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Abst rac t
Introduction: Rheumatoid and psoriatic arthritis are both characterised by synovial destruction associated with 
a higher turnover of the extracellular matrix. In both conditions, inflammatory processes create hypoxic environ-
ments which destabilise members of the plasminogen activating system. 
Aim: Comparing the effect of bioactive concentrations of urokinase (uPA) and serpine (PAI-1) on cellular survival of 
human fibroblast-like-synoviocytes (HFLS) in rich and hypoxic growth media. 
Material and methods: Monocultures of HFLS were exposed to bioactive uPA and PAI-1 concentrations in both 
media conditions for 24, 48 and 72 h. Cellular survival was evaluated with a cell viability assay by spectrum absor-
bance of formazan reduced WST-8. 
Results: PAI-1 at 0.1 and 1 µg/ml was found to stimulate cell viability under hypoxic stress at 48 and 72 h of incuba-
tion, with the effect increasing from 48 to 72 h. uPA increased cell viability in rich medium at 48 and 72 h of incuba-
tion between 5 and 40 ng/l, but was found to reduce viability at 80 ng/l at 24 and 48 h. PAI-1 increased cell viability 
in the hypoxic stress model, while high concentrations of uPA decreased cell viability in rich medium. 
Conclusions: The alternative modes of function at extreme concentrations provide a novel description of PAI-1 and 
uPA activity based on their colocalization and mutual buffering capacity, helping to place these molecules more 
accurately in the context of arthritic synovial deterioration.

Key words: synoviocytes, plasminogen activation system, rheumatoid arthritis, psoriatic arthritis, urokinase plas-
minogen activator, plasminogen activator inhibitors.

Introduction

Destruction of joints is the main symptom of rheu-
matoid arthritis (RA). A possible explanation of this 
process lies in aggressive attachment of synovial fibro-
blasts to cartilage [1], followed by a release of proteolytic 
enzymes such as matrix metalloproteinases and serine 
proteases [2–4].

Psoriatic arthritis (PsA) is a seronegative chronic in-
flammatory skin and joint disease. It affects metacarpo-
phalangeal and interphalangeal joints of the hands and 
feet, as well as knees and ankles [5]. Scarce data exist 

relating the role of hypoxia to the development of PsA 
[6]. Hypoxia leads to the formation of reactive oxygen 
species which cause damage to DNA, proteins, and lipids 
involved in angiogenesis, cell differentiation, migration 
and proliferation [7].

A high expression of NOX-2 (NADPH oxidase-2) has 
been found in a study with 54 patients suffering from 
arthritis (33 with RA and 21 with PsA). A high NOX-2 ex-
pression was correlated with low synovial PO2 levels, and 
with a high expression of vascular endothelial growth 
factor (VEGF), Ang-2, factor VIII, neural cell adhesion 
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molecule, and α-smooth muscle actin. Moreover, patients 
treated with anti-tissue necrosis factor (TNF)-α agents 
showed a decrease in the NOX-2 expression level and 
an increase in synovial PO2 [8]. Low in vivo oxygen levels 
have been observed in the synovium of PsA patients. Hy-
poxia causes an increase of urokinase plasminogen acti-
vator (uPA) stimulated release of matrix metalloprotein-
ases (MMPs), and hypoxia-inducible factor (HIF), which in 
turn induces VEGF production [9]. 

Synovium of patients suffering from rheumatoid ar-
thritis has a significantly higher expression of components 
of the plasminogen activation system (PAS) compared 
with non-arthritic synovium, or from patients with osteo-
arthritis [10].

The PAS is a proteolytic array of free and membrane 
bound proteins [11], which modulate the cellular re-
sponse in terms of mobility, proliferation, viability, and 
phenotype. Directly, it is responsible for degrading extra-
cellular matrix (ECM) protein [12].

The key protease of PAS is plasmin [13], which is activat-
ed through cleavage of plasminogen by uPA in cooperation 
with the urokinase plasminogen activator receptor (uPAR) 
[14]. uPA is released from intracellular storage by exposure to 
cytokines [10, 15] and serum molecules such as interferon g  
[16], fibronectin [17], transforming growth factor-β1 [18], 
and HIF [19] as well as other inflammatory mediators [20, 
21]. uPA release and plasminogen conversion activates the 
proteolytic processes necessary to resolve the source of in-
flammation [22], trauma [23], or autoimmune fibrosis [24] 
by stimulating cellular migration [25], proliferation [26], ex-
tracellular remodelling [27] and angiogenesis [28]. The effec-
tiveness of uPA is strongly regulated by plasminogen activa-
tor inhibitors (PAI-1, PAI-2) and nexin [29]. In brief, uPA and 
PAI-1 are responsible for modulating the PAS in response to 
tissue damage under inflammatory, traumatic or autoim-
mune stimuli [30]. 

