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INTRODUCTION
Regulation of body temperature during exercise is achieved by both 
thermal and nonthermal factors. Increased body temperature triggers 
cutaneous vasodilation and sweating, but also causes hyperventila-
tion which reduces arterial carbon dioxide partial pressure (PaCO2) 
and cerebral blood flow [1]. Katagiri et al. found that metabolic al-
kalosis produced by sodium bicarbonate ingestion reduced hyper-
ventilation and attenuated hypocapnia-related cerebral hypoperfusion 
during exercise [2].

The nonthermal factors include stimulation of the thermoregula-
tory neurons in the hypothalamus by impulses from motor centres 
of the cerebral cortex (central command) and stimulation of these 
neurons by afferent pathways originating in mechanoreceptors and 
metabolic receptors located in muscles. It is mediated by the super-
family of transient receptor potential (TRP) ion channels, which func-
tion as cellular sensors and are activated by several stimuli [3–5]. 
Among them, the transient receptor potential vanilloid (TRPV) sub-
family members, namely TRPV1 and TRPV4, are gated by certain 
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lipophilic molecules, extracellular protons (pH) and stimuli such as 
heat or osmotic pressure changes [6–8]. Heat and metabolic acido-
sis, the main physiological indicators modified by muscle contrac-
tion during exercise, activate TRPV1 in humans [4, 9]. At lower pH 
values (< 6.0) TRPV1 is directly activated by protons, whilst at the 
range of pH 6–9 protons modulate TRPV1 channels by sensitizing 
them to other stimuli [9, 10].

The firing rate of hypothalamic warm sensitive neurons in rodents 
is reported to be inhibited by metabolic acidosis [11, 12]. It was 
suggested that this effect may explain the impairment of the ther-
moregulatory mechanisms in hypercapnic respiratory acidosis, as 
well as in thermal stress (i.e. exertional heat stroke), which is usu-
ally accompanied by metabolic acidosis [13]. It may be speculated 
that metabolic acidosis induced by intensive exercise also contrib-
utes to the elevation of body temperature. This may partly explain 
the beneficial effect of training on thermoregulation and the relation-
ship between internal body temperature and exercise loads expressed 
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RayTemp3 (ETI, UK). Measurements of Tsk were made on the fore-
head, arm, trunk and thigh. Local sweating rate was assessed on the 
basis of relative humidity of nitrogen flowing at the rate of 2.0 L/min 
through the 20.5 cm2 capsule fixed close to the centre of the mid pos-
terior chest, as previously described [19]. During exercise the sweat-
ing rate increases significantly in all regions of the body, with the ex-
ception of the feet and ankles, and the central part of the posterior 
chest and lower back produce the highest sweat rates over the whole 
body during exercise [20]. Before NaHCO3 or placebo ingestion and 
then immediately before exercise and at the end of each exercise load 
venous blood samples were taken through a venous catheter for de-
termination of concentration of hydrogen ions, base excess, HCO3

−, 
haemoglobin and haematocrit. The relative humidity of ambient air 
and nitrogen flowing through the capsule were measured with the Ro-
tronic AG Hygrometer-Control 3 (Switzerland) computerized system 
with a 1% accuracy. Blood analyses were performed with a Cobas 
b 121 (Roche, Germany) analyser.

Calculations
Mean Tsk was calculated according to the following equation:

Mean Tsk  = 0.6 Tsk trunk + 0.1 Tsk arm + 0.2 Tsk thigh 
+ 0.1Tsk forehead;

Changes in plasma volume (ΔPV) were estimated from changes 
in blood haematocrit (Htc) and haemoglobin concentration [Hb] us-
ing the following formula [21]:

%ΔPV  = 100 [(Hb0/Hbt) (1-Htct)/(1-Hct0)] – 100%

Where subscripts t and 0 denote measurements at time t and at 
baseline, respectively. The venous Hct values are multiplied by 0.8736 
to obtain values close to those of mean value in the whole vascular 
system.

