Case report

The development of squamous cell carcinoma in a patient after kidney transplantation: a case report

Henryk Witmanowski1, Małgorzata Lewandowska1, Paweł Szychta1, Stanisław Sporny2, Jan Rykała3

1Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
Head: Prof. Henryk Witmanowski MD, PhD
2Department of Physiology, Poznan University of Medical Sciences, Poland
Head: Prof. Hanna Krauss MD, PhD
3Department of Pathology of the Age of Development, Medical University of Lodz, Poland
Head: Prof. Józef Kobos MD, PhD
4Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, Poland
Head: Prof. Bogusław Antoszewski MD, PhD
5Department of Dental Pathology, Medical University of Lodz, Poland
Head: Prof. Stanisław Sporny MD, PhD

Abstract
In patients with organ transplantation as compared to the general population the risk of cancer is significantly increased. The most common changes are malignant tumors of the skin, constituting 30-65% of malignant tumors found in recipients. Potential risk factors for skin cancer after a transplant operation are: solar radiation, immunosuppressive therapy, genetic factors, infection with HPV and skin cancer transmission before transplantation. In contrast to the immunocompetent population, skin cancers in transplant recipients are dominated by squamous cell carcinoma, followed by basal cell carcinoma. Squamous cell carcinoma in patients after transplantation is characterized by a strong tendency to give local recurrences and distant metastases. Due to the high risk of developing skin cancer in transplant recipients, preventive oncology plays an important role in the long-term care of patients after transplantation. This includes: sun protection, education, and early treatment of patients with precancerous lesions. It is also stressed that systematic dermatologic studies need to be carried out in patients after transplantation surgery. The paper contains basic information about skin cancers in organ transplant recipients: epidemiology, potential risk factors, treatment and prognosis. The paper presents also a case of patient who developed squamous cell carcinoma of the skin 3 years after renal transplantation.

Key words: skin cancers, squamous cell carcinoma, basal cell carcinoma, kidney transplantation, immunosuppression.

Introduction
Patients undergoing transplant surgery are a group with an increased risk of cancer. Cancers in transplant recipients are 3-4 times more likely than in the the general population and are one of the main causes of death in this group of patients [1]. It should also be noted that patients with organ transplants have an increased risk of certain but not all cancers. Cancers the risk of which is higher in recipients include: skin cancers, lymphomas, cancers of the urinary tract, gastrointestinal tract, larynx and bronchi [2, 3]. However, breast and prostate cancers have similar incidence in recipients compared to general population [4].

The paper contains basic information about skin cancers in organ transplant recipients: epidemiology, potential risk factors, treatment and prognosis. The paper presents also a case of patient who developed squamous cell carcinoma of the skin 3 years after renal transplantation.
Epidemiology

Skin cancers are the most common malignant changes in patients after organ transplantation [5]. Thirty-sixty-five percent of cancers are found in recipients [6-9], and the type of organ transplant appears to have a significant effect on the occurrence of cancer. The risk of developing skin cancer in renal transplant recipients is higher than in the liver transplant recipients, but lower as compared to patients after heart transplantation [10-12]. Among recipients, squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are the most frequently diagnosed types of skin cancer. In contrast to the immunocompetent population, SCC is more common in transplant recipients than BCC. The incidence ratio of SCC as compared to BCC in patients after transplantation is 3.8:1 and 1:4 in the general population [17].

The incidence of skin cancer is increasing with time after transplantation, and will vary depending on the geographical region. In Australia, 10 years after transplantation, cancer of skin was found in 45%, and after 20 years – in 75% of recipients [5]. The incidence of skin cancer in European countries as compared to Australia is lower and in the Netherlands, England and Italy it is 10-15% 10 years after transplantation [18-20]. In the German population, 10 years after transplantation skin cancer develops in 4.8% of recipients, after 20 years – in 8.8% [21]. However, in Asian countries, this type of cancer practically does not exist [15, 16].

The incidence of skin cancer among other Caucasian patients was 16% at 10 years and 52% after the first year [22]. The apparent connection between the disease and the latitude is closely related to exposure to solar radiation.

Risk factors for the development of skin cancer in organ transplant recipients: immunosuppressive drugs, solar radiation, genetic factors, history of skin cancer before transplantation, HPV infection.

Immunosuppressive therapy is undoubtedly one of the most important risk factors for cancer in organ transplant recipients. The effect of immunosuppressive therapy on tumor formation is both indirect and direct. Immunosuppression impairs organ recipient response to emerging cancer cells. In addition, immunosuppressive agents can act directly by not fully known mechanisms [15].

