Collision tumours are defined as the rare condition in which two histologically distinct neoplasms grow concurrently in the same location. In a 64-year-old male patient, with sharply defined borders, adenocarcinomas are the most common tumours of the stomach. Other types of tumours can occasionally accompany gastric adenocarcinomas. Foci of adenocarcinoma and neuroendocrine carcinoma were identified in adjacent areas of a 64-year-old male patient who had undergone total gastrectomy due to adenocarcinoma of the gastric cardia. Of the seven metastatic lymph nodes, three were affected by adenocarcinoma and four were affected by neuroendocrine carcinoma. Based on this patient case, we discussed gastric collision tumours in the light of the literature.

Key words: gastric collision tumor, adenocarcinoma, neuroendocrine carcinoma.

Contemp Oncol (Pozn) 2014; 18 special issue
DOI: 10.5114/wo.2014.40603

Case report

Gastric collision tumour of adenocarcinoma and neuroendocrine carcinoma

Alper Ata¹, Tuba Karabacak², Tolga Köșeci³, Ebru Serinsöz², Ali Arıcan⁴
¹Mersin State Hospital, Turkey
²Department of Pathology, Mersin University School of Medicine, Turkey
³Department of Internal Medicine, Mersin University School of Medicine, Turkey
⁴Department of Medical Oncology, Mersin University School of Medicine, Turkey

Introduction

Collision tumours are defined as rare conditions in which two histologically distinct neoplasms grow concurrently in the same location with sharply defined borders. Adenocarcinoma is the most common tumour of the stomach. Although lymphomas are the most common coexisting tumours, carcinoid, neuroendocrine and stromal tumours may also accompany gastric adenocarcinomas [1–4]. Lymph node metastases of gastric collision tumours are mostly in the form of adenocarcinomas. The coexistence of a gastric adenocarcinoma and neuroendocrine tumour is rare [2, 5–12]. Herein, we present a patient, who had undergone surgery with the pre-diagnosis of gastric adenocarcinoma, in whom a coexisting neuroendocrine tumour was identified; some of the metastatic lymph nodes were affected by adenocarcinoma and some by the neuroendocrine tumour. We discussed this case in light of the available literature.

Case report

A 64-year-old male patient was admitted to the Department of Gastroenterology of Mersin University Faculty of Medicine with complaints of fatigue, loss of appetite, early satiety and flatulence in the epigastric region, persisting for four months. He had lost 10 kg in weight within the last four months. He had a history of smoking a pack of cigarettes a day for 40 years. There was no family history of any type of cancer. His physical examination revealed tenderness over the umbilicus. All laboratory parameters were within normal limits except for mild anaemia (haemoglobin 11.7 mg/dl). Serum levels of carcinoembryonic antigen (CEA) and calcium 19-9 were also within normal limits. Upper gastrointestinal system endoscopy revealed a fragile, vegetative mass starting from the 35th cm of the oesophagus from the incisors and surrounding the oesophagogastric junction. This complicated the passage of the endoscope into the stomach. An ulcerative, vegetative, fragile mass extending to the minor curvature was identified in the gastric cardia, and multiple biopsies were obtained. Examination of the biopsy specimens revealed gastric adenocarcinoma. On computed tomography (CT) a mass lesion that was more prominent in the gastric cardia, extending to the fundus, minor curvature and distal oesophagus and causing remarkable luminal narrowing particularly in the gastric cardia was observed. No distant organ metastasis was identified (Figs. 1 and 2).

