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Abst rac t
Inflammasomes are multiprotein oligomers, whose main function is the recruitment and activation of caspase-1, 
which cleaves the precursor forms of interleukin (IL)-1β and IL-18, generating biologically active cytokines. Activation 
of inflammasome is an essential component of the innate immune response, and according to recent reports it is 
involved in epithelial homeostasis and type 2 T helper cell (Th2) differentiation. In recent years, the contribution 
of inflammasome dependent signalling pathways to the development of inflammatory diseases became a topic 
of multiple research studies. Asthma and chronic obstructive pulmonary disease (COPD) are the most prevalent 
obstructive lung diseases. Recent studies have focused on inflammatory aspects of asthma and COPD develop-
ment, demonstrating the key role of inflammasome-dependent processes. Factors responsible for activation of 
inflammasome complex are similar in both asthma and COPD and include bacteria, viruses, cigarette smoke, and 
particulate matter. Some recent studies have revealed that NLRP3 inflammasome plays a crucial role, particularly 
in the development of acute exacerbations of COPD (AECOPD). Activation of NLRP3 inflammasome has been linked 
with neutrophilic severe steroid-resistant asthma. Although most of the studies on inflammasomes in asthma and 
COPD focused on the NLRP3 inflammasome, there are scarce scientific reports linking other inflammasomes such 
as AIM2 and NLRP1 with obstructive lung diseases. In this mini review we focus on the role of molecular pathways 
associated with inflammasome in the most prevalent lung diseases such as asthma and COPD. Furthermore, we will 
try to answer the question of whether inhibition of inflammasome can occur as a modern therapy in these diseases.
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Introduction

Inflammasomes constitute a part of the innate im-
mune system, responsible for protection against patho-
gens [1]. They are intercellular, multimeric protein com-
plexes consisting of nucleotide-binding oligomerization 
domain receptors (NLR), apoptosis-associated speck-
like protein containing a CARD (ASC), and an enzymatic  
effector – caspase. Its role involves catalysing protective 
reactions of the body by the generation of cytokines and 
death of infected cells in the apoptotic mechanism [2]. 
In the last few years, studies have been increasingly  
focused on inflammasomes and their role in the patho-
genesis of diseases of the cardiovascular [3], respiratory, 
or gastrointestinal systems [4].

Inflammasomes become activated when a pattern 
recognition receptor (PRR) detects conservative struc-
tures of microorganisms, known as pathogen-associated 
molecular pattern (PAMPs) and damage-associated  
pattern molecules (DAMPs). It leads to activation of 
signalling pathways, which trigger antibacterial inflam-
matory response. 

Pattern recognition receptors can be classified into 
3 main classes: toll-likely receptors (TLR), retinoic acid-
inducible gene I (RIG-I) receptors, and NOD-like (NLR) 
receptors [5]. 

Of all receptors belonging to the NLRP sub-family,  
the NLRP3 receptor is the best described in terms of its 
role in pathophysiology and clinical implications [6, 7]. 
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The activation of the NLRP3 inflammasome requires  
2 signals (Figure 1). It results in the activation of caspase-1, 
which controls maturation and release of the proinflam-
matory cytokines interleukin (IL)-1β and IL-18. Production 
of cytokines is a direct response to cell damage or recogni-
tion of infection factors [1].

Interleukin 1β, being the main proinflammatory cyto-
kine, plays a role in triggering and maintaining inflamma-
tion of airways by inducing the release of many cytokines, 
e.g. IL-2, -3, -4, -5, -6, -8, INF-γ, and TNF. Additionally, IL-1β 
induces leukocytosis by release of neutrophils from bone 
marrow [8] and is considered a key driver of neutrophil 
airway inflammation in chronic obstructive pulmonary dis-
ease (COPD) [9] and asthma [10] (Figure 2). Furthermore, it 
activates eosinophils in asthma. Eosinophils, by releasing 
major basic protein (MBP), contribute to overstimulation 
of M3 receptors by acetylcholine, which results in airway 
smooth cell (ASM) contraction and overproduction of mu-
cus [10]. Interleukin 18 plays an important role in type 1  
T helper cells (Th1)/type 2 T helper cells (Th2) polariza-
tion. Some studies on animals models confirm the role of  

