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INTRODUCTION
Assessing the physiological response to exercise is important for 
athletes, coaches, and sports scientists to optimize training load 
management and improve performance. Acute and strenuous exer-
cise initiates stress and might lead to muscular damage, immune 
response, and inflammatory processes [1–3]. Exercise-induced re-
sponses are commonly monitored through objective monitoring tools 
(e.g., biomarkers) [4, 5]. Established blood-based biomarkers (for 
simplicity, we will continue to refer as biomarkers), such as blood 
lactate (LA) and creatine kinase (CK), are widely used but have 
limited informative value in the acute exercise setting when used 
solely in the absence of other biomarkers. Therefore, further exercise-
sensitive biomarkers or biomarker panels have been suggested to 
comprehensively assess the physiological exercise response [6, 7]. 
These include, for instance, cytokines (e.g., tumor necrosis factor-
alpha (TNF-α)-, interleukin-6 (IL-6)) or markers of aseptic 
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inflammation (such as cell-free DNA (cfDNA)) which have been 
proposed as reliable markers of exercise sensitivity [3, 8–13]. Pre-
vious studies have found that IL-6 concentrations depend on exercise 
intensity and increase immediately after exercise, possibly up to 
100-fold after a marathon race [11, 14, 15]. In a professional soc-
cer setting, cfDNA showed promising results at rest [16] and di-
rectly after a soccer game, where median cfDNA increased 23-fold, 
and correlated with the total distance covered [8].

However, athlete responses to exercise are highly intra- and in-
ter-individual as biomarkers are influenced by training status, exer-
cise duration and intensity [7, 17, 18]. To date, there is limited in-
formation on how acute exercise responses are influenced by biological 
sex. This limitation arises in part from selective recruitment of men 
in previous studies, due to the complexity of hormonal variations and 
unique responses associated with the female menstrual cycle [19, 20]. 
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contributing to the development of sex-specific biomarker assess-
ments. In addition, we examined the subjective exercise response us-
ing questionnaires to assess fatigue, vitality, motivation, and energy. 
We hypothesized that blood markers would show a significant re-
sponse to the exercise test, with differential effects between sexes.

MATERIALS AND METHODS 
Ethics and experimental design
The study was registered (ClinicalTrials.gov identifier: NCT05067426). 
All procedures have been approved by a local ethical board (Univer-
sity of Salzburg, GZ 2/2021) and conform to the standards of the 
Declaration of Helsinki. Participants were informed of the risks and 
benefits of study participation and gave written informed consent. 
The data described in the present manuscript were collected during 
exercise testing [22]. Before and after exercise testing, participants 
underwent venous blood sampling and completed questionnaires.

Participants
Twenty-four (16 men and 8 women) endurance-trained athletes were 
recruited. All participants had been involved in regular endurance 
training (running, trail running, triathlon, canoeing, biking, and soc-
cer), completing an average of 4.7 ± 1.4 endurance training sessions 
per week. Participants’ characteristics are presented in Table 1.

Lobo et al. showed that a single bout of strenuous aerobic exercise 
induced similar responses in both sexes in leukocyte counts and cy-
tokine levels [20]. In contrast, Bernadi et al. observed higher base-
line concentrations in certain cytokines (i.e., IL-6, IL-1β, and TNF-α) 
in men compared to women but found no association with testos-
terone levels, implying that hormone levels may not fully explain the 
observed sex differences [21]. In addition, reference ranges for many 
biomarkers do not yet exist in the athlete population, which compli-
cates their use for regular training load monitoring. Thus, the devel-
opment of a reliable and exercise-sensitive panel of biomarkers for 
monitoring acute exercise responses is needed to gain a comprehen-
sive understanding of immune responses to exercise. This may help 
to elucidate the complex interplay between biological sex, hormon-
al variations, and exercise responses in athletes, ultimately advanc-
ing the knowledge in this field.

The aim of the present study was to examine the acute effects of 
exhaustive exercise on various biomarkers (inflammatory cytokines, 
blood count, cfDNA, CK, and urea) in well-trained endurance ath-
letes, with a focus on biological sex differences. This will be achieved 
by using exploratory bioinformatic analyses (e.g., mixed analysis of 
variance (ANOVA), k-means clustering, and uniform manifold approx-
imation and projection (UMAP)) to provide novel insights into the re-
lationships between sex, biomarkers, and exercise, ultimately 

TABLE 1. Anthropometric data and physiological data of the exercise testing (mean ± SD).