The patient underwent total gastrectomy, Roux-en-Y anastomosis and splenectomy. Concurrent administration of adjuvant chemotherapy was planned. The patient is currently in the 4th month of treatment.
Pathological findings

Gross examination of the surgical specimen revealed a 6 cm × 4.5 cm × 1.8 cm ulcerative and vegetative mass located at a minimum distance of 0.8 cm from the proximal surgical margin and surrounded by the gastric wall. Macroscopically, the adenocarcinoma component of the tumour showed infiltration into the fat tissue. The colour of the cut surface of the tumour was grey-white, and the tumour extended to the serosa. Twenty-seven lymph nodes were resected together with the gastric sample. Microscopic examination of the surgical specimen stained with haematoxylin and eosin (H&E) revealed two different tissue types (Fig. 3). One of the components was an endocrine tumour composed of small cells forming solid, trabecular glands. These cells had granular eosinophilic cytoplasm, round or oval shaped, centrally located nuclei and distinct nucleoli. The value for the Ki67 labelling index was 10% and the mitotic index was 3/10 HPF. The other component was an adenocarcinoma composed of cells with extracellular mucin, mainly forming glandular and cribriform structures. Immunohistochemically, the endocrine component of the tumour showed positive staining with synaptophysin and chromogranin (Clone SP11, 1 : 50 and Clone SP12, 1 : 25, NeoMarkers, Fremont, CA) (Fig. 4). It was observed that these tissues did not coalesce with each other in front of the tumour. Both tumour components invaded the serosa. The proximal surgical margin was invaded by the adenocarcinoma component of the tumour, but the distal surgical margin was intact. There was perineural invasion of the adenocarcinoma component as well; however, no vascular invasion was observed. Seven of the resected lymph nodes were metastatic, three of which were affected by adenocarcinoma and four by neuroendocrine carcinoma (Figs. 5, 6 and 7). Based on these findings, the patient was diagnosed with a collision tumour composed of an adenocarcinoma and an endocrine tumour.

Discussion

In the present patient case, two different types of carcinoma (adenocarcinoma and neuroendocrine carcinoma) were simultaneously identified in a single gastric tumour and in the metastatic lymph nodes affected by the same tumour. Neuroendocrine carcinomas account for 2% of tumours of the gastrointestinal system [13–15]. Their prevalence varies among populations. The most commonly involved organs in the Western population

Fig. 1. Mass lesion causing remarkable luminal narrowing in the gastric cardia

Fig. 2. Lesion causing luminal narrowing in the gastric cardia and a metastatic lymph node

Fig. 3. Endocrine and adenocarcinoma components of the tumor (H&E, 40×)

Fig. 4. Endocrine tumor showing positive staining with synaptophysin (synaptophysin, 40×)
include the small intestine (36%), appendix (26%) and rectum (17%). Neuroendocrine carcinomas of the stomach are quite rare, with an incidence of 4% [15]. In the Japanese population, gastric involvement ranks second (27.3%) after rectal involvement [16]. A grading scheme endorsed by the World Health Organization (WHO) for NETs of the digestive system classifies well-differentiated NETs into 2 categories: low grade (G1) and intermediate grade (G2) [17]. The Ki67 labelling index is one of the factors of prognostic significance in well-differentiated NETs [18]. The 2010 WHO classification uses a Ki67 labelling cut-off value of < 3% to define low grade (G1), 3–20% for intermediate grade (G2) and > 20% for high-grade (G3) NETs. Mitotic activity shows the inherent proliferative potential of NETs. Based on the 2010 WHO classification, the cut-off value to define poorly differentiated gastroenteropancreatic neuroendocrine carcinoma is now 20/10 HPF. According to the WHO classification system, our patient had grade 2, well differentiated neuroendocrine carcinoma. But with the component of adenocarcinoma we could name it as a mixed adenoneuroendocrine carcinoma (MANEC).

To the best of our knowledge, the coexistence of gastric epithelial and non-epithelial tumours (collision tumour) has been reported in 57 cases in 49 different publications in the literature written in English. Table 1 shows the distribution of collision tumours that accompany gastric adenocarcinoma, indicating that lymphomas are the most common coexisting tumours (38%).