the interleukin in induction of emphysematous lesions, 
airway fibrosis, mucus metaplasia, as well as right ventri-
cle cardiac hypertrophy, which might be one of the most 
severe complications of COPD [11, 12]. Interestingly, IL-18 
knock-out mice were protected against cigarette smoke 
(CS)-induced inflammation and emphysema, which indi-
cated a pivotal role of this cytokine in the pathogenesis 
of COPD [13]. Overexpression of IL-18 protein in the lungs 
induces type 1 and type 2 cytokines and airway inflamma-
tion, and results in increasing airway hyperresponsiveness 
via CD4+ T cells and IL-13 in asthma [14]. 

NLRP3 can be activated by many factors, such as 
microbiological exogenous stimuli, which, among oth-
ers, can contain lipo-saccharides, lipo-oligosaccharides, 
nucleic acids, MDP (muramyl dipeptide), and certain bac-
terial pore-forming toxins, such as pneumolysin [15–19]. 

Of the many factors which trigger the activation of 
NLRP3, 3 mechanisms that probably explain this process 
have been identified. 

According to the first hypothesis, reactive oxygen 
species (ROS), which are generated in the metabolic pro-

Figure 1. Mechanisms of NLRP3 inflammasome activation

ASC – apoptosis-associated speck-like protein containing a CARD, ATP – adenosine triphosphate, DAMPs – damage-associated pattern 
molecules, HMGB1 – high mobility group box 1, IL – interleukin, NLRP3 – NLR family pyrin domain containing 3, NF-κB – nuclear factor kappa-
light-chain-enhancer of activated B cells, TLR – toll-like receptors, ROS – reactive oxygen species, IL1R – IL1 receptor, PAMPs – pathogen- 
associated molecular pattern.
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cess of microorganisms penetrating body cells, might 
play a crucial role in NLRP3 activation [20]. 

The second hypothesis implies that NLRP3 activation 
may be associated with intracellular decreased level of 
K+ ions, being a result of a malfunction of the potassi-
um channel, or may be associated with bacterial toxins,  
inducing pores in the cell membrane, which results in  
an efflux of K+ ions from the cell [21]. 

In the third option, NLRP3 is activated via lysis of 
the cell membrane and release of cathepsin B-likely pro-
tein or protein modified by cathepsin B into cell cytosol, 
which is the result of a phagocytized microorganism [22]. 

It was also hypothesized that efflux of K+ ions from 
the cell, damage to the cell membrane, or the presence of 
ROS might oxidize mitochondrial DNA in the cell, which 
results in NLRP3 activation [23]. 

Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease is characte-
rized by high prevalence and high mortality. It is estimat-
ed that by the year 2030, this disease will have become 
the third most common cause of death [24]. It manifests 
with progressive and irreversible obturation, persistent 

infection of airways, and gradual depletion of the lung 
function. The intensity and occurrence of particular symp-
toms (such as cough, dyspnoea) depend on the degree 
of one of two classic phenotypes: emphysema or chronic 
bronchitis, which results in different manifestations of 
the disease in different patients [25]. Infections, mostly 
of bacterial aetiology, contribute to periodical exacerba-
tions, which often require hospitalization and modified 
treatment. Chronic inflammation of the airways is caused 
by inhalation of noxious particles, most often CS – about 
20% of tobacco smokers develop this condition [26].  
It was revealed that CS activates NLRP3 inflammasome, 
which occurs mainly due to ROS found in it, and which 
are also released from mitochondria by CS [27, 28]. ROS 
generation is modulated by efflux of K+, another cru-
cial factor required in NLRP3 activation [29]. Moreover,  
extracellular ATP (eATP) is released, then by binding to the 
P2X7 receptor it activates the caspase-1/NLRP3 pathway. 
This observation was confirmed on mouse models [30]. 
It was confirmed that ATP accumulates in the airways of 
animals and patients with COPD, which implies a crucial 
role of this molecule in the pathogenesis of COPD [31]; 
likewise, the P2X7 receptor is upregulated on alveolar 
macrophages and blood neutrophils from patients with 