Variables Overall (n = 24) Men (n = 16) Women (n = 8)

Age (years) 28.4 ± 7.1 29.2 ± 7.6** 26.8 ± 6.1

Height (cm) 177 ± 9  181 ± 7*** 169 ± 6

Weight (kg) 69.8 ± 10.9 74.9 ± 7.8*** 59.5 ± 9.0

BMI (kg/m2) 22.2 ± 2.2 22.9 ± 1.8* 20.9 ± 2.4

Body Fat (%) 11.8 ± 5.6 9.3 ± 3.2** 16.7 ± 6.3

V̇O2max (ml · min−1 · kg−1) 57.2 ± 5.4 59.4 ± 7.5** 52.9 ± 3.1

HRmax (bpm) 190 ± 9 191 ± 10 187 ± 8

RPE (AU) 19.0 ± 0.6 19.1 ± 0.6 19 ± 0.5

RER (AU) 1.20 ± 0.06 1.21 ± 0.04 1.19 ± 0.08

peak LA (mmol · L−1) 9.7 ± 2.4 10.4 ± 1.7* 8.1 ± 2.8

PPO (W) 398 ± 83 445 ± 41*** 300 ± 52

Relative PPO (W · kg−1) 5.7 ± 0.7 6.0 ± 0.5*** 5.0 ± 0.4

TTE total (min:sec) 26:35 ± 2:07 26:25 ± 2:15 26:56 ± 1:54

TTE ramp (min:sec) 6:23 ± 1:07 6:34 ± 1:07 5:59 ± 1:05

HR at LT (bpm) 159 ± 9 158 ± 9 162 ± 7

LT (km/h) 12.2 ± 1.2 12.3 ± 1.3 12.0 ± 1.2

BMI, body mass index; V̇O2max, maximal oxygen uptake during ramp test; HR max, maximal heart rate; RPE, rate of perceived 
exhaustion; RER, respiratory exchange rate; AU, arbitrary units; LA, lactate; PPO, peak power output during ramp test; TTE, time to 
exhaustion; LT, lactate threshold during submaximal exercise test; *p < 0.05, **p < 0.01, ***p < 0.001 indicate significant 
differences in men and women.
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Physiological exercise testing
Prior to exercise testing, participants were instructed to refrain from 
strenuous exercise, alcohol, and caffeine for at least 24 h. Endurance 
performance was tested with a two-phase test on a treadmill (Saturn, 
HP Cosmos, Traunstein, Germany) with a breath-by-breath gas col-
lection system (Quark CPET, Cosmed, Rome, Italy) [22]. Briefly, 
participants performed an incremental submaximal running test (with 
increases of 1.5 km/h every 3 min), followed by an 8 min recovery 
period, and a running ramp test until voluntary exhaustion on a tread-
mill. Heart rate (HR) was measured during the treadmill tests via 
a HR chest strap (HRM 3-SS, Kansas City, MO, USA). Running peak 
power output (PPO) was measured with the Stryd footpod (Stryd 
Wind V3, Stryd, Boulder, CO, USA) in absolute (W) and relative 
(W · kg−1) terms. Lactate was measured from capillary blood taken 
from the earlobe (Biosen S-line Clinic, EKF diagnostic GmbH, Mag-
deburg, Germany) throughout the incremental test. Peak LA was 
determined as the highest concentration collected immediately, five 
minutes, and 15 minutes after the ramp test. Rating of perceived 
exertion (RPE) on a scale from 6 to 20 [23] was collected immedi-
ately after completion of the ramp test. V̇O2max was determined as 
the highest 10 s breath rolling average. Analysis of further param-
eters such as lactate threshold (LT) and total time of test duration 
were determined, as described elsewhere [22], and are listed in 
Table 1.

Blood parameters
Venous blood samples (3 ml EDTA and 3.5 ml serum) were obtained 
from the antecubital vein prior to the exercise test in a fasted condi-
tion and immediate after the ramp test. Venous blood count, i.e., 
white blood cell count (WBC), red blood cell count (RBC), absolute 
lymphocytes (LYM), percentage of lymphocytes (LYM%), absolute 
monocytes (MO), percentage of monocytes (MO%), absolute granu-
locytes (GR), percentage of granulocytes (GR%), procalcitonin (PCT), 
platelet (PLT), hemoglobin (HGB), hematocrit (HCT), red blood cell 
distribution width (RDWCV), mean platelet volume (MPV), mean 
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin con-
centration (MCHC), mean corpuscular volume (MCV), and platelet 
distribution width (PDW) were determined using fresh whole blood 
by a Celltac MEK 6400 system (Nihon Kohden, Tokyo, Japan). EDTA 
samples were centrifuged at 1600 × g for 10 min at 4 °C, and serum 
samples were centrifuged at 3000 × g for 10 min at 4 °C. Samples 
were separated into aliquots and stored at ≤  − 20°C until further 
analysis.

Multiple cytokines (IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, 
IL-17A, IL-17F, IL-22, TNF-α, interferon-gamma (INF-γ)), related to 
different T-helper cell types were analyzed simultaneously, in dupli-
cates, using a bead-based immunoassay multiplex approach (LEG-
ENDplexTM HU Th Cytokine Panel (12-plex), BioLegend, San Di-
ego, California, U.S) and was measured via flow cytometry (CytoFLEX 
S, Beckman Coulter, Brea, California, U.S). All steps were performed 
according to the manufacturer´s protocol with some minor 

changes: (i) downscaling of used kit components to a fifth based on 
a preliminary titration of the standard (ii) and adding 50 µl of indi-
vidual sera without pre dilution. Venous cfDNA (cfDNA with 90 and 
222 base pairs) was quantified by analyzing unpurified plasma via 
quantitative real-time PCR, as described elsewhere [24]. CK and 
urea were measured with a light emitting diode photometer (Euroly-
ser CCA180, Eurolyser Diagnostica GmbH, Salzburg, Austria).