The threshold of sweating was calculated using the log transfor-
mation method [22]. Total sweat loss during exercise was the differ-
ence in body mass measured before and immediately after exercise.

Statistics
Data are presented as mean ± SE, unless otherwise stated. The ef-
fects of treatment on thermoregulatory responses to exercise were 
tested by two-way ANOVA for repeated measures. Subsequent post-
hoc pairwise comparisons were performed using the Student t-test. 
The null hypothesis was rejected when p < 0.05. For calculations 
Statistica version 6 (StatSoft Inc, Tulsa, OK, USA) was used.

RESULTS 
In both trials duration of exercise ranged from 24 to 30 min and the 
maximal work loads ranged from 240 to 300 W. Maximal work load 
achieved by subjects during exercise after placebo and NaHCO3 was 
almost identical (260.6 ± 6 and 264.8 ± 8 W, respectively, p > 0.05), 
as was maximal heart rate at the end of exercise (186 ± 2 and 
184 ± 2 beats/min, p > 0.05).

as percentage of maximal oxygen uptake [14]. It seems that the com-
bination of TRPV channels’ polymodal nature and stimulation sen-
sitivity makes them ideal candidates for stress response proteins that 
merge signalling pathways and adjust intracellular Ca2+ levels as 
a response to induced stress, such as exercise-induced metabolic 
acidosis [15].

Therefore, the aim of the present study was to test the hypothe-
sis that diminished metabolic acidosis may favourably affect ther-
moregulation during exhaustive exercise in men. For this purpose 
body temperature and sweating rate during exercise with increasing 
intensity were measured in healthy young men after sodium bicar-
bonate ingestion intended to diminish metabolic acidosis.

MATERIALS AND METHODS 
Subjects
Fifteen healthy male students (age: 23.4 ± 0.6 years, body mass: 
85.4 ± 2.1 kg, height: 184 ± 1.4 cm, VO2peak 51 ± 3 mL/kg/min) 
participated in the study after giving informed consent. They were 
physically active but did not take part in any regular sports activity. 
None of them reported lactose, milk or other dairy product intolerance. 
The subjects were asked to hydrate properly and not to consume al-
cohol or perform vigorous exercise in the 24 h before testing and to 
consume no food or beverages (other than water) 2 h before testing. 
The study protocol was approved by the Ethical Committee of the 
Medical University in Warsaw (KB/175/2008).

Study protocol
A double-blind, placebo-controlled design was employed. The subjects 
performed an incremental exercise test on two occasions separated 
by a one-week interval. During the bicarbonate trial exercise was 
preceded by ingestion of NaHCO3 at a dose 250 mg/kg of body mass, 
whilst during the placebo trial lactose was used. The dose was 
chosen in order to avoid the side effects of sodium bicarbonate inges-
tion, which are dose-dependent, whereas it provided the recom-
mended 5–6 mmol/L increase in bicarbonates’ blood concentra-
tion [16, 17]. Both substances were given wrapped in a wafer and 
ingested during 20–30 min. At that time the subjects in both trials 
drank 0.9–1.0 L of noncarbonated mineral water. The order of the 
trials was randomized. The NaHCO3 ingestion procedure was similar 
to that described in previous papers [18].

Exercise started 90 min after bicarbonate or placebo ingestion. 
Room temperature was kept at 23–24°C, humidity at 50–60%, and 
the subjects were dressed in shorts and shoes only. Exercise com-
menced at 30 W and thereafter intensity was increased by 30 W ev-
ery 3 min until volitional exhaustion. Body mass was measured to the 
nearest 10 g after voiding before exercise and immediately after its 
cessation. During exercise heart rate (HR), tympanic temperature 
(Ttymp) and skin temperature (Tsk) were recorded every 3 min. Tym-
panic temperature was measured using a thermocouple placed di-
rectly on the tympanic membrane (Ellab, Copenhagen, Denmark) and 
Tsk with an infra-red non-contact thermometer with laser alignment 
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FIG. 1. Acid-base balance parameters during exercise in NaHCO3 and 
placebo trials. MAX denotes mean values attained at the maximal 
exercise load; asterisks indicate a  significant effect of NaHCO3 
ingestion evaluated by two-way ANOVA for repeated measures: 
* p < 0.05; ** p < 0.01; *** p < 0.001.