Figure 2. The effects of activation of inflammasome in asthma and chronic obstructive pulmonary disease

AHR – airway hyperresponsiveness, COPD – chronic obstructive pulmonary disease, DC – dendritic cells, HBEC – human bronchial epithelial 
cells, GCS – glucocorticosteroids, RSV – respiratory syncytial virus, RV – rhinovirus, NLRP3 – NLR family pyrin domain containing 3.
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COPD [32]. It is widely known that CS contributes to a re-
lease of endogenous danger signals. One of them is high 
mobility group box 1 (HMGB1) protein, which belongs to 
the family of DAMPs. By interacting with TLR4, it can acti-
vate inflammasome. Studies on this protein found in BAL 
fluid and sputum of patients with COPD point to its role 
in the above disease [29, 33]. 

Finally, all those factors lead to assembly of inflamma-
some complex and activation of  caspase-1, which cleaves 
pro-IL-1β and pro-IL-18 and contributes to a release of their 
active forms from, among others, human bronchial epithe-
lial cells (HBEC), and macrophages. Mortaz et al. showed 
that NLRP3 activation from HBEC might result in a release 
of chemokine ligand 8 (CXCL-8/IL-8) [34], also known as 
neutrophil chemotactic factor, responsible for migration 
of neutrophils to airways, secreting elastases and proteins 
(such as IL-8, matrix metallo-proteinase [MMP]-9, neutro-
phil elastase, proteinase-3), which are the main mediators 
of the tissue damage and unceasing depletion of the lung 
function in this condition [35, 36]. Nevertheless, literature 
regarding the involvement of the caspase-1/NLRP3 axis in 
releasing CXCL8 is still discordant. A study conducted on 
an in vitro model a few years later revealed that NLRP3 
silencing does not affect the level of this protein [37].

There are abundant scientific reports implying that 
activation of NLRP3 inflammasome signalling pathway 
participates in the development of COPD, mainly in ani-
mal models [38–40]. It has been shown that mice ex-
posed to CS presented pathophysiological characteristics 
of COPD, whereas NLRP3-knock out mice did not demon-
strate any significant changes in lung function [41]. 

Furthermore, not only CS but also biomass fuel 
smoke (BS), being the main risk factor in low-income 
countries, participate in the development of chronic  
inflammation in COPD. This type worsens quality of life 
and is characterized by predominance of chronic bronchi-
tis [25]. BS contains both PAMPs and DAMPs, including 
ROS. They induce intracellular oxidative stress and acti-
vate NLRP3 in a way similar to that of CS [37, 42].

Some recent studies revealed that NLRP3 inflamma-
some plays a crucial role in the development of acute 
exacerbations of COPD (AECOPD). One of the first such 
reports was published in 2014. Its authors noticed a po-
tential role of IL-27, IL-37, and PYD domains containing 
protein 7 (NALP7) in the progression of stable COPD and, 
what is particularly important , a lack of correlation re-
garding NLRP3 inflammasome in these patients, in whom 
it remained inactive [43]. In support of this, one study 
found the presence of pre-assembled ASC specks in bron-
choalveolar lavage fluid (BALF) in stable COPD patients in 
contrast to healthy donors, as well as their accumulation 
in the lungs [44], which implies inactivity of NLRP3 in pa-
tients without exacerbations. Briefly, in clinically stable 
patients, NLRP3 inflammasome is primed, but not acti-
vated; it becomes activated in infectious AECOPD [45]. 
This relationship was also demonstrated in an in vitro 

model of lipopolysaccharide (LPS)-induced exacerbations 
[46]. More frequent exacerbations are associated with 
an increase in systemic inflammation and airway level of  
IL-1β, which, by binding with IL1 receptors (IL1-R), acti-
vates NLRP3, perpetuating an immune response [29, 47]. 
It results in a faster decline in the lung function and poor-
er quality of life. It has been demonstrated that NLRP3 
is involved in exacerbations of bacterial aetiology, and 
this type of exacerbation is the predominant one. There 
is positive correlation between mRNA of NLRP3-related 
proteins (Casp-1, ASC, IL-18, IL-1β) and the presence of 
6 common pathogens of the lower respiratory tract [48]. 
Several studies indicate that the level of IL-1β in sputum 
can serve as a marker of bacterial exacerbations [9, 49].