Vitality and fatigue assessment
Questionnaires were administered prior (pre) to exercise testing and 
in the evening between 6 PM and 8 PM (post). The modified German 
Subjective Vitality Scale (SVS-GM) with the 3-item (“I feel alive and 
vital”, “I am full of drive”, “I have energy and spirit”), as well as the 
1-item (“I feel vital, full of drive, and spirited”) version were assessed 
on an 11-point Likert scale (0 = not true at all to 10 = totally 
true) [25] to measure perception of vitality, motivation, and energy. 
In addition, fatigue was assessed on an 11-point Likert scale (0 = not 
fatigued at all to 10 = total fatigue and exhaustion – nothing left) [26].

Statistical analysis
Data are reported as means ± standard deviation (SD), while fold-
changes from pre- to post-exercise are presented as median (all blood 
parameters; Tables 2 and 3) or mean fold-changes and 95% confi-
dence intervals (CI) (all questionnaires; Table 4). To investigate the 
effects of exercise testing on blood parameters, questionnaire scores, 
and to identify differences between sexes in the physiological data 
of exercise testing (Table 1), pairwise t-tests were conducted for 
normally distributed data, and Wilcoxon-Tests for non-normally dis-
tributed data. Time × sex interactions were determined using mixed 
ANOVA. Effect sizes are reported as partial eta squared (pη2; small: 
|0.01| ≤   pη2  < |0.06|; medium: |0.06| ≤   pη2  < |0.14|; large 

pη2  ≥ |0.14|) [27]. The significance level was set at p < 0.05. The 
analyses were performed using IBM SPSS Statistics 26 (IBM GmbH, 
Munich, Germany).

To ensure mathematical comparability for unsupervised machine 
learning, all continuous variables were normalized and scaled using 
min-max scaling in R Studio (R Studio Inc., Boston, MA, United 
States, version 4.2.1). Missing values (i.e., cytokine levels that were 
below or exceeded the standard curve) accounted for 9% of the data. 
Using the Mice package (version 3.15.0), these missing values were 
imputed [28]. The “umap” package (version 0.92) was used to con-
struct a UMAP – a technique for visualizing high-dimensional data 
in two dimensions, and subsequent control-correlations were per-
formed to compare athletes versus biomarkers (Figure 3B, Supple-
ment Figure A [29]).

For K-means unsupervised clustering, the “mlr3” package (ver-
sion 2.19.1) was used [30]. Cytokines and blood markers were used 
relative to absolute values. This decision was necessary because rel-
ative values reduce the risk of overfitting, which can occur when the 
number of variables exceeds the number of observations. In addi-
tion, relative values account for differences in baseline values, 
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Table 2 outlines time × sex interactions in biomarker concentra-
tions. Significant interactions were observed for cfDNA90 (p = 0.031, 

pη2 = 0.20), cfDNA222 (p = 0.044, pη2 = 0.18), and PCT (p = 0.028, 

pη2 = 0.20). In these cases, male participants had higher fold-chang-
es than female participants (cfDNA90: 12.5 vs. 7.2, cfDNA222: 11.6 
vs. 8.7, PCT: 1.4 vs. 1.3). In addition, significant interactions were 
found in LYM (p = 0.016, pη2 = 0.24) and WBC (p = 0.038, 

pη2 = 0.18), with female participants showing higher fold-changes 
than male participants (LYM: 3.1 vs. 2.6, WBC: 2.4 vs. 1.9; Figure 2A 
i-v). No significant interactions were found for all cytokines (p > 0.05).

Tables 2 and 3 present the acute effects of exercise testing on 
biomarker concentrations. Significant increases were found for both 
the overall population, as well as male and female participants, in 
cfDNA90, cfDNA222, LYM, LYM%, MO, WBC, GR, GR%, PCT, PLT, 
HGB, HCT, RBC, MCH, MCV (p < 0.01; Figure 2C i-xiii). RDWCV 
and CK increased in all participants (p < 0.001), as well as CK in 
male participants (p = 0.005). IL-2 (p = 0.027) and IL-6 (p = 0.038) 
increased in male participants, while no changes in the female par-
ticipants were found (Figure 2B i, ii). Other cytokines showed no sig-
nificant differences (p > 0.05). Individual changes for all significant-
ly increased variables are shown in Figure 2.

Table 4 presents the effects of exercise testing on vitality and fa-
tigue data. Neither changes nor interactions between time and sex 
were found in vitality, motivation, and energy. However, fatigue in-
creased overall (p < 0.001), but no interactions of time × sex were 
identified (p = 0.334; Figure 2C xii).

inter-individual variances and better reflect each athlete’s physiolog-
ical status than absolute numbers. Finally, relative values can limit 
the impact of extraneous factors like time of collection or modest 
methodological variances, which may affect absolute levels but not 
relative changes. The optimal number of clusters was determined 
using a cluster screening technique, which suggested that three clus-
ters provided the best fit to the model, and three clusters were cho-
sen for further analysis (Supplement Figure B). Participants belong-
ing to each cluster and the weight of importance of each biomarker 
for each cluster were obtained (Figure 3A).

