (100%) accompanied by dental (90%), central nervous system (CNS) (40%), bone (40%) and ocular (35%) abnormalities. In 1993, Landy and Donnai [4], after they had evaluated a group of over 100 patients with IP, proposed the diagnostic criteria for this neurodermatosis, as shown in Table 1. Dermatologic manifestations are among the most important signs of IP as skin lesions observed in almost all individuals with IP are relatively easy to diagnose [1-4]. Fortunately, skin lesions are the least damaging aspect of the disease and actually do not require any treatment as spontaneous resolution of lesions is one of the features of the disease. The hallmark feature of IP is cutaneous eruption along the lines of Blaschko that evolves in four distinct stages:

- 1st stage: inflammatory, erythematous, vesiculobullous lesions, usually configured in a linear pattern (birth to 1-2 weeks),
- 2nd stage: papules, verrucous lesions with hyperkeratosis (2-6 weeks),
- 3rd stage: hyperpigmentation of the skin (3-6 months),
- 4th stage: hypopigmentation and atrophy of the skin (2-3 decade).

One of the late manifestations of IP are subungual tumors of IP (STIPs), which usually appear after puberty, between 15 and 40 years of life [14, 15]. Subungual tumors of IPs are usually observed on fingers rather than on toes, and clinically resemble plain warts, epidermoid cysts, fibromas, keratoacanthoma (KA) and squamous cell carcinoma (SCC) [16]. Subungual tumors of IPs tend to destroy the underlying bone of the distal phalanx, due to pressure necrosis. Subungual tumors of IPs may be associated with a very intense pain due to fast growth. Although the histological picture of STIPs may cause misdiagnosis as it resembles KA or SCC, radiographic appearance with bone destruction in the distal phalanx without accompanying sclerosis or periosteal reaction may help to make the right diagnosis [16].

Case report

We present a full-term infant with cutaneous manifestation of IP. The girl was born by uncomplicated delivery as the first child of unrelated parents in the 40th week of pregnancy (Hdb 40+6), Apgar 9 points and signs of intrauterine hypotrophy (body mass at birth 2360 g). On the third day of life, she developed linear rash on the skin.
of the medial and lateral side of the left lower limb. Exam-
ination revealed numerous papules and discrete vesicles
on an erythematous background. Within few days, lesions
spread on the skin of the right lower limb and the left arm.
A significant asymmetry in the distribution of lesions was
observed, since mainly the left side of the body was
involved, with solitary lesions affecting the left forearm
and numerous lesions on the left thigh and lower leg and
the Achilles tendon (Figures 1, 2). On the skin of medial
sites of both thighs, linear lesions were symmetric and
arranged along the lines of Blaschko. The examination of
hair and nails did not reveal any abnormalities.

Diagnostic approach

A standard diagnostic approach in IP includes a skin
biopsy with assessment of the nervous system and the
organ of vision [1-4, 7, 8, 17, 18]. Neurologic examination
revealed slightly increased muscle tone with no other
anomalies. A cranial ultrasound did not reveal any abnor-
malities of the brain structures. On ophthalmological
examination, the anterior chamber of the eye was nor-
mal, while scarce extravasations were observed on the
fundus. The X-ray of the skeletal system did not reveal
any abnormalities. C-reactive protein (20.47 mg/l) and
leukocytes in the peripheral blood were elevated

Table 1. Diagnostic criteria for incontinentia pigmenti

<table>
<thead>
<tr>
<th>Family history</th>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
</table>
| No evidence of IP in a first degree female relative* | • Typical neonatal rash:
– Erythema
– Vesicles
– Typical hyperpigmentation
– Linear, atrophic, hairless lesions
• Mainly trunk following the Blaschko’s lines
• Fading in adolescence (hypopigmentation)
• Eosinophilia | Dental anomalies, alopecia, abnormal nails, retinal disease |
| Evidence of IP in a first degree female relative** | • Suggestive history or evidence of typical rash
• Skin manifestations of IP
– Hyperpigmentation
– Scarring
• Hair abnormalities
– Hairless streaks
– Alopecia at vertex
– Woolly hair
• Dental anomalies
• Retinal disease
• Multiple male miscarriages | |

*At least one major criterion is necessary for diagnosis in cases with no apparent family history; minor criteria support the diagnosis, **presence of any one or more of the major criteria strongly suggests a diagnosis of incontinentia pigmenti in cases with definitive family history.