Recently there have been multiple reports that in RA [31] 
as well as in breast cancer [32] it is the co-expression of PAI-1  
with uPA, which has been found to enhance angiogenesis, 
cellular mobility, invasiveness and excessive ECM turnover. 
PsA lesions also exhibit increased angiogenesis due to PAI-1 
binding to uPA and cell adhesion molecules [33].

Physiological activation of PAS could encourage dedif-
ferentiation under hypoxic [34, 35] and physical stressors 
[36, 37]. Dedifferentiation is also present with uPA/PAI-1 up-
regulation in RA [38] and ovarian cancer [39]. PAS functions 
are also important for growth and development embryologi-
cally [40], however are not necessary for survival [41] and 
come more strongly into play during injury [42]. The adipose 
tissue is thought to be an adipokine reservoir, which can 
locally maintain the effects of PsA lesion development [43]. 
In our previous work the adipocyte response to PAI-1 and 
uPA co-stimulation has been shown to be pro-angiogenic 
through a concentration dependent mechanism reacting to 
hypoxia [44]. 

Aim

Growth medium starvation and the associated oxygen 
stress can stimulate human fibroblasts like synoviocytes 
(HFLS) to switch to heavy catabolic metabolism [45] and 
low-density lipoprotein (LDL) production [46]. Notably LDL 
receptor-related protein is crucial for mediating PAI-1 induced 
cellular migration [47], as it is yet another membrane bound 
target for PAI-1 colocalization [48].

Reports suggest that a non-catalytic colocalization of uPA 
to uPAR is sufficient [49–54] for mediation of the uPA associ-
ated angiogenesis, proliferation, and mobility seen in arthritic 
damage. Alternatively uPA needs to colocalise to uPAR and 
LDR in order to exert these effects [55]. Since colocalization of 
uPAR to LDR is mediated via PAI-1 [56], we aim to prove that 
uPA and PAI-1 have an optimum concentration for exerting 
these effects, and suggest they are each limited by the other 
when the baseline production is affected by the environmen-
tal conditions such as inflammation induced hypoxia. 

Material and methods

Cell culture

HFLS were obtained from ScienCell Research Labora-
tories (Carlsbad, USA). Cells were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM; Sigma-Aldrich, Poland), 
supplemented with 10% Foetal Bovine Serum (FBS) and 
an antibiotic-antimycotic mixture (penicillin, streptomycin 
and amphotericin) to 1% concentration, on 25 cm2 plates 
at 37°C and 5% CO

2
. Passaged by washing with Hank’s Bal-

anced Salt solution followed by 0.25% trypsin in 0.53 mM 
EDTA. After 10 min incubation cells were mechanically de-
tached by striking against the workbench, following which 
8 ml of culture medium was used to wash the cells and 
distribute across two new plates. The medium was changed 
every 2–3 days until 80% confluence. Cells were saved to 
library in liquid nitrogen by suspending in 10% DMSO.

UPA, PAI-1, rich and hypoxic medium exposure

Test cultures of HFLS were grown to 80% confluence on 
small culture flasks in 4 ml growth medium. Passaged to 96 
well plates and normalised for 24 h in standard cell culture 
medium, the cells were subsequently exposed to test me-
dia with human recombinant uPA (5, 20, 40 and 80 μg/ml) 
and PAI-1 (0.1, 1 and 5 μg/ml) (ProSpec-Tany TechnoGene 
Ltd., Israel) at both rich (10% FBS) and the hypoxic model 
(0.1% FBS) culture medium for 24, 48 and 72 h. UPA and PAI-1 
concentrations were chosen for bioactive levels both under 
physiological and pathological processes (74–79), as no data 
for bioactive concentrations in vivo vs. in vitro were available.