Figures were generated using GraphPad Prism version 9 (Prism, 
GraphPad Software, San Diego, CA, USA) and the package ggplot2 
3.2.0 (R Studio Inc., Boston, MA, United States, version 4.2.1). The 
overall statistical analysis process is illustrated in Figure 1.

RESULTS 
Table 1 presents the characteristics of physiological data collected 
from the 24 participants during exercise testing. Mean V̇O2max was 
57.2 ± 5.4 ml · min−1 · kg−1, with men showing a slightly higher 
value compared to women on both outcomes (p < 0.01). The mean 
maximum LA concentration was 9.7 ± 2.4 mmol · L−1 for all par-
ticipants with higher concentrations in men compared to women 
(p < 0.05). Mean PPO was 398 ± 83 W, and the relative PPO was 
5.7 ± 0.7 W · kg−1 for all participants, with men showing higher 
values compared to women (p < 0.001). Other physiological char-
acteristics showed no significant differences between the sexes.

FIG. 1. Flowchart illustrating the statistical analysis process employed in the study. The root dataset was used for both data preparation 
(scaling and imputation) and descriptive statistics (t-tests and Wilcoxon-Test). Data preparation was followed by UMAP visualization 
and K-means clustering, while descriptive statistics were followed by mixed ANOVA analysis. The results from the mixed ANOVA, 
UMAP visualization, and K-means clustering were then used to generate figures using GraphPad Prism and ggplot2 in R.
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TABLE 2. Acute changes in cfDNA and blood count.

Overall Men Women ANOVA

Variable Test Pre Post FC  
(95% CI) p-value N Pre Post FC  

(95% CI) p-value N Pre Post FC  
(95% CI) p-value Time × Sex 

(p-value)

cfDNA90 (ng/ml)
Pairwise 

T-Test
9.3 (3.6)

103.2 
(49.1)

11.3 (9.4 
to 13.6)  < 0.001 16 9.4 (3.9)

117.8 
(49.6)

12.5 (10.3 
to 15.6)  < 0.001 8 8.9 (2.8)

74.1 
(34.3)

7.2 (5.2 to 
12.1)  < 0.001 0.031

cfDNA222 (ng/ml)
Pairwise 

T-Test
5.0 (1.7)

52.1 
(24.8)

10.8 (8.9 
to 12.2)  < 0.001 15 5.4 (1.6)

59.7 
(25.6)

11.6 (9.1 
to 13.5)  < 0.001 8 4.4 (1.8)

37.8 
(16.1)

8.7 (6.4 to 
11.8)  < 0.001 0.044

LYM (10³/µl)
Pairwise 

T-Test
1.5 (0.4) 3.8 (0.8)

2.7 (2.4 to 
3.0)  < 0.001 16 1.5 (0.5) 3.6 (0.7)

2.6 (2.3 to 
3.0)  < 0.001 8 1.5 (0.4) 4.2 (0.7)

3.1 (2.5 to 
3.5)  < 0.001 0.016

MO (10³/µl)
Pairwise 

T-Test
0.4 (0.2) 0.9 (0.3)

2.3 (2.1 to 
2.9)  < 0.001 16 0.4 (0.2) 0.8 (0.2)

2.3 (1.9 to 
2.9)  < 0.001 8 0.5 (0.2) 1.1 (0.4)

2.5 (1.8 to 
3.5)  < 0.001 0.094

WBC (10³/µl)
Pairwise 

T-Test
4.8 (1.0) 10.0 (1.8)

2.0 (2.0 to 
2.3)  < 0.001 16 4.7 (1.0) 9.5 (1.8)

1.9 (1.9 to 
2.2)  < 0.001 8 5.0 (1.0) 11.1 (1.4)

2.4 (1.9 to 
2.6)  < 0.001 0.038

GR (10³/µl)
Pairwise 

T-Test
2.9 (0.9) 5.3 (1.2)

1.8 (1.7 to 
2.0)  < 0.001 14 2.9 (0.7) 5.1 (1.05)

1.7 (1.6 to 
2.0)  < 0.001 8 3.0 (1.2) 5.8 (1.4)

2.0 (1.6 to 
2.4)  < 0.001 0.172

CK (U/L)
Wilcoxon- 

Test
203.3 

(231.4)
306.2 

(365.5)
1.4 (1.4 to 

1.6)  < 0.001 13
192.7 

(185.7)
292.5 

(287.8)
1.6 (1.4 to 

1.7) 0.005 7
222.8 
(316)

331.4 
(506.2)

1.4 (1.3 to 
1.6)

0.183 0.896

PCT (%)
Wilcoxon- 

Test
0.1 (0.03) 0.2 (0.04)

1.4 (1.4 to 
1.6)  < 0.001 16 0.1 (0.04) 0.2 (0.05)

