
The tumour microenvironment, long 
considered as determining cancer de-
velopment, still offers research fields 
to define hallmarks of cancer. An early 
key-step, the “angiogenic switch”, al lows 
tumour growth. Pathologic angio gene-
sis is a cancer hal lmark as it features 
results of tumour-specific properties 
that can be summarised as a response 
to hypoxia. The hypoxic state occurs 
when the tumour mass reaches a vol-
ume sufficient not to permit oxygen 
diffusion inside the tumour centre. 
Thus tumour cells turn on adapta-
tion mechanisms to the low pO

2
 lev-

el, inducing biochemical responses in 
terms of cytokines/chemokines/recep-
tors and consequently re cruit ment of 
specific cell types, as well as cell-se-
lection inside the tumour. Moreover, 
these changes are orchestrated by the 
microRNA balance strongly reflecting 
the hypoxic milieu and mediating the 
cross-talk between endothelial and tu-
mour cells. MicroRNAs control of the 
endothelial precursor-vascular settings 
shapes the niche for selection of can-
cer stem cells. 
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Introduction

As cancer stem cell (CSC) is a term to describe the most resistant and 
quiescent subpopulation of cells that, among the growing tumour cells, may 
be resistant to treatments and are able to aggressively reconstitute the ma-
lignant disease, these cells are also called cancer-initiating cells. Deciphering 
the molecular mechanisms they to use to dedifferentiate and to resist the 
harsh conditions resulting from the therapies is a challenge for new anti-
cancer approaches. The cancer stem cells are not highly different from other 
stem cells, which makes their targeting difficult. In this aspect, the place and 
conditions in which they originate inside the tumour mass as well as their 
microenvironmental milieu remain a question of controversy. As they often 
appear to be associated with endothelial cells of the micro-vessels, their 
niche is described as non-hypoxic while they display resistance to hypoxia [1].  
They also are the hypoxia-resistant cells that recruit endothelial cells to form 
the tumour vasculature both from sprouting preformed vessels as well as 
from bone marrow and/or vessel wall mobilized endothelial precursors [2]. 
In that process, cancer stem cells act through the production of factors able 
to exert a paracrine chemoattractant effect towards responsive endothelial 
cells and especially precursor endothelial cells. This effect is insured mainly 
by the production of vascular endothelial growth factors (VEGFs) and their 
endothelial receptors; it also permits the conditioning of the pre-metastatic 
niches by activating the endothelial barrier in secondary sites [3].

Vascular endothelial growth factor production illustrates the response 
to hypoxia by the proangiogenic molecule cascade [4] that develops after 
hypoxia-inducible factors (HIFs) early production and transcription [5]. As 
tumour angiogenesis is not efficient, it is unable to restore the cell oxygena-
tion thus maintains the VEGF production, and pathologic angiogenesis is 
pursued in a vicious circle [3].

The antiangiogenesis strategies for cancer treatment have been success-
ful in destroying the tumour vessels and reducing the tumour size. They 
have, unfortunately, also resulted in the selection of resistant cancer cells 
surviving to deep hypoxia and escaping from most conventional treatments 
because they are not dividing and isolated from systemic access [3]. Conse-
quently, the interactions between the endothelial cells and the cancer stem 
cells determine the status of the niche [6]. This review focuses on the char-
acteristics of cancer stem cells, pointing out their relation to hypoxia, the 
hypoxia-mediated participation of endothelial precursor cells to the cancer 
stem cell niche, and the fine mechanisms of regulation between EPCs and 
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CSCs that the non-coding microRNAs are tuning in the 
context of hypoxia.

The characteristics of cancer stem cells  
are linked to hypoxia

Because it was shown that metastatic potential might 
be attributed to stem cell-like tumour cells (also called 
cancer stem cells), which are resistant to chemother-
apy and induce dormancy in tumours, their detection, 
isolation, and characterisation is a challenge for cancer-
target ed therapeutic strategies. As they are quite similar 
to normal stem cells, it is critical to find specific markers 
allowing CSC identification for effective targeted therapy. 
A number of markers have been used to isolate CSCs from 
solid tumours of the colon, oesophagus, liver, breast, brain, 
cervix, and head and neck squamous cell carcinomas  
(HNSCC). As summarised [7], antigens should be combin-
ed in order to type and even isolate the CSCs from a whole 
tumour population. CD44 and CD133 are commonly ex-
pressed in oesophageal stem cell carcinoma, liver, breast, 
prostate, and colon carcinoma. In addition, Nanog Oct3/4, 
CD90, CD166, CD34, CD177 (stem cell factor receptor), or 
CD271 are helping to type CSCs in various head and neck 
localised cancers [8]. 