Cell viability assay

Cell Counting Kit-8 (CCK8; Sigma-Aldrich) was used 
to assess the effect of test media on HFLS survival. The 
protocol calls for 10 μl CCK-8 reagent in each tested well 
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of 96 plates, followed by 1 h incubation at 37°C. A se-
ries of blank calibration wells with no growth medium 
or cells was used for measurement control. Viability was 
measured by absorption of 450 nm wavelength light by 
formazan reduced WST-8. Wavelength generation and 
absorption measurement was carried out with Infinite 
M200 PRO (TECAN, Switzerland). Formazan is sensitive to 
necrosis induced leakage of lactate dehydrogenase [57].

Statistical analysis

Data across runs were pooled. 24, 48 and 72 h of in-
cubation were labelled 1, 2 and 3 days of incubation, re-
spectively, for clarity. Means, standard deviations (SD), as 
well as standard error of means (SEM) were calculated for 
each test condition. Means were plotted on bar graphs, 
and SEMs were used for positive and negative errors. 
Regression models were made for each tested growth 
medium mixture and analysed using two factor ANOVA 
for all sample groups to assess variance between rates of 
change in viability, as well as one way ANOVA for effects 
within each sample group across all concentrations of PAS 
components and subsequently all durations of incubation. 
Post-hoc significance was assessed using two tailed equal 
variance t-tests for all significant ANOVA sample groups. 
α = 0.05 - LibreOffice Calc statistical package was used.

Results

Control conditions

Significant variation was found for cell viability be-
tween the control media across all days of incubation  
F(2, 4) = 88.02, p = 0.0005. Incubation in rich control me-
dium (M = 0.55, SD = 0.06) resulted in significantly high-
er viability than in hypoxic medium (M = 0.17, SD = 0.03) 
t(2) = 7.6, p = 0.018, or blank (M = 0.12, SD = 0.02) t(2) = 

18.3, p = 0.003 (Figure 1). Time of incubation had a signif-
icant effect on cell viability for the hypoxic medium only. 
Incubation in hypoxic medium at 24 h (M = 0.19, SD = 
0.04) resulted in significantly higher viability than at 48 h  
(M = 0.14, SD = 0.01) t(3) = 9.7, p = 0.002, or 72 h (M = 
0.15, SD = 0.05) t(3) = 4.5, p = 0.02.

PAI-1 in rich medium

Figure 2 – No significant variance, similar results 
across all tested concentrations and the control medium.

PAI-1 in poor medium

Incubation on day 2 in hypoxic medium (M = 0.14, SD 
= 0.01) resulted in significantly lower cell viability than 
in PAI-1 at 0.1 μg/ml (M = 0.32, SD = 0.02) t(2) = 31.1,  
p = 0.001, 1 μg/ml (M = 0.31, SD = 0.02) t(3) = 25.8,  
p = 0.0001 or 5 μg/ml t(3) = 18.80, p = 0.0003 (Fig- 
ure 3). Incubation on day 2 in PAI-1 0.1 μg/ml (M = 0.32,  
SD = 0.02) also resulted in significantly higher cell viability 
than at 5 μg/ml t(2) = 7.39, p = 0.019.

PAI-1 in hypoxic medium

Incubation on day 1 in uPA at 20 ng/ml (M = 0.79, SD 
= 0.12) resulted in significantly higher cell viability than 
in rich control medium (M = 0.32, SD = 0.02) t(3) = 15.5,  
p = 0.0006, or in uPA at 5 ng/ml (M = 0.52, SD = 0.07)  
t(3) = 4.49, p = 0.02 and 80 ng/ml (M = 0.37, SD = 0.08) 
t(3) = 4.46, p = 0.021 (Figure 4).

Incubation on day 2 in uPA at 80 ng/ml (M = 0.45, SD 
= 0.09) resulted in significantly lower cell viability than 
in rich control medium (M = 0.61, SD = 0.06) t(3) = 3.21, 
p = 0.049, or in uPA at 5 ng/ml (M = 0.80, SD = 0.08)  
t(3) = 5.27, p = 0.013 and 40 ng/ml (M = 0.81, SD = 0.13) 
t(3) = 6.83, p = 0.006.

Control rich      Control hypoxic     Blank

Figure 1. HFLS viability under control conditions. Control 
rich is 10% FBS, hypoxic is 0.1% FBS growth media and 
blank is cell and medium free
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growth medium
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Incubation on day 3 in rich control medium (M = 0.56, 
SD = 0.03) resulted in significantly lower cell viability 
than in uPA at 5 ng/ml (M = 0.81, SD = 0.05) t(3) = 20.64, 
p = 0.0002, and 40 ng/ml (M = 0.79, SD = 0.09) t(3) = 
3.79, p = 0.032.