1.4 (1.4 to 
1.6)  < 0.001 8 0.1 (0.02) 0.2 (0.1)

1.3 (1.3 to 
1.4)  < 0.001 0.028

PLT (10³/µl)
Wilcoxon- 

Test
202.1 
(37.2)

279.0 
(38.5)

1.4 (1.3 to 
1.5)  < 0.001 16

202.0 
(43.2)

281.1 
(43.3)

1.4 (1.3 to 
1.5)  < 0.001 8

200.3 
(24.7)

274.6 
(31.2)

1.3 (1.3 to 
1.4)  < 0.001 0.57

LYM (%)
Pairwise 

T-Test
30.6 (7.5) 37.8 (5.8)

1.3 (1.2 to 
1.4)  < 0.001 16 30.9 (7.0) 37.6 (6.1)

1.3 (1.2 to 
1.3)  < 0.001 8 30.0 (8.8) 38.1 (5.5)

1.3 (1.1 to 
1.5) 0.001 0.443

MO (%)
Pairwise 

T-Test
8.7 (3.6) 9.5 (2.9)

1.2 (1.0 to 
1.5)

0.166 16 8.0 (2.7) 9.1 (2.4)
1.2 (1.0 to 

1.5)
0.178 8 10.2 (4.9) 10.2 (3.9)

1.2 (0.7 to 
1.6)

0.968 0.445

HGB (g/dl)
Pairwise 

T-Test
14.2 (1.2) 15.8 (1.0)

1.1 (1.1 to 
1.1)  < 0.001 16 14.7 (0.8) 16.3 (0.6)

1.1 (1.1 to 
1.1)  < 0.001 8 13.3 (1.2) 15.0 (1.0)

1.1 (1.1 to 
1.2)  < 0.001 0.689

HCT (%)
Wilcoxon- 

Test
43.7 (3.1) 48.3 (3.6)

1.1 (1.1 to 
1.1)  < 0.001 16 45.0 (1.8) 49.9 (1.4)

1.1 (1.1 to 
1.1)  < 0.001 8 41.0 (3.5) 45.0 (4.4)

1.1 (1.1 to 
1.1)  < 0.001 0.143

RBC (10⁶/µl)
Wilcoxon- 

Test
4.9 (0.3) 5.3 (0.4)

1.1 (1.1 to 
1.1)  < 0.001 16 5.0 (0.2) 5.5 (0.3)

1.1 (1.1 to 
1.1)  < 0.001 8 4.6 (0.4) 5.0 (0.5)

1.1 (1.0 to 
1.1)  < 0.001 0.233

RDWCV (%)
Pairwise 

T-Test
12.2 (0.5) 12.6 (0.6)

1 (1.0 to 
1.1)  < 0.001 16 12.1 (0.5) 12.5 (0.5)

1.0 (1.0 to 
1.1)

0.444 8 12.3 (0.6) 12.9 (0.6)
1.0 (1.0 to 

1.1)
0.191 0.396

MPV (fL)
Wilcoxon- 

Test
6.1 (1.4) 6.3 (1.3)

1 (1.0 to 
1.1)

0.209 16 6.2 (1.5) 6.4 (1.4)
1.0 (1.0 to 

1.1)
0.074 8 6.0 (1.2) 5.9 (1.1)

1.0 (0.9 to 
1.0)

0.664 0.149

MCH (pg)
Pairwise 

T-Test
29.3 (2.0) 29.7 (1.9)

1 (1.0 to 
1.0)  < 0.001 16 29.6 (2.0) 30.0 (1.9)

1.0 (1.0 to 
1.0) 0.003 8 28.5 (2.1) 29.1 (2.0)

1.0 (1.0 to 
1.0) 0.007 0.508

Urea (mg/dl)
Wilcoxon- 

Test
32.4 (9.4) 32.6 (8.5)

1 (0.9 to 
1.1)

0.627 13 34.4 (9.7) 34.5 (7.7)
1.0 (0.9 to 

1.2)
0.928 7 28.9 (8.4) 29.0 (9.3)

1.0 (0.9 to 
1.1)

0.916 0.981

MCHC (g/dl)
Wilcoxon- 

Test
32.6 (0.7) 32.6 (0.7)

1 (1.0 to 
1.0)

0.796 16 32.6 (0.8) 32.7 (0.8)
1.0 (1.0 to 

1.0)
0.815 8 32.3 (0.8) 32.5 (0.7)

1.0 (1.0 to 
1.0)

0.53 0.714

MCV (fl)
Pairwise 

T-Test
89.8 (4.8) 90.9 (4.8)

1 (1.0 to 
1.0)  < 0.001 16 90.6 (4.9) 91.7 (4.9)

1.0 (1.0 to 
1.0)  < 0.001 8 88.4 (4.6) 89.4 (4.5)

1.0 (1.0 to 
1.0) 0.002 0.709

PDW (%)
Wilcoxon- 

Test
17.2 (1.7) 17.3 (1.9)

1 (0.9 to 
1.0)

