Prediction of muscle fiber composition using multiple repetition testing

AUTHORS: Elliott C.R. Hall¹, Evgeny A. Lysenko², Ekaterina A. Semenova³, Oleg V. Borisov⁴, Oleg N. Andryushchenko⁵, Liliya B. Andryushchenko⁶, Tatiana F. Vepkhvadze⁷, Egor M. Lednev⁸, Piotr Zmijewski⁹, Daniil V. Popov⁴, Edward V. Generozov⁵, Ildus I. Ahmetov⁶,⁹,¹₀

¹ Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
² Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
³ Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
⁴ Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
⁵ Department of Physical Education, Financial University under the Government of the Russian Federation, Moscow, Russia
⁶ Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia
⁷ Institute of Sport – National Research Institute, Warsaw, Poland
⁸ Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
⁹ Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St Petersburg, Russia
¹₀ Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom

ABSTRACT: Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = −0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11–15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% 1RM is moderately correlated with muscle fiber composition.

INTRODUCTION

The variable individual response to exercise training [1] is likely to be influenced by the heterogeneity of muscle fiber composition [2, 3]. Oxidative type I (slow-twitch) muscle fibers are predominantly suited to aerobic activities and repetitive submaximal contractions, whilst type II (fast-twitch, subdivided into oxidative type IIA and glycolytic type IIX) fibers have greater cross-sectional area and faster shortening velocity than type I fibers [4], and are preferentially recruited during anaerobic activities necessitating strength and power [5]. Whilst appropriate programme design is important in attaining the desired response to sustained training, variable inter-individual responses exist and are likely to be influenced by the muscle fiber composition of each individual. Accordingly, information concerning the individual variability in muscle fiber composition could assist coaches and practitioners when designing individualised training programmes tailored toward specific physiological adaptations [6].

The vastus lateralis (VL) muscle is key contributor to athletic movements such as running and jumping [7]. However, the proportion of fiber types in the VL varies considerably, ranging between...
individuals for known genetic variants may aid the estimation of muscle fiber composition. Specific genes associated with muscle fiber type include \textit{ACE}, \textit{ACTN3}, \textit{AGTR2}, \textit{CBLN2}, \textit{CPNE5}, \textit{HIF1A}, \textit{FTO}, \textit{PPARA}, \textit{SPEG}, \textit{TGFA}, and \textit{VEGFR2} [21–33], with additional variants likely to exist. However, genomic research requires specialist knowledge and resources, further demonstrating the potential value of simple and cost-effective methods to indirectly estimate muscle fiber composition.

Inter-individual differences are evident in the number of completed repetitions at different percentages of 1 repetition maximum (1RM), with heterogeneity in muscle fiber composition suggested as an underlying mechanism [34]. Accordingly, the number of repetitions achieved at specific percentages of 1RM has been proposed as a practical approach to estimate muscle fiber composition [35]. However, despite the association of exertion at specific percentages of 1RM with the variability in repetitions performed [36], there are no published studies reporting significant correlations between direct estimates of muscle fiber composition and multiple repetition testing. In one study by Terzis et al. [37], leg press machine testing was used to determine the association of 70% and 85% 1RM repetition tests with muscle fibre composition, with participants possessing greater proportions of slow-twitch muscle fibres completing more repetitions. However, this result did not reach statistical significance, potentially due to a limited sample size (\(n = 12\)). With access to a leg press machine not always possible, back squat exercise using an Olympic barbell offers a viable alternative for exercise testing. Furthermore, there is also a need to study participants of both genders and to do so with a sample size greater than previous investigations. Therefore, the aim of this study was to determine the interrelationship between muscle fiber composition of the vastus lateralis of 30 participants

\begin{table}[h]
\centering
\caption{Characteristics and exercise testing results of study participants}
\begin{tabular}{lccr}
\hline
Characteristics & & Female (\(n = 10\)) & Male (\(n = 20\)) & \\
& & Mean ± SD & Mean ± SD & \\
\hline
Age, years & & 26.0 ± 7.3 & 32.2 ± 7.6 & 0.024 \\
Training experience, years & & 10.4 ± 7.0 & 11.8 ± 7.8 & 0.725 \\
Height, cm & & 169.0 ± 5.2 & 179.4 ± 5.8 & 0.0003 \\
Weight, kg & & 57.3 ± 6.2 & 80.1 ± 13.8 & < 0.0001 \\
BMI, kg/m\(^2\) & & 20.0 ± 1.2 & 24.9 ± 4.3 & 0.0005 \\
Proportion of fast-twitch MF, % & & 48.4 ± 10.9 & 52.2 ± 15.3 & 0.619 \\
Proportion of slow-twitch MF, % & & 56.3 ± 9.8 & 51.1 ± 15.4 & 0.397 \\
CSA of fast-twitch MF, \(\mu m^2\) & & 4173 ± 1488 & 6625 ± 2530 & 0.004 \\
CSA of slow-twitch MF, \(\mu m^2\) & & 4662 ± 1013 & 5333 ± 1743 & 0.176 \\
1RM squat (kg) & & 70.5 ± 31.3 & 155.2 ± 62.7 & 0.0005 \\
Completed repetitions at 80% 1RM & & 9.8 ± 2.7 & 10.3 ± 2.8 & 0.659 \\
\hline
\end{tabular}
\end{table}
Prediction of muscle fiber composition

