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INTRODUCTION
Sleep has been widely recognized as the most effective recovery 
strategy available to athletes [1, 2]. In the last decade, a growing 
body of evidence has proposed napping as a safe and non-invasive 
intervention to supplement night-time sleep and improve physical 
and cognitive performances [3–6]. In our previous research, we re-
ported a beneficial effect of napping on physical and cognitive per-
formances in athletes [7] as well as in older adults [8]. A 40 min 
daytime nap opportunity improved physical outcomes of elite bas-
ketball players and was deemed successful as a strategy to overcome 
the deterioration in shooting performance caused by the fatigue in-
duced during exhaustive gameplay situations [9]. In another study, 
we reported a beneficial effect of napping on technical and tactical 
performance, physiological responses, and perceived exertion during 
a real game situation among elite athletes [10]. In addition, napping 
was an effective strategy for reducing sleepiness, stress, fatigue, 
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anxiety, anger, and oral temperature [9, 10]. However, the mecha-
nisms underlying the beneficial effects of napping remain unclear. 
According to Gupta, “Siesta is still an enigma” [11].

Furthermore, it has been reported that sleep and the autonomic 
nervous system (ANS) influence each other in a bidirectional fash-
ion (for review see Trinder et al. [12]). Changes in the ANS modu-
late sleep onset as well as the transition between the different stag-
es during nocturnal sleep  [12,  13] but also during daytime 
naps [14, 15]. Importantly, it has been proposed that sleep has 
a beneficial regulatory influence over cardiovascular activity, a recip-
rocated influence that likely reflects a functional aspect of sleep [12]. 
A well-established method to non-invasively assess cardiac auto-
nomic activity is heart rate variability (HRV) analysis [14, 15]. The 
cardiovascular system is mostly controlled by autonomic regulation 
through the activity of sympathetic and parasympathetic pathways 
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informed about the study information, and written informed consent 
was obtained from each participant before the study. Athletes are 
classified as successful elite (eliteness’ mean score = 9.0 ± 1.2), 
based on Swann et al. [41]’ categories. Eight out of the twelve play-
ers have taken part in international tournaments and represented 
their country in international competitions. Seven of them have more 
than 8 years of experience at the highest level of competition. Play-
ers were part of the same team and they trained regularly 6–8 times 
per week and played 1–2 competitions per week since they signed 
a professional contract (i.e., 8 ± 5 years). They were asked to stay 
away from tobacco, alcoholic, or caffeinated beverages. None was 
habitual napper or presented an extreme morning or extreme evening 
type (Morningness–Eveningness Questionnaire’s mean score 
= 56 ± 3.1) [42]. The protocol of the present study was approved 
by the local Institutional Review Board (CPP SUD N° 0339/2021) 
and carried out according to the guidelines of the Helsinki Declaration 
for human experimentation. The sample size was a priori calculated 
using the G*power software [43], as strongly recommended [44], 
and based on an earlier study with a similar paradigm [45]. Statisti-
cal analysis indicated a minimum required sample size of twelve 
participants.

Procedure
To minimize the learning effects during the study, participants were 
familiarized with the experimenters, sleeping room, tests, and ques-
tionnaires during a familiarization session. In addition, to assess their 
maximal heart rate (HRmax), players carried out a Yo-Yo Intermittent 
Recovery test level-1; which is considered a valid basketball-specif-
ic test for the assessment of aerobic fitness [46]. The test consisted 
of 20-m shuttle runs performed at increasing velocities with 10-s 
active recovery between runs until exhaustion.

In experimental sessions, each participant completed randomly 
two test sessions, 72 hours apart. All sessions were performed after 
a reference night. Athletes had a standardized morning in the labo-
ratory. They subjectively rated their last night’s sleep, ate a standard-
ized breakfast (8:00 h) then stayed awake doing passive activities 
(e.g., watching television, reading). After eating an isocaloric lunch 
at 12:00 p.m., they were assigned to experience nap (NAP) and no-
nap (CON) conditions. HRV was analyzed in 5-min segments dur-
ing a quiet wake before and after each condition with controlled 
breathing in a supine position.