0.455 16 16.8 (1.9) 16.8 (2.1)
1.0 (1.0 to 

1.0)
0.986 8 17.9 (0.8) 18.1 (1.3)

1.0 (0.9 to 
1.1)

0.686 0.734

GR (%)
Pairwise 

T-Test
61.5 (9.7)

55.0 
(10.0)

0.9 (0.8 to 
0.9)  < 0.001 14 62.4 (7.4)

57.0 
(10.4)

0.9 (0.9 to 
1.0) 0.015 8

59.9 
(13.3)

51.7 (9.1)
0.8 (0.8 to 

1.0) 0.018 0.389

Pre and post values are shown in mean and SD; pre, before exercise test; post, immediate after exercise test; FC, median fold change; 
95% CI, 95% confidence interval; N, number of participants; time × sex ANOVA; cfDNA, cell-free DNA; WBC, white blood cell count; 
RBC, red blood cell count; LYM, lymphocytes; MO, monocytes; GR, absolute granulocytes; CK, creatine kinase; PCT, procalcitonin; 
PLT, platelet; HGB, hemoglobin; HCT, hematocrit; RDWCV, red blood cell distribution width; MPV, mean platelet volume; MCH, mean 
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; PDW, platelet distribution 
width; highlighted are significant p values < 0.05. N differences are due to analysis.
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TABLE 3. Acute changes in cytokines.

Overall Men Women ANOVA

Variable Test Pre Post FC (95% 
CI) p-value N Pre Post FC (95% 

CI) p-value N Pre Post FC (95% 
CI) p-value Time × Sex

IL-6 (pg/ml)
Pairwise 

T-Test
29.5 

(21.8)
36.7 

(21.4)
1.4 (0.9 to 

2.6)
0.082 12

33.0 
(26.1)

44.0 
(23.8)

1.4 (0.7 to 
3.5) 0.038 8

24.1 
(13.2)

25.7 
(10.9)

1.3 (0.7 to 
1.8)

0.823 0.25

IL-17α (pg/ml)
Wilcoxon- 

Test
7.8 (7.0) 6.8 (5.1)

1.3 (0.9 to 
1.6)

0.91 11 6.5 (7.0) 5.9 (4.8)
1.4 (0.9 to 

1.9)
0.737 4 11.3 (6.5) 9.4 (5.5)

0.9 (0.6 to 
1.1)

0.121 0.659

IL-17F (pg/ml)
Pairwise 

T-Test 
253.2 

(325.8)
255.7 

(309.1)
1.2 (0.4 to 

3.4)
0.794 12

276.9 
(389.9)

287.0 
(370.5)

1.3 (-0.6 
to 4.6)

0.399 6
205.8 

(150.2)
193.2 

(126.1)
1.0 (0.7 to 

1.3)
0.475 0.271

IL-4 (pg/ml) Wilcoxon-Test
85.4 

(119.8)
82.3 

(124.2)
1.2 (1.0 to 

1.8)
0.236 15

56.6 
(76.6)

60.6 
(62.3)

1.2 (1.7 to 
2.1)

0.631 8
139.5 

(168.0)
123.0 

(194.5)
1.0 (0.5 to 

1.5)
0.652 0.464

IL-22 (pg/ml)
Pairwise 

T-Test
12.6 (9.2) 13.3 (8.1)

1.1 (0.9 to 
1.7)

0.679 11
12.9 

(10.1)
14.0 (8.2)

1.0 (0.9 to 
1.9)

0.556 5 12.0 (8.0) 11.7 (8.6)
1.1 (0.3 to 

2.2)
0.931 0.692

IL-2 (pg/ml)
Wilcoxon- 

Test
4.2 (3.5) 4.2 (3.0)

1.1 (1.0 to 
1.4)

0.08 11 3.9 (3.1) 4.4 (3.0)
1.1 (1.0 to 

1.4) 0.027 8 4.7 (4.2) 3.8 (3.1)
1.1 (0.7 to 

1.6)
0.492 0.197

IL-9 (pg/ml)
Wilcoxon- 

Test
33.4 

(29.7)
33.7 

(27.8)
1.1 (1.0 to 

1.2)
0.094 15

31.5 
(27.9)

33.1 
(25.6)

1.1 (1.0 to 
1.3)

0.147 8
37.1 

(34.5)
34.9 

(33.4)
1.0 (0.8 to 

1.3)
0.716 0.393

IL-10 (pg/ml)
Wilcoxon- 

Test
6.2 (3.8) 6.1 (3.5)

1.1 (0.9 to 
1.2)

0.566 13 6.1 (4.3) 6.1 (3.6)
1.0 (0.9 to 

1.2)
0.975 8 6.3 (3.3) 6.1 (3.6)

1.1 (0.7 to 
1.5)

0.938 0.916

TNF-α (pg/ml)
Pairwise 

T-Test
49.6 

(37.5)
47.1 

(32.8)
1.0 (0.8 to 

1.5)
0.424 11

48.3 
(45.1)

49.0 
(39.4)

1.1 (0.8 to 
1.9)