Currently, there are no clear data on the relationship between the treatment regimen and the risk of cancer. Numerous studies comparing two immunosuppressive regimens (first based on azathioprine (AZA), the second on cyclosporine (CsA)) reported a higher incidence of tumors in the CsA-treated group than in the group treated with AZA [23-28]. Shuttleworth et al. observed a higher incidence of skin dysplasia in recipients receiving CsA as compared to those receiving AZA [26]. Glover et al. showed a higher risk of SCC development and early development of cancer in patients who were treated with triple therapy (CsA + AZA + Pred (prednisolone)) than in the group which used Pred + AZA [27]. Similarly, Hiesse et al. showed an earlier and significantly higher incidence of non-melanoma skin cancer (NMSC) in patients treated with CsA [25]. Published studies also show that the incidence of skin cancers in recipients treated with AZA is comparable to the frequency of cancer development in patients treated with CsA [1, 28-30].

It seems that the drug the use of which may be associated with a lower risk of developing cancer as compared to AZA is mycophenolate mofetil (MMF). Studies comparing the group treated with AZA with an MMF-treated group favored MMF [31-34]. At a conference in Washington in 2004, Ulrich and Stockfleth presented the results of prospective studies on the development of cancer in kidney and heart transplant recipients receiving triple immunosuppression (CsA + AZA + Pred/CsA + MMF + Pred/TAC (tacrolimus) + AZA + Pred/TAC + MMF + Pred). The study material included 1500 recipients. A significantly lower incidence of SCC in patients treated with TAC + MMF + Pred as compared to patients treated with TAC + AZA + Pred was observed. In the group of recipients receiving CsA + MMF + Pred, a lower percentage of tumors was reported than in the group receiving CsA + AZA + Pred, although the difference was not statistically significant [31]. A lower incidence of cancer in patients treated with MMF as compared to AZA-treated patients confirmed the data from two registries: OPTN/UNOS (Organ Procurement and Transplant Network/United Network for Organ Sparing) and CTS (Collaborative Transplant Study) [31, 32]. The results in cited reports suggest higher oncological safety in renal transplant patients receiving MMF. Therefore, in transplant recipients at high risk of developing skin cancer AZA is often replaced by MMF [31].

In the case of TAC, a relatively low but increasing incidence of cancer was shown. The analysis of the OPTN/UNOS, which evaluated more than 62 thousand kidney transplants performed in 1998-2003, showed a smaller percentage of skin cancers and solid tumors in patients treated with TAC as compared to those treated with CsA [33]. Cowlrick et al. analyzed five prospective multicenter studies with TAC as the primary immunosuppressant. Among 2435 recipients treated with regimens: TAC + GS + AZA or TAC + MMF + GS, after a year of observation, cancer developed in 1.63%, after 2 years in 2.55% and after 3 years in 3.4% of transplant recipients. Skin cancers accounted for 37.3% of all cancers [35].

Although so far it has been failed to clearly prioritize individual drugs according to their impact on the development of skin cancer, most authors agree on one thing, namely occurrence of cancer in transplant recipients is affected by the exposure time and the level of immunosuppression [15, 23, 36]. Patients receiving immunosuppressive drugs for a period of 5 years or longer [37] as well as the heart recipients, who have a higher level of
immunosuppression [15, 23] are more likely to suffer from skin cancer.

Ultraviolet radiation is one of the better-known factors that cause the development of skin cancer in both the immunocompetent population and in organ transplant recipients [38, 39].

So far, many conflicting results have been published in studies evaluating the association of HLA risk of developing skin cancer in transplant recipients. A few works have shown a greater incidence of SCC among the recipients with such antigens as HLA-A11, -B27, -DR7 [37, 40, 41], by homozygote DR and in the case of incompatibility of antigens HLA-B between the donor and the recipient [40]. Other authors did not observe such a relationship [23, 42, 43]. One report suggests the protective effect of HLA-A11 antigen on the development of SCC [44]. More and more authors are inclined to take a position that there is no relationship between HLA antigens and the development of skin cancer after transplantation [23, 42].

Genetic factors beyond the influence of HLA include the influence of antioxidant enzyme activity of GST (Glutathione-s-transferase). This enzyme inhibits the effects of free radicals, which are formed after exposure to UV radiation. This suggests the influence of polymorphisms of genes GSTM1, GSTT1 and GSTP1 on the development of SCC in patients after renal transplantation. The study conducted by Ramsay et al. has shown a correlation between the GSTM1 gene and an increased risk of SCC, especially in patients exposed to sunlight [45, 46].