In NAP condition, participants entered the comfortably warm, 
fully dark, and quiet sleeping room at 12:50 h. After 10 min of ac-
climatization in bed, nap opportunity started at 13:00 h and last-
ed for 40 min. The visual analogue scale (VAS) was presented to 
participant following the nap opportunity to evaluate their subjec-
tive sleep quality. In the CON condition, participants spent the 
same amount of time seated in comfortable chairs watching 
television.

of the autonomic nervous system. Analysis of HRV permits insight 
into this control mechanism [16, 17].

Moreover, HRV represents a psychophysiological marker of men-
tal and physical well-being [18–20]. Increased HRV reflects a healthy 
ANS that can respond to changing environmental circumstanc-
es [19, 21]. By contrast, decreased HRV is a marker of autonomic 
inflexibility [22] and has been linked to a very large number of phys-
ical [23, 24] and psychological [25, 26] diseases. Furthermore, sev-
eral studies have shown that acute [27, 28] and chronic [29, 30] 
stresses lead to a decrease in HRV. In the area of sports, HRV has 
increasingly been used to examine training load and recovery state 
after training [31], to monitor changes in physical performance and 
individual adaptation to training [32], to assess ventilatory thresh-
olds [33], etc…

Fundamentally, HRV consists of measuring the inter-beat time in-
tervals between consecutive heartbeats and represents the variabil-
ity of intervals between consecutive R-peaks (RR) on the QRS com-
plex on the ECG [17]. HRV measures can be divided mainly into 
time domain measures, based on arithmetic calculations of RR in-
tervals; and frequency domain measures, based on spectral analy-
sis (see Malik et al. [34] for more information on methods of HRV 
analysis). Studies investigating the effect of daytime napping on HRV 
in healthy young individuals reported a reduction in cardiovascular 
output and a shift from sympathetic to parasympathetic (vagal) dom-
inance from wakefulness into sleep [14, 35, 36]. Importantly, these 
circadian- and sleep-dependent shifts in the ANS are critical to the 
maintenance of autonomic balance between parasympathetic and 
sympathetic branches and are beneficial for health and cogni-
tion [37, 38]. Moreover, Suppiah et al. [39] reported that nap did 
not elicit any performance or physiological benefits as monitored by 
HRV among adolescents. Another study aimed to explore the rela-
tionship between HRV and napping duration and their impact on 
handball performance [40]. Although no significant difference was 
reported between the two nap opportunities (i.e., 20 and 60 min) 
on HRV, a significant correlation was showed only with long nap be-
tween HRV parameters and handball performance.

Given the pressing need to understand the role of napping on 
physiological and psychological health and the lack of studies inves-
tigating the effect of daytime sleep on HRV in athlete populations, 
the present study aimed to assess cardiac autonomic activity — 
through HRV analysis — before and following an afternoon nap in 
elite basketball players. We hypothesize that diurnal napping would 
(i) change the HRV profile of athletes following nap in order to pre-
pare them for physical stress, and (ii) impact positively perceived 
variables including stress, sleepiness and fatigue.

MATERIALS AND METHODS 
Participants
Twelve high-level professional male basketball players (26 ± 5 years; 
193 ± 7 cm; 87 ± 11 kg; 13 ± 2 % body fat and 17 ± 6 years ex-
pertise) volunteered to participate in the study. They were fully 
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Measured Variables
Actigraphy and sleep diaries
Participants wore GT3X activity monitors (Actigraph, Pensacola, FL, 
USA) on their non-dominant arms the night before each experimen-
tal day (from 18:00 h) and took them off after the napping opportu-
nities (at 15:00 h). Sleep parameters (TST, time in bed (TIB), sleep 
efficiency (SE), sleep onset latency (SOL), and wake after sleep onset 
(WASO)) were derived and analyzed using Actilife 6 (version 6.13.7) 
software. Actigraphy is a non-invasive device and was evaluated as 
a valid tool to assess sleep and wake behavioursbehaviours compared 
to the gold standard polysomnography [47].

Subjective sleep quality
The subjective sleep quality was evaluated using the visual ana-
logueanalogue scale (VAS) [48]. The VAS is a 10-cm scale that shows 
“Very bad sleep quality” (left side) and “Very good sleep quality” 
(right side).