0.831 5
52.5 

(13.0)
43.0 

(11.2)
0.9 (0.6 to 

1.1)
0.203 0.124

IFN-γ (pg/ml)
Pairwise 

T-Test
66.5 

(59.1)
72.1 

(58.5)
1.0 (0.5 to 

2.7)
0.364 8

80.8 
(72.5)

84.6 
(71.2)

1.0 (-0.1 
to 3.8)

0.602 5
56.6 

(23.7)
66.0 

(25.6)
1.1 (0.6 to 

2.0)
0.511 0.684

IL-13 (pg/ml)
Wilcoxon- 

Test
27.7 

(22.1)
22.9 

(15.2)
1.0 (0.7 to 

1.3)
0.433 9

26.9 
(22.1)

25.6 
(16.0)

1.1 (0.8 to 
1.5)

0.69 5
29.2 

(24.6)
18.0 

(14.1)
0.5 (0.1 to 

1.3)
0.267 0.228

IL-5 (pg/ml)
Wilcoxon- 

Test
20.7 

(17.2)
18.5 

(12.3)
0.9 (0.8 to 

1.2)
0.36 12

23.9 
(20.2)

20.2 
(14.6)

0.9 (0.9 to 
1.1)

0.209 6 14.3 (6.3) 15.3 (4.9)
1.1 (0.5 to 

2.0)
0.76 0.313

Pre and post values are shown in mean and SD; pre, before exercise test; post, immediate after exercise test; FC, median fold change; 
95% CI, 95% confidence interval; N, number of participants; time × sex ANOVA; IL, interleukin; TNF-α, tumor necrosis factor-alpha; 
highlighted are significant p values < 0.05. N differences are due to analysis.

TABLE 4. Acute changes in vitality and fatigue.

Overall Men Women ANOVA

Variable Test Pre Post FC (95% CI) p-value N Pre Post FC (95% CI) p-value N Pre Post FC (95% 
CI) p-value Time × Sex

Fatigue Pairwise T-Test 2.1 (0.9) 4.8 (1.8)
2.4 (0.6 to 

1.4)  < 0.001 16 1.9 (0.9) 4.4 (1.6)
2.4 (1.9 to 

3.6)  < 0.001 8 2.4 (0.9) 5.6 (1.9)
2.5 (1.2 to 

4.7) 0.005 0.334

SVS-GM-3 
vitality

Pairwise T-Test 6.9 (1.7) 6.5 (1.5)
0.9 (0.8 to 

1.2)
0.375 16 7.1 (1.6) 6.9 (1.1)

0.9 (0.9 to 
1.2)

0.615 8 6.5 (2.0) 5.6 (1.9)
0.9 (0.6 to 

1.4)
0.495 0.573

SVS-GM-3 
motivation

Pairwise T-Test 7.1 (1.8) 5.9 (1.8)
0.9 (0.7 to 

1.1)
0.05 16 7.1 (1.7) 6.2 (1.2)

0.9 (0.8 to 
1.1)

0.095 8 7.1 (2.1) 5.3 (2.7)
0.8 (0.3 to 

1.4)
0.25 0.431

SVS-GM-3 
energy 

Pairwise T-Test 7.3 (1.9) 6.3 (1.8)
0.9 (0.8 to 

1.1)
0.079 16 7.5 (1.8) 6.6 (1.3)

0.8 (0.8 to 
1.1)

0.084 8 7.0 (2.1) 6.6 (1.3)
1.0 (0.4 to 

1.4)
0.368 0.628

SVS-GM-1 
overall

Pairwise T-Test 7.1 (1.5) 6.1 (1.7)
0.9 (0.8 to 

1.1)
0.062 16 7.4 (1.3) 6.5 (1.3)

0.9 (0.8 to 
1.0)

0.063 8 6.6 (1.9) 5.4 (2.2)
0.8 (0.4 to 

1.4)
0.375 0.738

Pre and post values are shown in mean and SD; pre, before exercise test; post, evening post-exercise test; SVS-GM, 1-item, and 
3-item modified German Subjective Vitality Scale; FC, mean fold change; 95% CI, 95% confidence interval; N, number of participants; 
time × sex ANOVA; highlighted are significant p values < 0.05.
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FIG. 2. Acute increases of blood-based biomarkers and questionnaires. A) Blood-based biomarkers with significant time × sex ANOVA. 
B) Female vs. male acute increase of cytokines. C) Overall acute increases of blood-based biomarkers and questionnaires. Red dots, 
female participants; blue triangle, male participants; bars represent mean values; white bar, pre; grey bar, immediate post-exercise; 
CK, creatine kinase; WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; HCT, hematocrit; MCV, mean 
corpuscular volume; MCH, mean corpuscular hemoglobin; PLT, platelet; LYM, lymphocytes; MO, monocytes; GR, absolute granulocytes; 
RDWCV, red blood cell distribution width; PCT, procalcitonin; ROF, rate of fatigue; * p < 0.05, *** p < 0.001, # male.