Danpanich and Kasiske observed a twofold increase in the risk of developing skin cancer in transplant recipients with a history of skin cancer [47]. According to the Clinical Transplant Tumor Registry, skin cancer (NMSC or melanoma) developed in 62% of patients after a transplant, with a history of skin cancer [47]. According to the Immunocompetent population and in organ transplant patients after renal transplantation, allogeneic renal transplantation was performed. Immunosuppression regimen of prednisone + cyclosporine + azathioprin was used. In 2005, she was treated in the Department of General Surgery in Zgierz due to an ulcer of the right hand back. The histopathological diagnosis was: ulceratio et granulatio. In February 2006, she was treated again because of the right hand ulcer, this time in histopathology: SCC invasivum G2, excisio incompleta. In April 2006, in the Department of Surgery and Oncological Gynecology, Medical University in Lodz, a radical excision was performed, and the defect was covered with a skin graft. In February 2009, there was a recurrence of skin cancer. In the Department of Plastic Surgery, Medical University in Lodz, a lump in the angle of the left eye was excised (Figure 1). Histological examination confirmed the suspicion of recurrence: carcinoma planeepitheliale praenvasivum (Figure 2), but unfortunately there was no radical surgery, so in April the scar was widely excised and no cancer cells were found in histopathology, but features of keratosis senilis (keratosis senilis typus atrophicus) were observed (Figure 3). In December 2009, a small ulcer appeared at the skin graft on the back of the right hand, excision was performed and evaluated histopathologically: ca planeepitheliale intraepidermale (morbus Boweni) and elastosis cutis (Figure 4) was found. In March 2010, she was treated due to tumor of the nose...
Women 59 years old. Dg.: Tumor of the left angle of the eye

Figure 1 A, B. Women 59 years old. Dg.: Tumor of the left angle of the eye

Figure 2. Ca planoepitheliale praeinvasivum. Staining: H + E, magnification 120×

Figure 3. "Senile" keratosis: atrophic type of elastosis in the dermis. Staining: H + E, magnification 500×

Figure 4. Bowen’s disease. Staining: H + E, magnification 320×

Figure 5. Acanthocytic epidermal hyperplasia with severe dysplasia and hyperkeratosis. Staining: H + E, magnification 200×
with the following diagnosis: *hyperplasia epitheli planners cum dysplasia gravis atque hyperkeratosi* (Figure 5).

Discussion

This case is an illustration of an increased risk of cancer recurrence in organ recipients. In approximately 50% of patients after transplantation, SCC develops as the plural [2, 52] with an aggressive course and tendency to frequent recurrence and metastasis [2, 53, 54]. The study, which covered 2075 Dutch recipients showed the development of skin cancer in 53% of patients. In 48% of patients after treatment another cancer of the same or different type of pathology developed. During follow-up 2 patients died: 1 due to SCC and 1 patient due to Merkel cells carcinoma metastases to the lung [55]. Aggressive cancerous disease was also reported by Australian researchers. Veness et al. reported that skin cancer developed in 41% of the observed recipients, half of these patients died [56]. According to another Australian study, skin cancer was the cause of death of 27% of recipients. Follow-up was 4 years [57]. However, Californian authors observed aggressive cancerous disease in 13% of patients after transplantation [58].

In the context of the presented patient it seems very important to screen for skin cancer in organ transplant recipients. In these patients, physical examination of the skin should be performed every 12 months [5, 15]. According to Otley and Berg, in cases where there are no other known risk factors for cancer except immunosuppression, the search for cancer and premalignant skin changes should be part of the routine performed by the patient. Only patients with a high risk of developing skin cancer after transplantation should be referred to a dermatologist [15]. However, Dreno takes a position that dermatological care should be offered to all recipients of organs [5]. Monthly self-control in transplant patients is also recommended.

Secondary prevention for recipients should include regular visits to the dermatologist every 6 months. According to the US recommendations, this interval should be shorter in the case of multiple tumors (2-4 months), a high risk of relapse (3 months), melanoma (2-3 months) and the presence of metastases (2 months) [15]. In recipients of multiple organs and/or recurrent skin cancer, prevention can be effective using systemic retinoid therapy, such as isotretin and recently acitretin [59, 60]. A randomized study performed on a small group of recipients showed a significant decrease in the number of new cases of SCC in patients treated with acitretin. During a 6-month follow-up, SCC developed in 2 patients treated with acitretin and in 18 in the placebo group [61]. Mc Kenna and Murphy confirmed a significant reduction in new cases of skin cancer after using acitretin. During a 5-year follow-up, the authors reported no serious side effects of this drug therapy [60]. Last but not least, remember that because of the numerous side effects of acitretin, such as liver failure or hyperlipidemia, observation of patients during therapy is required [59, 62].

Conclusions

Transplant patients incur a higher risk of developing skin cancer as compared to the general population. Therefore, in the case of organ transplant, recipients should apply increased oncological vigilance. In recipients treated for skin cancer, recurrence of the disease is often observed. Therefore, it is very important to have regular dermatological control, enabling early diagnosis and effective therapy, thus to prevent a potential cancer recurrence.

References

The development of squamous cell carcinoma in a patient after kidney transplantation: a case report