Figure 1. Erythematous lesions and papules on erythema-
tous background arranged along the lines of Blaschko on
the skin of the lower limbs

Figure 2. Erythematous lesions, papules and vesicles
arranged along the lines of Blaschko on the skin of the
lower limbs
Incontinentia pigmenti is a familial, X-linked dominantly inherited, neurocutaneous syndrome. The perinatal incidence of IP is estimated at a level of 1 to 50,000 births, but it is probably higher. The disease is difficult to diagnose by non-dermatologists as it is sometimes confused with usually infectious conditions, such as HSV, BI or erythema toxicum [1, 17, 21]. The underlying defect in IP is a mutation in the essential modulator gene (NEMO), which results in the loss of activity of the regulatory component of the IκB kinase (IKK) complex encoded by the NEMO/IKKγ gene. Deletion of exons 4 - 10 is observed in 80% of patients with IP [8, 17, 21]. Thus, nonfunctional IKK abolishes activity of nuclear factor-κB (NFκB), preventing the transcription of various target genes. NEMO seems to be involved in epidermal development and differentiation. This is why dysregulation of NFκB is suspected to play an important role in the pathogenesis of skin diseases, such as psoriasis, sunburn, Lyme disease, allergic contact dermatitis, autoimmune diseases and skin cancers [21].

Various phenotypes of patients with IP offer a great opportunity for expanding the current knowledge of the function of this transcription factor. It has been shown experimentally that the NFκB pathway is important in limb morphogenesis as well as odontogenesis and retinogenesis. This is why, apart from characteristic skin lesions, arranged in a linear pattern along the lines of Blaschko and evolving through 4 distinct stages, other systems are usually involved [1-4, 17, 18, 22-24]. Systems that may be involved in IP include as follows:

1. the teeth – delayed eruption, microdontia, hypodontia, dysplasia,
• CNS – seizures, spasticity, mental deficiency, microcephaly,
• the eyes – uveitis, keratitis, cataract, retinal dysplasia, strabismus, retinal detachment, retrolental dysplasia, blue sclerae, pigment retinopathy,
• the musculoskeletal system – hemiatrophy, extra rib, hemivertebrae, kyphoscoliosis, syndactyly, short arms and legs,
• the hair – alopecia.

The high rate of neurological disturbances and blindness in the population of neonates with IP remains the most important challenge for clinicians. For that reason, newborns with the suspicion of IP should be carefully diagnosed by the ophthalmologist and neurologist as these disorders decrease the quality of life significantly. The variety of neurological symptoms is very wide, including recurrent strokes and acute disseminated encephalomyelitis [22-25].

Chromosomal instability seen in IP patients may increase the risk of malignancy in young children [28]. Due to mutation in the NEMO gene, which protects against TNF-α-induced apoptosis, IP is considered as a pre-apoptotic state leading to male lethality and cell destruction in females. This may account for the dyskeratosis observed in the histological examination of verrucous lesions in the course of IP. Moreover, the late manifestation of IP, STIP, may clinically resemble keratoacanthoma, which is a pre-malignant condition, or even SCC [14-16]. In adolescents and young adults with IP, recurrent cases of SCC have also been described [29, 30].

Treatment options

There is no specific treatment. Most of the therapeutic methods are claimed to be ineffective as they do not hasten the resolution of any of phases in the course of IP. However, vesiculobullous lesions which appear due to inflammatory infiltration of the epidermis (mainly with eosinophils) are expected to respond to topical treatment with corticosteroids. It was proved that topical steroids reduced the expression of eotaxin in the epidermis of patients with IP [20, 31]. Topical use of steroids and anti-septic agents (diflucortolone valerate, chlorquinaldol 1%) was observed to contribute to resolution of vesicular lesions [20, 31]. Furthermore, tacrolimus (0.1% ointment), a topical calcineurin inhibitor, has been reported recently to be an effective agent in the treatment of IP [32, 33].

According to Jessup et al., tacrolimus halted the progression of the disease through its subsequent disfiguring stages [32]. Even though systemic and topical antibiotics may show anti-inflammatory effects on the level of the skin, they are not effective in the course of IP, except for lesions with secondary bacterial infection [1, 8]. In patients with solitary STIP, the first-line treatment is surgical excision, though multiple new lesions appear in other locations. Moreover, the treatment with 5-fluorouracil injections with a good clinical outcome has also been reported [20]. Finally, therapy with retinoids is also worth considering as reports of resolution of lesions and growth of nails after the systemic treatment with acitretin (25 mg for 2 months) as well as topical application of retinoic acid were reported [16, 34, 35]. All-trans-retinoic acid (ATRA) regulates synthesis of NFκB components and activates apoptosis of various cell lines. Acitretin, which is a synthetic analog of retinoic-acid-receptor, prevents the formation of STIPs probably by inducing NEMO-independent mechanisms [36, 37].

Although skin lesions are the least damaging aspect of Bloch-Sulzberger syndrome, the proper diagnosis is very important, thus a careful head-to-toe clinical examination is critical in the evaluation of a child with suspected IP. Dermatological examination and diagnosis is the first step in the multidisciplinary approach including pediatricians, ophthalmologists, neurologists, dermatologists and dental consultants, which is recommended in patients with the suspicion of IP.

Photographs were used courtesy of Dr. Aleksandra Dańczak-Pazdrowska and Dr. Leszek Bartoszak.

References