Incubation in uPA at 5 ng/ml for 1 day (M = 0.52, SD 
= 0.07) resulted in significantly lower cell viability than 
for 2 days (M = 0.80, SD = 0.077) t(3) = 6.05, p = 0.009 
or 3 days (M = 0.81, SD = 0.052) t(3) = 7.05, p = 0.006.

uPA in hypoxic medium

Incubation on day 2 in hypoxic medium (M = 0.14, SD 
= 0.01) resulted in significantly lower cell viability than in 
uPA at 5 ng/ml (M = 0.21, SD = 0.0086) t(3) = 12.08, p = 
0.001, 20 ng/ml (M = 0.21, SD = 0.026) t(3) = 5.97, p = 
0.009, 40 ng/ml (M = 0.21, SD = 0.015) t(3) = 20.22, p = 
0.0003, and 80 ng/ml (M = 0.18, SD = 0.024) t(3) = 6.08, 
p = 0.009.

Incubation on day 2 in uPA at 40 ng/ml resulted in 
significantly higher cell viability than in uPA at 80 ng/ml 
t(3) = 4.86, p = 0.017 (Figure 5).

Discussion

Many pathological processes involve a dysregulation 
of PAS, such as the upregulation of plasmin activity in 
arthritis [58, 59] and cancer [60], or its downregulation 
in fibrosis [61–63]. Cancer therapies utilising PAS sug-
gest stimulating the secretion or delivery of PAI-1, which 
would stop uPA mediated angiogenesis, however this ap-
proach has not brought promising results yet [64]. Con-
nective tissue and autoimmune disorder studies suggest, 
however, that uPA over activation in RA can be inhibited 
by PAI-1 suppression [65, 66]. In terms of pathologies 
which suffer from uPA downregulation, treatment by 
supplementation of uPA has yielded some positive re-

sults in pulmonary [67] and liver [68] fibrosis models, but 
not in renal fibrosis [69].

Prevalence of either molecule in pathological condi-
tions could stem from testing uPA and PAI-1 in isolation. 
Their common transcription pathway – Wnt3a/β-catenin 
induced release of nuclear factor k-light-chain-enhancer 
of activated B cells (NF-κB) [70–72] – provides further 
insight. Expression of the urokinase gene can be acti-
vated by NF-κB [73]. Inhibition of the Wnt3a/β-catenin 
pathway has been shown to improve RA outcomes by 
stimulating synoviocyte apoptosis [74], while PsA associ-
ated subchondral degradation is thought to be activated 
by Wnt5a mediated NF-κB release [75]. This is thought 
to be due to HFLS overexpression of integrins resulting 
in overactivation of integrin mediated ECM binding [76], 
and a higher uPA mediated integrin associated prote-

Figure 3. HFLS viability under PAI-1 concentrations in hy-
poxic growth medium
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Figure 4. HFLS viability under uPA concentrations in rich 
growth medium

Control hypoxic     Blank     UPA 5 ng hypoxic     PUPA 20 ng hypoxic
UPA 40 ng hypoxic     UPA 80 ng hypoxic

0.25

0.2

0.15

0.1

0.05

1
 1 2        3

Time of incubation [days]

Ce
ll 

vi
ab

ili
ty

Figure 5. HFLS viability under uPA concentrations in hy-
poxic growth medium



Advances in Dermatology and Allergology 5, October/2022948

Michal Nohawica, Agnieszka Nowak-Terpilowska, Kinga Adamska, Marzena Wyganowska-Swiatkowska

olysis and subsequent destruction of those attachments 
[77–79], resulting in synovial degradation. 

Since integrin associated uPA targeting of ECM pro-
teins and subsequent detachment can be mediated by 
colocalization of PAI-1/integrin/uPAR/uPA [80], a reduced 
production of PAI-1 by the inhibited Wnt3a/β-catenin 
pathway could reduce the integrin mediated endocytic 
recycling [81], resulting in lower reformation of surface 
integrin attachment and therefore a detachment of the 
overactive synoviocytes, and their subsequent apoptosis 
[82, 83]. This phenomenon is further supported by the 
anti-apoptotic effect PAI-1 has in other cell lines [84–86]. 
Even in PsA, the effect of anti-rheumatic disease modify-
ing medications as well as more targeted TNF-α inhibi-
tors seems to be heavily dependent on reducing both uPA 
and PAI-1 together, and not in isolation [87].