(10 females and 20 males) and the total number of consecutive repetitions achieved at 80% of 1RM using back squat exercise. It was hypothesised that the number of repetitions completed would be inversely correlated with the proportion of fast-twitch muscle fibers and would be independent of gender.

MATERIALS AND METHODS

Subjects
Thirty recreationally active participants (10 females, age 26.0 ± 7.3; 20 males; age 32.2 ± 7.6) participated in the study. Participant characteristics are shown in Table 1. Participants’ training parameters were assessed using a standardised questionnaire, with participants classified according to training frequency as moderately active (3–4 training sessions per week; n = 11), highly active (5–7 training sessions per week; n = 11) and extremely active (1–2 training sessions per day; n = 8). Participants’ training backgrounds were classified as either resistance type (3 females, 10 males) or mixed type (aerobic + resistance; 7 females, 10 males), with training experience expressed as the total number training years. The procedures adopted in this study were conducted ethically according to the Declaration of Helsinki for research involving human subjects. Ethical approval was obtained from the Ethics Committee of the Physiological Section of the Russian National Committee for Biological Ethics in Russia and the Ethics Committee of the Federal Research and Clinical Center of Physical-chemical Medicine of the Federal Medical and Biological Agency of Russia. Written informed consent was obtained from all participants prior to participation.

Procedures

Back squat testing
All participants were familiar with back squat exercise with a minimum of two years experience. Participants performed a 1RM protocol to determine the maximal load they could lift for the back squat with correct technique using a standard 20 kg Olympic barbell. Briefly, participants performed a warm-up with a self-selected load that allowed them to complete a minimum of 8 repetitions. For each 1RM attempt, participants squatted (descending and ascending for 2 s and 1 s, respectively) with the bar placed across the posterior deltoids and until the tops of their thighs were parallel to the ground [38]. One repetition maximum was determined according to guidelines published by the National Strength and Conditioning Association [38]. After successfully achieving their 1RM load, participants rested passively for 15 minutes. After resting, participants were instructed to perform as many consecutive repetitions at 80% of their individualised 1RM load in one continuous attempt, adhering to the same criteria for descent, ascent and bar positioning as during 1RM

FIG. 1. Microphotographs of the labelled muscle sections.

Fast-twitch muscle fibers

Slow-twitch muscle fibers
attempts. All attempts were vocally encouraged, directed and super-
vised by the test administrator who was qualified in exercise prescrip-
tion. A load of 80% 1RM was selected because this load is recom-
mented for increasing muscle strength and achieving muscle hyper-
trophy [39], meaning this load is commonly prescribed by prac-
tioners working with the athletes and general population, and
because 80% 1RM was originally proposed as the most appropriate
load to indirectly estimate muscle fiber composition [35].

Elliott C.R. Hall et al.

Evaluation of muscle fiber composition and cross-sectional area
Percutaneous muscle biopsies were collected from the vastus later-
als of the left leg using the modified Bergström needle procedure
with aspiration under local anesthesia with 2% lidocaine solution.
Samples were immediately frozen in liquid nitrogen and stored at
-80°C. For analysis, serial cross-sections (7 μm) were obtained from
frozen samples using an ultratom (Leica Microsystems, Germany).
Sections were thaw-mounted on polysine glass slides, maintained
at room temperature (RT) for 15 min and incubated in PBS (3 × 5 min).
The sections were then incubated at RT in primary antibodies against
slow or fast isoforms of the myosin heavy chains (M8421, 1:5000;
M4276; 1:600, respectively; Sigma-Aldrich, USA) for 1 h and in-
cubated in PBS (3 × 5 min). Next, the sections were incubated at
RT in secondary antibodies conjugated with FITC (F0257; 1:100;
Sigma-Aldrich) for 1 h. The antibodies were removed and the sections
washed in PBS (3 × 5 min), placed in mounting media and covered
with a cover slip. Images were captured by fluorescent microscope
(Eclipse Ti-U, Nikon, Japan). All analyzed images contained 318 ± 23 fi-
bers (Fig. 1). The ratio of the number of stained fibers to the total
fiber number was calculated. Fibers stained in serial sections with
antibodies against slow and fast isoforms were considered hybrid
fibers. The cross-sectional area (CSA) of fast- and slow-twitch mus-
cle fibers was evaluated using ImageJ software (NIH, USA).