As can be seen in detail in Table 2, the coexistence of adenocarcinoma and neuroendocrine carcinoma has been reported in only nine cases. The age, gender and prognostic characteristics of these patients were similar to those of patients with other gastric tumours. The present patient is the 10th case reported in the literature. The only case of a collision gastric tumour reported in Turkey was a patient with coexisting adenocarcinoma and gastrointestinal stromal tumour [19]. The present case report will be the first in Turkey describing a coexisting gastric adenocarcinoma and neuroendocrine tumour.

It is known that a substantial portion of patients with pernicious anaemia have hypergastrinaemia and related endocrine cell proliferation [13]. The present patient case had neither pernicious anaemia nor endocrine cell proliferation. The serum gastrin level of the patient was within the normal range.

It is generally difficult to differentiate collision and composite tumours. A collision tumour is the coexistence of more than one type of neoplastic tissue in the same tumour, with sharply defined borders. A composite tumour is the presence of different types of tumour in mixed formation [16, 18]. According to these definitions, our case represents a collision tumour because there are two elements adjacent to one another without intermixing.

In such cases the most significant problem is encountered during the initial biopsy. If the biopsy specimen reveals only the neuroendocrine component, the therapy schema will be totally changed. Therefore, taking biopsies from multiple sites is important.

Of course, the prognosis for such patients is associated with the depth of invasion and lymph node involvement. But which part of the tumour affects the prognosis more than the other is unclear. There is not enough data to speculate.
We are of the opinion that the presentation of this rare entity will contribute to the understanding of the behaviour and biology of gastric tumours.

Authors declare no conflict of interest.

We are of the opinion that the presentation of this rare entity will contribute to the understanding of the behaviour and biology of gastric tumours.

Authors declare no conflict of interest.

Table 1. Distribution of collision-composite tumours that accompany gastric adenocarcinomas

<table>
<thead>
<tr>
<th>Tumour type</th>
<th>Lymphomas</th>
<th>Neuroendocrine tumours</th>
<th>Oesophageal squamous cell carcinoma</th>
<th>Gastrointestinal stromal tumours</th>
<th>Sarcomas</th>
<th>Gastrinomas</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>22 (38%)</td>
<td>9 (17%)</td>
<td>7 (12%)</td>
<td>7 (12%)</td>
<td>3 (5.5%)</td>
<td>2 (3.5%)</td>
<td>7 (12%)</td>
<td>57 (100%)</td>
</tr>
</tbody>
</table>

Table 2. Summary of cases with a collision/composite tumour composed of adenocarcinoma and neuroendocrine carcinoma

<table>
<thead>
<tr>
<th>No.</th>
<th>Age (years), gender</th>
<th>Tumour localization</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50, male</td>
<td>body</td>
<td>Yamashina, 1985 [5]</td>
</tr>
<tr>
<td>2</td>
<td>69, female</td>
<td>body</td>
<td>Chodankar, 1989 [6]</td>
</tr>
<tr>
<td>4</td>
<td>72, female</td>
<td>unknown</td>
<td>Corsi, 1995 [8]</td>
</tr>
<tr>
<td>5</td>
<td>66, female</td>
<td>cardia</td>
<td>Camurias Mohinelo, 1997 [20]</td>
</tr>
<tr>
<td>6</td>
<td>84, male</td>
<td>cardia</td>
<td>Morishita, 2005 [10]</td>
</tr>
<tr>
<td>8</td>
<td>56, male</td>
<td>body</td>
<td>Mróz, 2009 [12]</td>
</tr>
<tr>
<td>9</td>
<td>50, male</td>
<td>body</td>
<td>Jang, 2010 [2]</td>
</tr>
<tr>
<td>10</td>
<td>64, male</td>
<td>cardia</td>
<td>present case</td>
</tr>
</tbody>
</table>

References

Address for correspondence

Alper Ata
Mersin State Hospital
Clinics of Medical Oncology
33000 Mersin, Turkey
e-mail: dralperata@yahoo.com

Submittes: 25.06.2012
Accepted: 9.04.2013