In our study we observed the influence of PAI-1 and 
uPA on HFLS in hypoxia induced by low concentration of 
nutrients in the culture medium. Incubation in medium 
containing high serum concentration boosts cell viability, 
and higher concentrations allow for better cellular adap-
tation [88]. Presence of nutrients and growth stimulating 
cytokines is key for cellular survival [89], growth, as well 
as attachment [76, 90]. In order to mitigate low nutri-
ent stress, human cells cope by producing lipid droplets 
which initiate fatty acid catabolism [91]. Nutrient stress 
induced by serum starvation, such as 0.1% FBS, can 
prime and sensitise cells to apoptotic stimuli [92]. Hy-
poxia induced by the energy intensive catabolic fat me-
tabolism is such an apoptotic stimulus [93]. 

In the absence of a phagocytic clearance mechanism, 
apoptotic cells undergo secondary necrosis releasing 
internal cell components [94]. These components are 
immunostimulatory, such as the inflammatory danger 
associated molecular patterns [95]. The most common 
systemic phagocytic clearance mechanism is scavenger 
cells which originate from the myeloid phagocyte sys-
tem, also known as the professional phagocytes – mac-
rophages [96], which would normally be absent in a HFLS 
monoculture, as it originates from the mesenchyme [97]. 

Secondary necrosis in vivo results in an increased 
inflammatory response and can lead to severely destruc-
tive pathology [98]. In vitro, activation of synoviocytes by 
noxious stimuli in inflammatory conditions can induce 
a release of latent membrane bound matrix metallopro-
teinases as well as serine proteases [99]. These proteas-
es, collagenases, and ECM degrading molecules are also 
released from the cell membrane as a late-stage effect of 
secondary necrosis, further reducing the attachment of 
surviving local cultures which lack phagocytic clearance 
mechanisms. Growth arrest, nutrient depletion, apoptosis 
and secondary necrosis are all timed events dependent 
on local nutrient and oxygen availability, as well as clear-
ance of toxic products. We have shown that for HFLS un-
der serum starvation, the completion of these processes 
could take more than 24 h. 

PAI-1 is naturally secreted by synoviocytes during 
pathological processes such as RA [100], but also serves 
a physiological role in protecting the synoviocytes from 
inflammatory processes and modulating the uPA activity 
[73]. It is elevated during inflammatory processes such as 
diabetes [101], and reports show that it has an inhibitory 
function during wound healing [102]. Nonetheless, PAI-1 
expression was found to be elevated in invasive breast 
cancer [103]. Classically PAI-1 inhibits cellular mobility 
and remodelling which would otherwise be caused by 
uPA, therefore causing fibrosis and morbidity in obesity 
and wound healing.

PAI-1 had a significant effect on improving cell viabil-
ity in hypoxia, especially at low concentrations, with the 
effect increasing over time. Hypoxia is stress inducing, 
and the cellular response is catabolic, inflammatory fol-
lowed by apoptotic and necrotic. Apoptosis is concomi-
tant with formation of blebbing, resulting in detachment 
internally and externally through fibre contractions [104]. 
Extracellular PAI-1 could slow down this detachment by 
inhibiting the uPA, which is secreted in response to apop-
tosis and necrosis. This observation is in line with other 
groups finding that PAI-1 can mediate protection against 
efferocytosis of neutrophils [85], FasL-mediated endothe-
lial cell apoptosis [105], and fibrosis-induced apoptosis 
of fibroblasts [84]. Since the protective effect is inversely 
proportional to concentration, suggesting an external 
limiting factor. 

Classically PAI-1 is inhibitory to cellular mobility, sur-
vival, and extracellular remodelling. We have seen that 
in hypoxic conditions, where cellular processes are in 
a catabolic halt and the apoptotic release of uPA could 
stimulate ECM detachment, the role of PAI-1 can be dif-
ferent. At low concentrations we suggest it plays a role 
in disarming the surplus secreted uPA, and inhibiting 
the apoptotic detachment, increasing proliferation and 
cell viability. However, at concentrations exceeding the 
buffering capacity of uPA, PAI-1 would go on to act clas-
sically to decrease cell viability. The effect of PAI-1 me-
diated protection becomes more pronounced over the 
3 days, suggesting a level of adaptation of the culture 
to the hypoxia inducing medium, which could be due to 
better attachment or, as other groups have found, due to 
dedifferentiation [106]. 

uPA is usually defined as a plasminogen activator 
playing a key role in cell migration, proliferation and 
ECM remodelling - especially during wound healing [107]. 
There are many reports of its involvement in pathological 
processes, most notably cancer, where it has been condu-
cive [108, 109] to invasive phenotypes. Our data also sug-
gest a boost in cell viability at low uPA concentrations.