It has been also observed that caspase-1 not only in-
duces the release of IL-1β and IL-18 but also IL-1α from 
peripheral blood mononuclear cells (PBMCs) in unstable/ 
exacerbated COPD patients in the absence of melanoma 2 
(AIM2)/caspase-1/caspase-4 dependent pathway [50]. In 
support of this, Pauwels et al. showed that lung tissue 
and induced sputum of patients with COPD contain in-
creased levels of IL-1β and IL-1α [38]. Both IL-1α and IL-1β 
play an important role in fibrosis [51]. Additionally, activa-
tion of AIM2 inflammasome and release of IL-1α results 
in secretion of transforming growth factor β (TGF-β), 
which is also responsible for lung fibrosis in COPD [50].

Asthma

Asthma is one of the most common respiratory dis-
orders in the world. It is suggested that approximately 
300 million people suffer from asthma worldwide [52]. 
This number is estimated to increase to 400 million by 
the year 2025 [53]. 

Typical symptoms of asthma include the following: 
recurrent episodes of wheezing, breathlessness, tight-
ness in the chest, and cough. They are accompanied by 
bronchial hyperreactivity and airway obstruction. How-
ever, in some patients, the reversibility of airflow limi-
tation may be incomplete [54]. Recent studies focused 
on inflammatory aspects of asthma development, dem-
onstrating a crucial role of inflammasome-dependent 
processes. The vast majority of studies regarding inflam-
masomes in asthma are based on animal models of the 
disease, and only a few studies have undertaken this is-
sue in patients. Jodie et al. noted that gene expression 
for NRLP3 inflammasome components was significantly 
increased in the sputum of patients affected by neutro-
philic asthma in comparison with healthy subjects and 
patients affected by eosinophilic and paucigranulocytic 
asthma. Furthermore, gene expression of proinflamma-
tory caspases 1, 4, and 5 was also elevated. The research-
ers also noted the presence of the mature form of IL-1β 
in supernatants of patients with neutrophilic asthma 
after application of the western blot technique. Expres-
sion of receptors, such as NOD2 and TLR2, which also 
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promote IL-1β synthesis, was elevated in patients with 
neutrophilic asthma. Proteins for NLRP3 and caspase-1 
were expressed in sputum macrophages in all asthma 
subtypes, but there was also expression in neutrophils 
from patients with neutrophilic asthma [55].

Results of other recently published studies imply that 
hyperactive NLRP3 inflammasome as well as synthesis 
and secretion of IL-1β are typical for neutrophilic asth-
ma [56–58]. Lachowicz-Scroggins et al. suggest in their 
study that in SA, neutrophil extracellular traps (NETs) are 
responsible for NLRP3 activation in resident cells, such 
as monocytes or macrophages. Moreover, expression of  
IL-1R family members is elevated in the sputum of patients 
with severe asthma (SA) [58]. The authors also observed 
increased expression of NLRP3 inflammasome and an  
increased level of the proteins that activate it, such as C5a 
in patients with SA. The neutrophilic asthma type is usu-
ally more severe [59–61] and patients demonstrate higher 
resistance to glucocorticosteroids (GCS) [57, 60] and high-
er levels of NLRP3 and IL-1β mRNA in sputum [57].

Rossios et al. concluded that interleukin 1 receptor-
like 1 (IL1RL1) gene expression is associated with eosino-
philic SA, while NLRP3 inflammasome expression is high-
est in patients with neutrophilic SA [56].