Heart rate (HR)
Heart rate was assessed using HR monitor chest belts (Team System 
2, Polar, Kempele, Finland) provided with internal memory and re-
corded at 1-second intervals. The HR beats were exported and ana-
lyzed using Excel software (Microsoft Corporation, Redmond, WA, 
USA). HR data were expressed as mean (HRmean), peak (HRpeak), 
and percentage of each subject’s individual HRmax (%HRmax).

Heart rate variability (HRV) analysis
R-wave peaks were detected automatically by Kubios HRV Analysis 
Software 2.2 (Matlab, Kuopio, Finland), visually examined, and ed-
ited for artefacts [49]. The same software was employed to perform 
the HRV analysis of the R-wave series according to the Task Force 
of the European Society of Cardiology and the North American So-
ciety of Pacing and Electrophysiology guidelines [34]. Kubios HRV 
is a cutting-edge and simple-to-use freeware for coronary heart rate 
variability (HRV) analysis. It comprises an improvised QRS detection 
algorithm and tools for noise correction, trend removal, and analysis 
sample selection [50]. The two major components of the frequency 
domain, i.e., high frequency (HF, 0.15–0.4 Hz) and low frequency 
(LF, 0.04–0.15 Hz) bands, and for the time domain, the standard 
deviation of the NN interval (SDNN), an index of global variability, 
were analyzed. Moreover, HRV triangular index (HRV index) and 
stress index (SI) were also calculated. HRV index is a geometric 
measure that calculates the integral of the density of the RR interval 
histogram divided by its height and reflects the global HRV. A 5-min 
epoch is conventionally used to study the above-mentioned vari-
ables [51]. Normalized HRV values (LF nu, HF nu) were calculated 
from the raw values of either short-term frequency band (LF or HF) 
divided by the total spectral power (typically LF + HF), with the 
value of this expressed as a decimal [52]. Unlike raw power, normal-
ized units allow direct comparison between frequency and autoregres-
sive methods for calculating spectral power, between spectral power 

expressed as ms2 or bpm2, and between different algorithms for 
calculation.

Hooper scale
This is a validated psychological self-reporting scale of sleep quality, 
fatigue, stress, and muscle pain. Parameters were measured sepa-
rately using a 7-point subjective rating scale ranging from 1 “very, 
very low” to 7 “very, very high”. The total score indicates the athlete’s 
form state or readiness to train [53].

Epworth Sleepiness Scale (ESS)
Daytime sleepiness was assessed using a scale of eight elements 
(i.e., ESS). Participants assign a score of “0” to “3” for each situation 
where there is “no chance” for “0”, a low chance for “1”, “a moder-
ate chance” for “2” and “a high chance” for “3” to fall asleep. The 
score obtained from the scale ranges from “0” to “24” [54].

Statistical analysis
Analyses were performed using Excel (Microsoft Office, v.2016) and 
SPSS Statistics (IBM, v.23) software. All data were expressed as 
means ± standard error of the mean (SEM). The Shapiro-Wilk W-test 
revealed that the normalized units of LF (LF nu) and HF (HF nu), 
SDNN, HRV index, ESS and Hooper’s fatigue and total score were 
normally distributed. Analysis was performed using a two-way re-
peated measures ANOVA [2 conditions (CON and NAP) x2 times 
(pre and post)] for HRmean, HRpeak, LF nu, HF nu, SDNN, HRV index, 
ESS, Hooper’s fatigue, and the total score. ANOVA effect sizes were 
calculated as partial eta squared (np2). When significant main or 
interaction effects were observed, pairwise comparisons were per-
formed using the Bonferroni post-hoc test. Sleep parameters, SI and 
Hooper’s sleep, stress, and muscle soreness scores being not nor-
mally distributed, were analyzed using Friedman nonparametric 
analysis of variance, and pairwise comparisons were conducted us-
ing the Wilcoxon test.

RESULTS 
Objective and subjective sleep Parameters
Statistical analysis showed no significant difference during the night 
before experimental days in objective (i.e., TIB, TST, SE and WASO) 
and subjective (i.e., VAS) sleep parameters between the CON and 
NAP conditions.