However, uPA is also involved in stimulating PAI-1 
mediated endocytosis [110]. Overactivation of plasmin, 
and MMP mediated ECM degradation, can cause cellular 
detachment and stress [111]. If endocytosis of the uPA/
PAI-1/uPAR complex exceeds the pace of cellular ability to 
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replenish membrane stocks, cells undergo non-apoptotic 
death [112]. These alternative modes of interaction with 
the ECM can serve as an explanation for our observed 
drop in cell viability at high concentrations of uPA. The 
resolution of this decrease in viability over the 3 days of 
incubation could be due to the cellular recycling of ex-
cess uPA.

At high uPA concentrations, ECM degradation, pro-
teolysis, and detachment occur too quickly, resulting in 
cellular stress which maintains the apoptotic state. The 
hypoxia induced release of uPA could explain why there 
was no significant difference between the control con-
ditions and the uPA concentrations in hypoxic medium. 
Increased cell viability over the hypoxic medium on the 
second day of incubation could be explained by the cata-
bolic hypoxic stress activating the Wnt3a/β-catenin sig-
nalling pathway [113], which is found to be involved in 
apoptotic protection [114] by stimulating both uPA and 
PAI-1 [70] secretion in tandem, allowing both molecules 
to follow the classical pathway of increased mobility, pro-
liferation and survival.

Severe and chronic diseases can exhibit overexpres-
sion of both uPA and PAI-1, such as in RA or PsA, leading 
to excessive tissue damage, as well as cases of high PAI-1 
cancers metastasizing due to more stable angiogenesis. 
The localisation of PAI-1 to ECM attachment molecules 
could prove to be the next step in understanding these 
interactions. PAI-1 binds to ECM attachment molecules 
together with uPA/uPAR forming a pentameric complex 
of uPAR/uPA/PAI-1/vitronectin, which is able to combine 
further with LDR. The local activation of uPA near PAI-1/ 
vitronectin triggers ECM detachment and uPAR/uPA/
PAI-1/vitronectin/LDR clathrin mediated internalization. 
Homeostatic cellular systems can then designate the 
clathrin contents to degradation or cell membrane recy-
cling. Elements of this mechanism can be observed dur-
ing carcinogenesis [115].

Our data suggest that uPA can induce a decrease in 
cell viability, which in turn could occur by stimulation 
of detachment and plasmin/MMP activation leading to 
apoptosis. We have shown that PAI-1 can stimulate cell 
viability in hypoxic stress conditions. The possibility of 
stimulating attachment and stabilisation as well as en-
docytosis via the uPAR/PAI-1/integrin complex, even at 
low extracellular PAI-1 concentrations, is a known mech-
anism. We further show that PAI-1 is not inhibitory to 
cellular proliferation in low stress conditions, while uPA 
does not stimulate proliferation or protect from apoptosis 
in hypoxic stress conditions. The inhibitory effect of uPA 
on cellular viability at high concentrations in rich medi-
um can cause extracellular depletion of PAI-1 which could 
in turn result in uPA activated detachment and apoptosis 
instead of PAI-1 mediated endocytosis. 

We found that in rich medium both uPA and PAI-1 
have a decreasing stimulatory effect on survival with 
increased dosage, suggesting that outside of hypoxic 

stress, both of these molecules are homeostatically 
well regulated by the cell. The introduction of excessive 
amounts of either molecule overpowers the homeo-
static mechanisms resulting in an inhibition of viability. 
We therefore conclude that the most likely mechanism 
of excessive, rapid, and destructive tissue turnover as 
present in PsA is due to the combined activity of both 
uPA and PAI-1, released by the cell due to the hypoxic 
stimuli through the activation of NF-κB transcription, de-
pletion of cellular reservoirs, heightened activity of local 
adipose buffers due to systemic comorbidities and im-
mune responses and homeostatically to buffer the other 
elements of PAS. Further research will need to focus on 
optimising these destructive stimuli.
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