FIG. 2. Tympanic (Ttymp) and mean skin (Tsk) temperatures 
during exercise in NaHCO3 and placebo trials. MAX denotes mean 
values attained at the maximal exercise load.

FIG. 3. Local sweating rate measured on the mid posterior 
chestrelated to exercise load and tympanic temperature (Ttymp). 
MAX denotes mean values attained at the maximal exercise load.
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Blood acid-base status
As shown in Fig. 1, immediately before exercise blood concentration 
of H+ was lower (by 6.1 ± 1.0 nmol/L, p < 0.001) and blood HCO3

− 
and base excess were higher (by 5.1 ± 0.3  mmol/L and 
5.1 ± 0.4 mmol/L, respectively, both p < 0.001) in the bicarbonate 
than in the placebo trial. During exercise the concentration of H+ 
increased in both placebo and bicarbonate trials by 13.0 ± 2.1 nmol/L 
(p < 0.001) and 12.0 ± 2.2 nmol/L (p < 0.001), respectively, with 
no difference in the exertional increases between trials (p > 0.05). 
It corresponded to the decrease in blood pH from 7.34 ± 0.01 to 
7.23 ± 0.01 and from 7.41 ± 0.01 to 7.30 ± 0.02 after placebo 
and bicarbonate ingestion, respectively (both p < 0.001), with no 
difference in deltas between trials (p > 0.05).

The repeated-measures ANOVA revealed that NaHCO3 ingestion 
had a significant effect on H+ concentration in blood (p < 0.001), 
although there was no significant interaction between effects of treat-
ment and exercise. There was also a significant effect of NaHCO3 on 
blood HCO3

− (p < 0.001) and base excess (p < 0.001) without 
significant interactions of the effects of treatment and exercise.

Thermoregulation
There were no significant differences between trials in the resting 
tympanic temperature and the rate of its increase during exercise 
(Fig. 2). The mean exercise-induced increases in Ttymp were 
1.1 ± 0.1°C and 1.2 ± 0.1°C in the placebo and bicarbonate trials, 
respectively, both p < 0.05. The initial values and the time course 
of mean skin temperature as well as local sweating rate measured 
on the centre of the mid posterior chest were also similar in both 
trials (Fig. 3). The threshold of sweating rate increase occurred at 
exercise loads of 96 ± 10 W and 100 ± 10 W (p > 0.05) and was 
associated with Ttymp of 37.25 ± 0.06°C and 37.20 ± 0.08°C 
(p > 0.05) in placebo and NaHCO3 trials, respectively. There was 
no effect of bicarbonate ingestion on the slope of sweating rate in-
crease in relation to Ttymp (p > 0.05). The total sweat loss during 
exercise calculated from changes in body mass was 0.440 ± 0.080 kg 
after placebo ingestion and 0.410 ± 0.050 kg (p > 0.05) after bi-
carbonate treatment.

Plasma volume
After bicarbonate ingestion, immediately before exercise plasma vol-
ume was increased by 2.9 ± 0.9% (p < 0.05), while after placebo 
it remained practically unchanged (ΔPV  = 0.12 ± 1.0%, p > 0.05). 
During exercise, plasma volume decreased to a similar extent in both 
trials: by 12.6 ± 1.4% and 11.5 ± 1.6% after bicarbonate and pla-
cebo ingestion, respectively (both p < 0.05), with no difference 
between trials (p > 0.05).