Zhang et al. (2009) first suggested, that Hoechst 33342 
dye by the ATP-binding cassette transporter (ABC, multi-
drug resistance receptors) can also be used to identify the 
side-population of cells that possess stem-like properties [9].

Aldehyde dehydrogenase enzymatic activity is used to 
type, isolate, and study the cancer stem cells. In many tu-
mour types the cells that display a high aldehyde dehydro-
genase (ALDH) activity have stem-like properties in terms 
of spheroid formation and tumourigenicity [10], but it is 
not a general feature [11].  

Consequently, a variety of cell surface markers are used 
to define CSCs from primary tumours and lines, common-
ly CD133, CD44, CD24, and CD166 [12], but no study has 

allowed definition of the CSC identity, since the CSC-phe-
notype may vary substantially across different tumours,  
as in the case of melanoma metastatic process [13].

An interesting feature that is usually not taken into ac-
count along with characterization and functional studies 
is the influence of hypoxia vs. physioxia [14]. Most of the 
cited antigens and putative markers assessed are regulat-
ed by the pO2

 conditions. Indeed, CD133 promoter is acti-
vated by hypoxia-inducible factors (HIFs) [15] and its gly-
cosylation is also hypoxia-dependent, which explains the 
variable results obtained by antibody detection [16]. CD44 
was also shown to be regulated by hypoxia in expressing 
its variant isoforms in triple negative breast cancer [17], 
as similarly shown for CD271 in melanoma [18]. This hy-
poxia-mediated effect was clearly demonstrated on CD34+ 
chronic myeloid precursor cells operating differentiation 
[19] and on CD24 as an effector of HIF-1α-driven prima-
ry tumour growth and metastasis [20]. Although in the 
melanoma, ALDH was not correlated with aggressiveness 
[21], we showed that its expression is stabilized in hypox-
ia-selected cells and it was shown to regulate stemness in 
breast cancer by activating HIF-2α [22]. 

Consequently, considering hypoxia effects on antigen 
expression it might help to precisely identify the stem cell 
characteristics in tumours.

The contribution of endothelial precursor cells  
to tumour angiogenesis as a response to hypoxia

Similarly to cancer stem cells, normal stem cells are very 
reactive to hypoxia and hypoxia-mediated signalling, as 
shown in embryonic development and particularly for hae-
mangioblast specification [23]. This “good” aspect of an-
giogenesis becomes “bad” as it occurs in tumours through 
the early ‘angiogenic switch’ due to hypoxia (Hanahan and 
Folkman, 1996). It allows tumour development [24] and 
sets the tumour microenvironment in terms of cytokines, 
enzymes, extracellular matrix, and cells [14, 25]. Tumour 

Fig. 1. Schematic representation of the cellular and molecular modulation of the tumour microenvironment due to oxygen tension modifi-
cation
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angiogenesis promotes tumour growth and facilitates  
metastasis. In response to pro-angiogenic signals, as vas-
cular endothelial growth factor (VEGF)-A or interleukin  
(IL)-8 released mainly from neoplastic cells and stromal 
cells, such as Tie-2 expressing monocytes (TEMs) [26] 
and fibroblasts [25], endothelial cells are further actively 
recruited to participate to the pathologic angiogenesis 
into the tumour mass [25]. Similarly, the infiltrating im-
mune cell subpopulations that are recruited, apart from 
tumour-antagonising CD8 cytotoxic T lymphocytes (CTLs) 
and natural killer (NK) cells, i.e. macrophages, mast cells, 
neutrophils, and T and B lymphocytes, act as tumour-pro-
moting cells [2]. Defining the type and differentiation 
characteristics of the endothelial precursors that are spe-
cifically recruited into the developing tumour is an im-
portant aspect in the design of new angiogenesis-based 
treatments [27, 28] that are able to take over antiangio-
genic treatments and avoid selection of cancer stem cells.  
The normalization of  tumour vessels, first suggested by 
Jain [29], represents an adjuvant strategy which not only 
permits a strong increase of the efficacy of chemotherapy 
and radiotherapy, but also reduces the tumour growth and 
allows eradication of metastases [30]. Moreover, it clearly 
reduces the number of stem-like cells in the treated tu-
mours where the remaining markers are CD133+ and CD34+ 
cells, attributable to EPCs [31], while Oct3,4+, CD24+, and 
CD271+ cells totally disappeared together with the expres-
sion of their mRNA [30]. Stable normalization may thus be 
the alternative to antiangiogenic treatments [32, 33].