The following factors: bacterial and viral infections, 
air pollution, allergens, and CS, may induce endoplas-
mic reticulum (ER) stress, which will lead to a release 
of DAMPs from mitochondria. This eventually results 
in NLRP3 inflammasome activation and conversion of  
pro-IL-1β into its active form [62]. Studies on mouse mod-
els aimed at investigating bacterial factors showed that 
Chlamydia and Haemophilus infections increase NLRP3, 
caspase-1, and IL-1β responses, which drive steroid-
resistant neutrophilic inflammation and airway hyper-
responsiveness (AHR) [57]. Increased bacterial burden 
in airways is positively correlated with neutrophilic in-
flammation in asthma, its more severe course, and resis-
tance to GCS [63–65]. Rhinovirus (RV) infections are the 
main cause of asthma exacerbations in adults and chil-
dren [66, 67]. NLRP3 inflammasome activation may also 
underlie molecular mechanisms of this phenomenon. 
A study on mouse models showed that RV induces TLR2-
dependent inflammasome activation [68]. Earlier studies 
confirm NLRP3 activation and IL-1β secretion in cultured 
bronchial epithelial cells infected with RV [69, 70]. 

In U937-line cells infected with respiratory syncytial 
virus (RSV), activation of TLR2/MyD88 pathway (first sig-
nal) and production of intracellular ROS as well as po-
tassium efflux (second signal) were observed. It resulted 
in the formation of NLRP3/ASC complex and caspase 1 
activation, which subsequently cleaved pro-IL-1β protein 
into its mature form [71]. Not only do infection factors, 
such as bacteria or viruses, increase NLRP3 activation, 
but also functional polymorphisms in NLRP3 have been 
identified, which increase the stability of NLRP3 mRNA. 
Single nucleotide polymorphism (SNP) is associated with 

susceptibility to food-induced anaphylaxis and aspirin-
induced asthma (AIA) [72].

Also, air pollution induces NRLP3-dependent inflam-
matory response. Particulate matter less than 10 μm 
(PM10) activates NRLP3 inflammasome in human epithe-
lial cells, which increases IL-1β synthesis. These changes 
were also confirmed in the same in vivo study conducted 
on mouse models [42]. In PM10-induced inflammatory 
responses, NRLP3 knockout mice demonstrated lower 
concentrations of IL-1β and a lower number of inflamma-
tory cells, particularly neutrophils, measured in BAL fluid 
in comparison to the wild type murine. In PM10-induced 
NRPL3 knockout mice only the number of macrophages 
was significantly higher. However, it did not correlate 
with increased IL-1β level. 

Likewise, biopsies conducted in regional intrathoracic 
lymph nodes in mice, after their 24-hour exposure to PM, 
revealed changes in the dendritic cell (DC) phenotype. 
It has been suggested that those changes result from 
mechanisms that are dependent on the molecular com-
plex of NRLP3 inflammasome [42].

The same group has shown that the NLRP3 inflam-
masome/IL-1RI axis mediates innate responses to air 
pollution leading to production of chemokine (C-C motif) 
ligand 20 (CCL-20) and granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF), which are associated 
with dendritic cell activation and lung neutrophilia [73].  
Li et al. demonstrated that the ATP/P2X7-NLRP3 axis of 
dendritic cells stimulates Th2 and Th17 differentiation 
through IL-1β and IL-18 secretion. Furthermore, activation 
of NRLP3 inflammasome enhances expression and release 
of HMGB1, which is a key molecule of innate immune re-
sponse [74, 75]. These mechanisms lead to increased 
airway inflammation and AHR [63]. A study on a mouse 
model revealed that animals with deficits of NLRP3 in-
flammasome or caspase1/11 did not control the influx  
of eosinophils in airways and demonstrated increased  
levels of cytokines (particularly IL-33) and Th2 chemokines 
in response to house dust mite (HDM)-induced allergic 
pneumonia, which suggest that NRPL3/caspase-1 complex 
controls HDM-induced allergic pneumonia [76]. 

Scientific data regarding involvement of other inflam-
masomes in asthma inflammation are scarce. Recent re-
search indicates that NLRP1 and NLRC4 inflammasomes 
are activated in addition to NLRP3 in the sputum of pa-
tients with neutrophilic asthma [56], and that children 
with asthma with gain-of-function SNPs in NLRP1 are 
exposed to more severe disease presentation [77].