Heart rate
There was no significant effect of condition (F(1,11) = 2.7, p > 0.05, 
ɳp2 = 0.19) or time (F(1,11) = 0.002, p > 0.05, ɳp2 = 0.005) on 
HRmean. Two-way repeated measures ANOVA showed a significant 
effect of time (F(1,11) = 6.1, p = 0.03, ɳp2 = 0.35) on HRpeak. 
Bonferroni post-hoc test revealed that HRpeak was significantly high-
er in post-nap wakefulness compared to pre-nap wakefulness 
(p = 0.004) (Figure 1).
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FIG. 1. Mean values (± SEM) for HRmean and HRpeak before and 
after NAP and CON conditions. *: significant difference (p < 0.05). 
Abbreviations: CON, control condition; NAP, nap condition; Pre, 
before nap/rest period; Post, after nap/rest period.

FIG. 2. Mean values (± SEM) for (a) LF nu, and (b) HF nu before and after nap/rest. ** p < 0.01 significant difference compared 
to pre nap/rest. Abbreviations: CON, control condition; HF, high frequency; LF, low frequency; NAP, nap condition; nu, normalized 
unit; Pre, before nap/rest period; Post, after nap/rest period.

HRV analysis
Frequency domain
Statistical results revealed a significant interaction (condition × time) 
(F(1,11) = 9.42, p = 0.01, ɳp2 = 0.46) on the normalized unit of 
LF (LF nu). There was no significant effect of time (F(1,11) = 3.22, 
p > 0.05, ɳp2 = 0.22) or condition (F(1,11) = 0.09, p > 0.05, ɳp2 
= 0.008). Bonferroni post-hoc showed that LF nu was significantly 
higher after nap compared to before nap (P = 0.005) (Figure 2.a). 
Similarly, while no significant effect of time (F(1,11) = 3.92, p > 0.05, 
ɳp2 = 0.26) and condition (F(1,11) = 0.01, p > 0.05, ɳp2 = 0.001) 
was observed on the normalized unit of HF (HF nu), there was 
a significant interaction (condition × time) (F(1,11) = 4.91, p = 0.04, 
ɳp2 = 0.30). HF nu was significantly lower after nap compared to 
before nap (p = 0.005) (Figure 2.b).

Time-domain
Concerning SDNN, repeated measure ANOVA tests revealed a sig-
nificant effect of time (F(1,11) = 5.03, p = 0.04, ɳp2 = 0.31). There 
was no significant effect of condition (F(1,11) = 0.46, p > 0.05, ɳp2 
= 0.04) or interaction (F(1,11) = 1.04, p > 0.05, ɳp2 = 0.08). 
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FIG. 3. Mean values (± SEM) for (a) SDNN, and (b) HRV index before and after nap/rest. * p < 0.05 significant difference compared 
to pre nap/rest. Abbreviations: CON, control condition; NAP, nap condition; Pre, before nap/rest period; Post, after nap/rest period.

FIG. 4. Mean values (± SEM) for Stress Index before and after 
NAP and CON conditions. ** p < 0.01  significant difference 
compared to pre nap/rest. Abbreviations: CON, control condition; 
NAP, nap condition; Pre, before nap/rest period; Post, after nap/
rest period.

FIG. 5. Percentage of score changes (± SEM) from pre to post 
nap/rest for Hooper’s stress, fatigue and total score, and ESS. * 
p < 0.05, ** p < 0.01 significant difference compared to pre 
nap/rest. Abbreviations: CON, control condition; ESS, Epworth 
sleepiness scale; NAP, nap condition; Pre, before nap/rest period; 
Post, after nap/rest period.
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noticed a significant decrease in HF from pre- to post-nap wakeful-
ness, accompanied by a simultaneous increase in LF. Interestingly, 
there were no significant changes in the CON condition. Taken to-
gether, these results suggest a sympathetic dominance following the 
nap opportunity.