Statistical analyses
Statistical analyses were conducted using GraphPad InStat (Graph-
Pad Software, Inc., USA) software. Differences in traits between
different groups were analysed using Mann-Whitney test. Relation-
ships between participant characteristics, exercise testing perfor-
ance and muscle fiber measurements was tested using Spearman’s
(non-parametric) correlation. Multiple regression analysis was used
to detect independent associations between the number of repetitions
achieved at 80% of 1RM and different characteristics. All data are
presented as mean (SD). P values < 0.05 were considered statisti-
cally significant.

RESULTS
Participants exercise performance during 1RM and 80% 1RM test-
ing, as well as muscle fiber characteristics are presented separately
for females and males in Table 1. The number of repetitions achieved
at 80% of 1RM ranged from 5 to 15 and was independent of sex,
age, 1RM, training frequency, type and experience, BMI and CSA of
muscle fibers (all P > 0.05). The percentage of fast-twitch muscle
fibers was inversely correlated with the number of repetitions com-
pleted (r = −0.38, P = 0.039, Fig. 2). Participants who completed
5 to 8 repetitions (n = 10; four females and six males) had signifi-
cantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%,
P = 0.013) than participants who completed 11 to 15 repetitions
(n = 11; four females and seven males). The remaining participants
completed 9 or 10 repetitions (n = 9; two females and seven males)
and on average had equal proportion of fast (51.6 ± 17.5%) and
slow-twitch (50.8 ± 16.9%) muscle fibers.

DISCUSSION
The aim of the present study was to determine whether muscle fiber
composition of the VL is associated with the number of consecutive
back squat repetitions completed at 80% 1RM. The main finding
was a moderate inverse correlation between the percentage of fast-
twitch muscle fibers and the number of repetitions completed, which
was unrelated to sex, age, 1RM, training frequency, training type,
training age, BMI or fast-twitch muscle fiber CSA. This study is the
first to demonstrate concordance between the use of an 80% 1RM
load during back squat exercise and the muscle fiber composition
of VL biopsies, signifying the potential of this approach to indirectly
estimate VL muscle fiber composition.

In the present study, participants achieving 5 to 8 repetitions had a
higher percentage of fast-twitch fibers than those achieving 11 to
15 repetitions (57.5 vs 44.3%). Those who completed 9 to 10 rep-
etitions exhibited an equal proportion of each fiber type. Our hypo-
thesis was centred on the theory that loads of 80% 1RM load could
be used to estimate the muscle fiber composition of untrained

FIG. 2. Relationship between muscle fiber composition and the
number of completed repetitions at 80% 1RM. Shaded areas
represent 95% confidence intervals.
Prediction of muscle fiber composition

individuals, which had not been previously tested using back squat exercise. It was suggested that participants completing more than 12 repetitions would possess more than 50% slow-twitch fibers, individuals completing fewer than 7 repetitions would possess more than 50% fast-twitch fibers, and that those completing between 7 and 12 repetitions would exhibit an equal proportion of each fiber type [35]. To our knowledge, the present study is the first to find a significant interrelationship between muscle fiber composition of the VL and the variability in the number of back squat repetitions completed at 80% 1RM.

Our results are supported by previous literature where participants estimated to possess more fast-twitch muscle fibers completed fewer repetitions at an individualised load than those estimated to possess more slow-twitch fibers [36]. Comparison with this study is limited by the recruitment of only female participants, the investigation of a 70% 1RM load, and the fact that testing was performed on an isokinetic dynamometer. However, participants in the present study completed a similar range of repetitions (5 to 15) to the previous study (7 to 15), with a slightly lower mean number of repetitions, which may reflect the current participants lifting a relatively greater load. Whilst the present study investigated this relationship using conventional resistance exercise and muscle biopsies, the previous study associated isokinetic dynamometry measures with an indirect estimate of muscle fiber composition derived from a regression equation [40]. The equation described incorporates relative torque after 55 contractions of a fatigue test with power output at an angular velocity of 280°s⁻¹ normalised to fat-free mass of the thigh. Together, these variables explained 51.8% of the variance in the percentage of VL fast-twitch fibers. Whilst this association of skeletal muscle phenotypes with muscle fiber composition is of interest, the practical use of this equation is limited by the requirement to access an isokinetic dynamometer and to accurately quantify fat-free-mass. In contrast, the present study demonstrates the relationship between directly measured VL fiber composition and a universally recognised resistance exercise, with individualised loads derived using a reliable assessment of 1RM [41]. Whilst further studies in larger cohorts are required to support our findings, the present study highlights the potential of this approach as an accessible and cost-effective alternative for estimating muscle fiber composition.