NLRP3-inflammasome/caspase-1/IL-1β axis  
as a therapeutic target

In the last few years, some studies focusing on the 
NLRP3/caspase-1/IL-1β axis, which might become a po-
tential therapeutic target in treatment of asthma, have 
been published. 
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A study on mouse models established that inhibition 
of NLRP3 signalling pathway resulted in reduced levels of 
IL-1β and Th2 cytokines, and what is more important, it 
completely inhibited HDM-induced AHR and attenuated 
steroid-resistant asthma [57]. Moreover, IL-1β inhibition 
also suppressed airway inflammation and AHR in severe, 
steroid-resistant (SSR) asthma. IL1-R may be a promising 
goal in therapy of SSR asthma. IL1-R antagonists such as 
Anakinra may be beneficial in therapy [57]. Studies on 
mouse models showed that blocking IL1-R may also have 
therapeutic potential in immunomodulating treatment of 
allergic asthma [78]. However, such a strong blockage of 
IL-1 or its receptors bears a risk of frequent infections of 
the respiratory system [57, 79]. NLRP3 inhibitors could 
be an effective solution because they do not affect IL-1β 
synthesis from other sources [57]. 

It has been proven that inhibition of NLRP3 inflam-
masome weakens most typical features of asthma and 
blocks Th2 and Th17 polarization as well as reducing 
HMGB1 expression and release from dendritic cells [63]. 
In a mouse model of OVA-induced allergic inflammation, 
the blockage of NLRP3 inflammasome was associated 
with a reduced number of eosinophils, decreased IL-33 
synthesis, generally impaired Th2 response, decreased 
DC migration to regional lymph nodes, and decreased re-
cruitment of T CD4 + cells, producing IL-13 [80]. In recent 
years the influence of A20 protein has been considered 
in the context of inflammasome functioning, particularly 
NLRP3, as well as in asthma. However, A20 protein has 
not been investigated together with inflammasome in 
asthma [81]. The protein A20 is encoded by an immedi-
ate early response gene and acts as a potent inhibitor of 
NF-κB signalling pathway [82]. Studies in animal models 
have demonstrated the protective effect of A20 in dis-
eases such as arthritis, pristine-induced lupus nephritis, 
and type II diabetes. The activity of NRLP3 inflamma-
some is negatively correlated with the activity of A20 
protein [83–85]. Ruiz-Gomez et al. showed that airway 
epithelial cells from adults with asthma express signifi-
cantly less A20 [86]. Protein A20 was shown to have ben-
eficial effects in the course of allergic asthma in a mouse 
model of the disease. A20 suppressed mucus production 
and prevented the development of AHR [87]. Particularly 
interesting for the involvement of A20 in asthma is its 
enhanced transcription of this NF-κB inhibitor following 
glucocorticosteroid binding to their response element in 
the gene, which has been observed in bronchial epithe-
lial airway cells [88].

In COPD, similarly to asthma, the benefits derived 
from direct inhibition of NLRP3 are pointed out. A study 
on a COPD mouse model revealed that lipoxin receptor 
agonist BML-111 may prevent NLRP3 inflammasome ac-
tivation and inhibit ROS production [89]. A similar effect 
may be obtained by melatonin, which attenuates inflam-
mation through SIRT1-dependent NLRP3 inhibition [90]. 
Interestingly, it has been shown that 17-oxo-docosahe-

xaenoic acid (DHA) can block NLRP3 inflammasome and 
inflammasome-dependent degradation of glucocorticoid 
receptor (GR). Therefore, the combination of GCS and 
17-oxo-DHA may be beneficial [91]. Another possibility is 
inhibition of AIM2 inflammasome-nintedanib abrogated 
AIM2/IL-1α-dependent TGF-β release from PBMCs of 
COPD patients [48].

Conclusions

In recent years, the contribution of inflammasome-
dependent signalling pathways to the development of 
inflammatory diseases has become the topic of multiple 
research studies. Numerous studies indicate that inflam-
masome-dependent pathways have a significant effect 
on induction and maintenance of inflammation in the 
most prevalent lung diseases, such as asthma and COPD. 
Better understanding of these relationships may in the 
future allow the development of modern therapies in the 
treatment of GCS-resistant SA or COPD exacerbations. 
Moreover, a combination of inflammasomes and A20 
protein might provide much needed insight into com-
plex molecular integrations present in asthma. Overall, 
inflammasome characterization and recognition of the 
role of A20 protein will allow identification of new thera-
py targets and more personal treatment options.
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