Importantly, previous studies reported significant changes in HRV 
profile from wakefulness into sleep and across different sleep stages 
during nocturnal sleep [12, 13] as well as daytime naps [14, 15]. 
The limited number of studies investigating the effect of daytime nap-
ping on HRV using various experimental protocols reported a shift of 
the ANS from sympathetic to parasympathetic dominance from wake-
fulness into sleep [14, 15, 35, 36, 56]. This vagal dominance is char-
acterized by a reduced heart rate coupled with increased HF activity 
and a marked reduction of LF bands. Throughout the progression of 
non-rapid eye movement (NREM) sleep, HF activity remains elevat-
ed, with higher vagal modulation compared to rapid eye move-
ment (REM) sleep, suggesting an overall reduction in cardiovascular 
output and dominance of parasympathetic/vagal activity during NREM 
sleep [14, 15, 35, 36, 56]. Importantly, these fluctuations and dy-
namic changes in the autonomic profile are similar to those seen dur-
ing nocturnal sleep [35], are associated with significant benefits for 
the cardiovascular system, and may be responsible for the homeo-
static regulatory balance between sympathetic and vagal activity [12]. 
This balance has been correlated with reduced risk for cardiovascu-
lar disease, diabetes, and all-cause mortality [24], suggesting a car-
dioprotective function of sleep [12] which has led some researchers 
to describe normal sleep as a “cardiovascular holiday” [12].

Interestingly, only one study compared the impact of daytime nap-
ping on the ANS from pre- to post-nap wakefulness [56]. The study 
of AlQatari et al. [56] showed an increase in LF during post-nap 
wakefulness compared with that during pre-nap wakefulness. The 
current study showed significant changes regarding HRV profile from 
pre- to post-nap wakefulness, including a marked increase in LF. This 
result is in line with the previous report [56], indicating relative sym-
pathetic dominance. Similar to the results of AlQatari et al. [56], we 
noticed a significant decrease in HF, which also supports the above-
mentioned statement regarding the restoration of sympathetic dom-
inance during post-nap wakefulness. Moreover, a significant increase 
in the LF/HF ratio has been measured after- compared to pre-nap 
wakefulness [56]. Although the LF/HF ratio was proposed as an in-
dex describing the balance between the two branches of the ANS, 
in which an increased ratio reflects sympathetic dominance and a re-
duction in this ratio indicates parasympathetic dominance [57], this 
index has not been taken into account in the present study due to 
the several limitations described in previous research [55]. Accord-
ing to Billman [55], the complex nature of LF power (i.e., the LF 
component of HRV is a reflection of fluctuations in both sympathet-
ic and parasympathetic activity) and the non-linear interactions be-
tween sympathetic and parasympathetic nerve activity that are con-
founded by the mechanical effects of respiration and prevailing heart 
rate, make it impossible (i) to delineate the physiological basis for 

SDNN values increased significantly in post-nap wakefulness 
(p = 0.04 (Figure 3.a).

Regarding geometric analysis, the two-way repeated measures 
ANOVA revealed a significant interaction (condition × time) (F(1,11) 
= 5.55, p = 0.03, ɳp2 = 0.33) on the HRV index. No significant 
effect of condition (F(1,11) = 0.01, p = 0.8, ɳp2 = 0.002) or time 
(F(1,11) = 2.74, p = 0.12, ɳp2 = 0.20) was reported. Values were 
significantly higher after nap compared to before nap (p = 0.03). 
Interestingly, there were no significant changes for the CON condi-
tion (Figure 3.b).

Stress index
A significant decrease was noticed in stress index (SI) during post-nap 
wakefulness compared to pre-nap wakefulness (p = 0.01). Results 
showed no significant changes in CON condition (Figure 4).

ESS and Hooper scale
Repeated measure ANOVA tests showed a significant effect of time 
(F(1,11) = 6.19, p = 0.03, ɳp2 = 0.36) and a significant interaction 
(condition × time) (F(1,11) = 5.18, p = 0.04, ɳp2 = 0.32) on ESS. 
Bonferroni post-hoc test revealed that ESS was significantly lower 
after nap compared to before nap (p = 0.03). In the same way, 
a significant decrease was observed in Hooper’s post-nap stress, 
fatigue and total score compared to pre-nap (p = 0.009, p = 0.01, 
p = 0.04, respectively) (Figure 5).