No relationship was observed between participants’ training background and muscle fiber composition in the present study. Previously, endurance athletes completed more repetitions of leg press exercise at 70% and 80% 1RM compared to strength athletes, with no difference at 90% [42], whilst non-athletes accustomed to endurance training achieved more repetitions at 80% 1RM of half-squat exercise than those accustomed to strength training [43]. These results are of importance because endurance trained individuals typically possess a greater percentage of slow-twitch fibers [3] demonstrating increased lactate buffering capacity [44], fiber capillarisation [45] and mitochondrial content [46], i.e. the muscles of these individuals have greater oxidative capacity and fatigue resistance than their strength trained counterparts [11]. Slow-twitch muscle fibers are suited to repetitive and submaximal contractile activity, which might explain why participants with a greater proportion of slow-twitch fibers completed a greater number of repetitions at 80% 1RM in the present study. It is possible that discrepancies between this and previous studies reflect the exercises studied, or the different athletic backgrounds of participants. Given that the number of repetitions completed at 80% of 1RM was related to fiber composition but was independent of age, 1RM, training frequency, training type, training experience, BMI and fast-twitch muscle fiber CSA, it is plausible to suggest that this trait is partly heritable, with further investigation required to test this hypothesis.

Direct determination of muscle fiber composition is invasive and expensive, and therefore unfavourable to field settings and the general population. Many indirect methods require specialist resources and have their own limitations. For example, TMG requires a highly trained operator to minimise measurement error [47], the detection of carnosine content by MRS is heavily influenced by dietary factors [48], and crosstalk from neighbouring muscles during MMG affects the myographic signal from the investigated region [49]. Accordingly, there is a need for an indirect and accessible method to estimate fiber composition that can be executed by exercise professionals using standard equipment. The present study is the first to experimentally validate a previous hypothesis [35] using back squat exercise and to demonstrate that the number of repetitions achieved at 80% 1RM is associated with muscle fiber composition. Our findings highlight the potential to develop a non-invasive and cost-effective approach for estimating muscle fiber composition which, following further validation, could aid the design of training programmes for improving the strength or endurance capacity of skeletal muscle. With fast-twitch fibers preferentially damaged following fast and forceful contractions [50], knowledge of fiber composition may also assist recovery from strenuous training. Accordingly, this field test could help exercise professionals identify individuals who may be more susceptible to exercise induced muscle damage, and who may require extended rest or additional recovery strategies following strenuous training.

At present, our findings are restricted to males and females aged 18 to 40, with replication required before this test can be applicable to other ages, such as youths and the elderly. Furthermore, because the reliability of maximal back squat testing increases after 6–12 months of resistance training [51], the use of this test may be inappropriate for less experienced individuals.

The advantages of the present study include the direct determination of VL muscle fiber composition, a common and reliable method for 1RM testing [41], and the potential practical application of these findings for individuals without access to the facilities and expertise required to directly determine fiber composition. However, this study also has limitations. Firstly, we recognise that
a greater sample size could improve the statistical power of the results. Secondly, our findings are limited to the muscle fiber composition of the VL, and due to the heterogeneity of fiber composition within skeletal muscles of the human body, the validity of this method is limited to the VL. We also recognise that information regarding participants’ endurance exercise capacity and genetic profile was not included in the present study, and that including such data may improve the prediction of muscle fiber composition in future studies, in addition to investigating a series of external loads. Finally, we recognise that validation of this approach in untrained populations and in elite athletes is required for this approach to be used with sedentary individuals and within high-level sport, for example in weightlifting and powerlifting where the back squat is a fundamental exercise.

CONCLUSIONS

The present study is the first to demonstrate the interrelationship between back squat performance at 80% 1RM and muscle fiber composition. We suggest that completing 8 or fewer repetitions at 80% 1RM is indicative that participants possess more than 50% fast-twitch fibers in their VL, that completing 11 or more repetitions at 80% 1RM is indicative that participants possess more than 50% slow-twitch fibers in their VL, and that completing 9 or 10 repetitions is indicative of participants possessing an equal distribution of each fiber type. Though further validation is required, the present study demonstrates the association of muscle fiber type with back squat performance and highlights potential to develop a non-invasive and cost-effective approach to estimate muscle fiber composition.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

25. Ahmetov II, Hakimullina AM, Popov DV, Lyubaeva EV, Missina SS, Vinogradova OL, Williams AG, Rogozkin VA. Association of the VEGFR2 gene His472Gln polymorphism with...
Prediction of muscle fiber composition

40. Prediction of muscle fiber composition