MicroRNA contribution to the vascular cancer 
stem cell niche

MicroRNAs mediate an important aspect of the endo-
thelial cell-to-cancer stem like cell cross-talk. They have 
various means to act on cells and regulate their gene ex-
pression. They are largely documented for their expres-
sion in response to hypoxia. The so-called hypoxia miRs 
are regularly induced in hypoxia, and some of them act 
on angiogenesis (angiomiRs). In tumours, miR-210, the 
most typical hypoxia miR, is HIF-1α-dependent and also 
stabilises HIF-1α, thus controlling the hypoxic phenotype 
[34]. This process is of fundamental interest for further 
therapeutic applications involving radiosensitisation. As 
miR-210 is proangiogenic, it promotes endothelial cell 
migration [35]. It operates through endosome transport 
to endothelial cells [36], which appears to be a common 
means of interaction [37]. Besides this classical example, 
the huge role played by miRs in tuning the tumour micro-
environment is documented for immune cells [38, 39], the 
extracellular matrix and, enzymatic regulation, as well as 
angiogenesis [2, 38, 40]. In this instance HO-1 activity in 
angiogenesis and compensation by miR-378 expression 
was shown to occur through exosomes produced by tu-
mour cells [38]. MiRs that normally regulate stem cell biol-
ogy act on cancer stem cells as well. MiR-34a was found to 
be a key negative regulator of CD44+ prostate cancer cells, 
thus offering a therapeutic agent against prostate CSCs 
[41]. Similarly, the endothelial precursors recruited and re-
sponding to the hypoxic milieu of the CSCs niche are sub-

mitted to the identical miR regulation. Tumour endothelial 
cells were found to share the same abnormalities as found 
in cancer cells [42], which could be due to a common can-
cer/endothelial cell progenitor [43], to cancer-to-endothe-
lial cell transdifferentiation [44], to fusion between cancer 
and ECs [45], or to cancer stem-like cells undergoing vas-
cular mimicry. In contrast, tumour endothelial cells have 
unique properties [46] suggesting that oncogene-bearing 
circulating endothelial cell precursors might be one of  
the possible identities of cancer stem cells. As such, miRs 
that potentially normalize angiogenesis by regulating 
PTEN activity [2, 30] like miR-21 vs. mir-29b, might provide 
powerful targets for therapies linking vessel stable nor-
malization to tumour growth control [47].

Discussion 

As CSCs and endothelial precursor cells cooperate clo-
sely in the achievement of vascular/cancer stem niche, 
they operate through very close mechanisms and respons-
es. The notch signalling protein is a mediator exemplifying 
the convergence of hypoxic responses to promote signals 
that lead cancer stem cells via the epithelial-mesenchymal 
transition [48]. Although the HIF-1α-mediated EMT path-
way still remains undefined as to the precise mechanisms 
of the molecular expression cascade, the similar path-
ways used by the CSC and EPC responses to hypoxia offer 
new insights. The endothelial cells perform angiogenesis 
through the tips cells/stalk cell notch signalling, and the 
concordance of the mechanisms led to the observation of 
the CSCs transdifferentiation into endothelial cells, thus 
achieving vascular mimicry [49].  

Hypoxia and HIF-1α overexpression have been reported 
to promote the expression of EMT activators [50]. Notch 
signalling pathway is required to convert the hypoxic stim-
ulus into EMT [51]. As recently shown [52], hypoxia upregu-
lates c-Myc and OCT3/4, contributing to vascular mimicry 
formation. Hypoxia is also a regulator of CSCs and EMT 
through NFκB, PI3K/Akt/mTOR, NOTCH, Wnt/β-catenin, 
and Hedgehog signalling pathways [48]. 

Thus, the hypoxic microenvironment seems to rule the 
vascular mimicry mechanism of angiogenesis formation, 
which is a convergence of the diverse angiogenesis mech-
anisms through stemness maintenance and cooperation 
of endothelial precursor cells with cancer stem cells. At 
this level, the regulation operated by microRNAs [53] of-
fers an opportunity to control and possibly transform the 
tumour microenvironment at the CSC/EPC niche.
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