DISCUSSION 
The present study failed to demonstrate any significant effect of di-
minished metabolic acidosis in blood induced by sodium bicarbonate 
ingestion on internal body temperature and sweating rate in men 

during maximal exercise, as well as on sweating threshold in relation 
to the tympanic temperature. We were not able, therefore, to confirm 
the hypothesis concerning the role of acid-base balance as a factor 
contributing to the regulation of body temperature during exercise in 
humans. However, this finding does not exclude the possibility that 
metabolic acidosis might adversely influence the heat dissipation 
mechanism during exercise and/or heat exposure.

Several questions should be considered to interpret the present 
results. It is not certain whether the hydrogen ion level in blood at-
tained during exercise is high enough to induce the inhibitory effect 
on hypothalamic warm sensitive neurons or whether metabolic aci-
dosis was maintained for a sufficiently long time to evoke this effect. 
Comparing metabolic acidosis which occurs during heat stroke with 
that during maximal exercise without prior alkalization, it appeared 
that the blood hydrogen ion concentrations were similar [23]. As-
suming that metabolic acidosis contributes to the inhibition of heat 
loss during heat stroke, it seems likely that the exercise-induced met-
abolic acidosis is sufficient to evoke similar effect [13]. However, it 
may be speculated that longer duration of metabolic acidosis than 
that during our exercise test is necessary to influence the thermoreg-
ulatory centres. The total duration of exercise, which was 24–30 min-
utes, was long enough to increase tympanic temperature by more 
than 1.0°C, but exertional uncompensated metabolic acidosis was 
present only during the last 6–9 minutes.

Moreover, hypothalamic warm sensitive neurons are partly pro-
tected by the blood-brain barrier (BBB), which attenuates the sever-
ity of the impact of hydrogen ions. The brain pH results mostly from 
PaCO2 and HCO3

− concentrations in the brain interstitial fluid. PaCO2 
is the most potent regulator of cerebral blood flow, whereas altera-
tions in arterial HCO3

− during acute respiratory acidosis/alkalosis 
contribute to cerebrovascular acid–base regulation [24, 25]. In both 
metabolic acidosis and alkalosis in humans changes of pH in cere-
brospinal fluid are much smaller than in blood [26].

Lactate transport across the BBB is mediated by the proton-linked 
monocarboxylate transporter MCT1 that transports one H+ for each 
lactate molecule and saturates near 2.5–3 mmol/L. During exercise 
or increased nervous activity, lactate production in the brain increas-
es and it should increase efflux of lactate across the BBB. If lactate 
concentration in blood is also increased, like during exercise, this 
may not be possible, or even influx can be observed [26]. The ex-
tent of brain pH decrease in the present study is hard to determine, 
but the duration of uncompensated exercise seems to be too short 
to affect the thermoregulatory neurons.

A similar conclusion was presented by Caldwell et al., who re-
ported unaltered trans-cerebral [HCO3

−] exchange during the meta-
bolic acidosis induced by the progressive cycling exercise to exhaus-
tion in humans [27].

However, there are some studies suggesting that BBB integrity 
might be impaired during exercise, as indicated by the presence 
of the protein S100β in blood, which is specific for the central ner-
vous system [28, 29]. The factors that may be responsible for 
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was not taken into consideration in these studies. Our study demon-
strated that before exercise plasma volume was increased by approx-
imately 3% after bicarbonate ingestion, indicating that the water pool 
from which sweat can be drawn was greater in this trial than in the 
placebo trial, but no differences between the trials in sweating rate or 
body temperature were found. It might be speculated that either the 
increase in plasma volume was too small to exert any significant ef-
fect on thermoregulation or that the improvement of thermoregula-
tion was prevented by an increase in the availability of sodium ions 
to the thermoregulatory centres. It should be mentioned, however, 
that some authors did not find any effect of hypervolaemia on sweat-
ing rate or body temperature during exercise [48].