DISCUSSION 
In this study, we aimed to investigate the impact of daytime sleep 
on cardiac autonomic activity (i) to fill the gap in the literature and 
(ii) to give insight regarding the beneficial effect of nap reported in 
our previous papers [7–10]. To our knowledge, this is the first study 
to investigate the effect of a 40-min daytime nap opportunity on HRV 
in elite basketball players. Our findings showed that the HRV profiles 
of participants changed after a daytime nap, while no significant 
changes were reported for the control condition. We noticed a sig-
nificant increase in HRpeak, SDNN, HRV index, and LF nu and a sig-
nificant decrease in HF nu and SI following the nap opportunity. 
Moreover, daytime napping decreased Hooper’s stress, fatigue, total 
score, and subjective sleepiness according to ESS.

It is well established that changes in LF and HF reflect specific 
changes in cardiac autonomic regulation. There is wide consensus 
regarding the significance of the HF component, which reflects car-
diac parasympathetic nerve activity [13, 24, 34]. In contrast, the 
LF band was assumed to reflect a  dominant sympathetic ef-
fect [17, 34]. It is worth mentioning that the meaning of the LF com-
ponent is still debated. Some researchers consider LF as a marker 
of sympathetic activity, while other investigators believe that the LF 
component of HRV is a reflection of fluctuations in both sympathet-
ic and parasympathetic activity [13, 17, 34, 55]. The current study 
showed a significant increase in HRpeak and time-domain parame-
ters of HRV (i.e., SDNN and HRV index) after NAP. In addition, we 
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LF/HF with any degree of certainty and (ii) to quantify cardiac “sym-
pathovagal balance”.

The current investigation revealed a significant decrease in SI dur-
ing post-nap compared to pre-nap wakefulness. This result was con-
firmed by Hooper’s stress scores, which decreased significantly fol-
lowing the nap opportunity. In addition, the decrease in sleepiness 
and fatigue and the improvement of Hooper’s total score suggest 
a better readiness of athletes and could explain the enhancement of 
performance reported in previous studies with NAP [9, 10]. It is im-
portant to mention that these studies included sedentary, inactive 
participants (i.e., young [14, 15, 35, 36, 56] or older adults [36]). 
One study compared daytime nap to nocturnal sleep [35]. Another 
study aimed to investigate changes in HRV during daytime naps in 
young and older adults [36]. Unlike the abovementioned studies, the 
present investigation aimed to evaluate the effect of nap on ANS reg-
ulation in an elite athlete population. Furthermore, it is noteworthy 
to mention that moderation of sympathetic activity – indicated by 
greater high-frequency HRV values – has been reported to be asso-
ciated with improved basketball shooting, passing and dribbling per-
formance in previous research [58].

Limitations
The present study presents some limitations. First, sleep was moni-
tored using actigraphy, whereas, polysomnography provides more 
accurate results both in terms of quality and quantity and provides 
details regarding sleep stages [59]. Such information could have 
given us accurate information on the different changes in HRV profiles 

across sleep stages. Second, although this study was conducted on 
professional basketball players, only one basketball team was used, 
which could also lead to a lack of generalizability. Third, the se-
lected participants were nonhabitual nappers. Given that non-habit-
ual nappers display heavier sleep inertia at the awakening compared 
to habitual nappers [60], results could be different if habitual nappers 
were included instead of non-habitual nappers, especially regarding 
HRV indexes.

CONCLUSIONS 
The results of the present study showed that a 40 min nap oppor-
tunity increased global heart rate variability, operationalized through 
an increase in LF nu and a decrease in HF nu. In addition, daytime 
napping might be a successful strategy for reducing stress since (i) 
the stress index decreased significantly during post-nap wakefulness 
and (ii) according to the Hooper scale, subjective stress scores were 
lower following nap. Overall, these findings suggest that napping 
reduces stress, sleepiness, and fatigue, and might provide an advan-
tage by preparing the body for a much-required sympathetic comeback 
following peaceful rest and parasympathetic dominance during sleep. 
Our results support the notion that daytime napping is beneficial for 
cardiovascular health in basketball professional athletes.
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