It does not exclude the hypothesis that attenuated metabolic ac-
idosis may improve heat loss during exercise. The observations ob-
tained from cell cultures do not always simply extrapolate to whole 
organisms, and the total thermoregulatory effect is a complex result 
of several independent components.

CONCLUSIONS 
The present data showed that in men attenuation of metabolic aci-
dosis by bicarbonate ingestion did not influence thermoregulation 
during incremental exercise performed until volitional exhaustion, 
possibly due to too short duration of exertional uncompensated 
metabolic acidosis.

Limitations of the study
The experimental design tested a relatively short duration of exercise 
and mild thermal strain. It does not answer what would happen 
during prolonged exercise with greater thermal strain or during en-
vironmental heat stress.

The focus on male subjects only is obviously a limitation. The ma-
jority of physiological phenomena observed in male subjects are si-
multaneously true for females, whereas possible disturbances caused 
by the menstrual cycle are avoided.

In the case of application of bicarbonates, possible adverse events 
should be considered (especially gastrointestinal in chronic supple-
mentation), which limits the applicability of this intervention to help 
with heat stroke.

Acknowledgements
There has been no financial assistance with the project.

Conflict of interest declaration
The authors did not report any potential conflicts of interest.

transient dysfunction of the BBB during exercise include: devel-
opment of hyperthermia [30], increase in plasma concentration 
of adrenaline and acute hypertension [31], increased plasma lev-
el of proinflammatory cytokines [32], oxidative stress [33], and 
changes to the brain serotonin [34]. Interestingly, both TRPV1 
and TRPV4 channels are expressed in the subfornical organ area 
lacking the BBB, which is considered to be the systemic osmo-
sensing region [35, 36].

The transient receptor potential family ion channels, acting as 
molecular thermometers, are present in many tissues and are influ-
enced by multiple factors, including basic and acidic solutions. More-
over, some other channels, such as the TWIK-related K+ channel 
(TREK1, TREK2) and TWIK-related arachidonic acid stimulated K+ 
channel (TRAAK), are sensitive to both physical and biological stim-
uli (mechanical forces during pressure changes or cell swelling, lip-
ids, temperature and pH), so the effects of temperature on mem-
brane tension, thickness or curvature may influence channel 
gating [6, 37]. There is high expression of TREK1, TREK2 and TRAAK 
in the nervous system, especially in sensory neurons, where they 
modulate neuronal sensitivity in a highly temperature-dependent 
manner; channel activity increases with rising temperature [6]. In-
tracellular and extracellular pH differentially influences the channels: 
the TREK2 channel is activated by lower pH, whereas TREK1 and 
TRAAK are inhibited [37].

The time course of these actions and possible interactions during 
exercise in humans are hard to predict at the current stage of knowl-
edge, constituting an obvious direction for the future research.

Another reason why diminished metabolic acidosis does not mod-
ify the thermoregulatory responses to exercise is that the effect of 
metabolic acidosis occurring during incremental exercise is over-
whelmed by several other, nonthermal factors stimulating the hypo-
thalamic heat dissipation centre. Humoral factors, such as an in-
crease of plasma and cerebrospinal osmolality, elevation of sodium 
ions and a decrease in calcium ion concentrations adversely affect 
thermoregulation [6, 38–41].

The last question which should be discussed is the possible direct 
effect of sodium bicarbonate or placebo ingestion prior to exercise on 
thermoregulation due to the increases in extracellular fluid volume, 
which may improve thermoregulation [42] and elevation of sodium 
ion concentration, which in turn may exert an opposite effect [43, 44]. 
Previous studies demonstrated that hypervolaemia caused by sodi-
um loading using NaHCO3 or sodium citrate has a beneficial effect 
on endurance performance and thermoregulation [45–47]. The ben-
eficial effect of diminished metabolic acidosis on thermoregulation 
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