FIG. 3. Characterization of three distinct athlete clusters based on key biomarkers. A) UMAP plot illustrating the distribution of athletes 
according to sex and k-means clustering with three clusters: “Cluster 1” (n = 3), “Cluster 2” (n = 13, 2 females), and “Cluster 3” 
(n = 8, 3 females). Female athletes are represented by unfilled triangles, while male athletes are represented by colored filled triangles. 
B) Heatmap displaying the standardized values of 46 variables (rows) for each athlete (columns), with row annotations indicating 
the sex (F: Female, M: Male) of each athlete. Clusters are color-coded according to the same scheme used in (A). The top markers 
are represented as colored bars in the names, being green (Cluster 1), red (Cluster 2), and blue (Cluster 3).The three clusters exhibit 
distinct patterns of biomarkers, with significant differences in their sex compositions (X-squared = 7.9471, df = 2, p-value = 0.02).



112

Julia C. Blumkaitis et al. Exercise-related sex differences in biomarkers

K-means clustering identified three distinct groups of athletes with 
differing proportions of female participants, which could be classi-
fied as “cluster 1” (n = 3, 100% female), “cluster 2” (n = 13, 85% 
male), and “cluster 3” (n = 8, 37.5% female and 65.5% male) (Fig-
ure 3A). The correlation revealed distinct patterns among the three 
groups of athletes (Figure 3B). Each cluster was distinguished by 
a particular combination of biomarkers and exercise testing perfor-
mance parameters. Loadings derived from k-means clustering offer 
insights into the distribution of variables within each cluster and serve 
as descriptive summaries of the central tendencies of variables with-
in each cluster (Supplement Figure C). Specifically, a positive load-
ing for a particular variable within a cluster signifies that cluster mem-
bers exhibit higher values for that variable in comparison to members 
of other clusters. Conversely, a  negative loading implies the 
opposite.

Cluster 1 was characterized by negative loadings for weight, 
V̇O2max, maximal HR (HRmax), and relative PPO but a positive load-
ing for RPE. Most of the inflammatory markers had negative load-
ings, suggesting lower levels of these markers in this cluster. This 
aligns with the observation that relative IL-2, relative IL-10, relative 
IL-13, relative cfDNA90, total TTE, LT, and body weight served as the 
primary markers for the cluster consisting of females, only. Cluster 
2 had a negative loading for V̇O2max and relative PPO but a positive 
loading for HRmax. The loadings for inflammatory markers were mixed, 
but many were positive, suggesting higher levels of these markers 
compared to cluster 1. This is characterized by relative MO, relative 
IFN-y, relative LYM, relative CK, relative urea, relative PPO, total TTE, 
and LT serving as the primary markers for the cluster consisting pri-
marily of men. Cluster 3 exhibited predominantly positive loadings 
for most of the exercise testing performance parameters. In terms of 
the inflammatory markers, the loadings were mixed, with many show-
ing a positive, indication a diverse immune response. Nevertheless, 
it is crucial to recognize the variability in sex distribution within this 
cluster. A chi-squared test was performed on the contingency table 
of clusters and sex, and the results showed a significant difference 
(X-squared = 7.9471, df = 2, p = 0.02).

To provide a comprehensive understanding of this process, a full 
description of the variable importance is included in the supplemen-
tary data, which is represented in the form of a heatmap of the cen-
ters (Supplement Figure C). This heatmap serves as a visual repre-
sentation of the variables’ contribution to the k-means clustering and 
provides insight into their relative importance for each level of clus-
tering (1, 2, and 3), rather than for the individual levels of the ath-
letes’ variables.

DISCUSSION 
The present study examined established and novel biomarkers, such 
as various cytokines and cfDNA, in an acute exhaustive exercise 
setting with respect to sex differences. Acute increases in venous 
blood count markers and cfDNA were observed in male and female 
athletes, while cytokines were unaffected, except for IL-2 and IL-6, 

which showed larger increases in men. Male and female athletes 
exhibited similar acute responses in blood count markers. Cell-free 
DNA222 and cfDNA90 increased significantly in male and female 
athletes, with male athletes showing higher increases than their 
female counterparts. In contrast, post-exercise WBC and LYM con-
centrations were higher in female athletes. For questionnaires, only 
fatigue was affected by the exercise test. This study innovatively 
applies the k-means clustering method to detect potential distribu-
tions in biomarker profiles between biological sexes. Three distinct 
groups of athletes with varying proportions of female participants 
were identified. Notably, in the exclusively female cluster, relative 
changes in cytokines such as IL-2, IL-10, IL-13, and cfDNA90 were 
the primary markers that differed from the other clusters.

Cell-free DNA and cytokines have been increasingly adopted in 
studies of acute and chronic stress responses in recent years [31]. 
Particularly, cfDNA has demonstrated good reliability with marked 
acute responses during aerobic running [12], incremental testing [32], 
and intermittent exercise, even demonstrating a relationship with 
distance covered in soccer players [8]. In line with previous findings, 
cfDNA significantly increased after exercise testing, further highlight-
ing cfDNA as an exercise responsive biomarker. For the first time, 
sex differences were shown for both cfDNA90 and cfDNA222 (Fig-
ure 2A i, ii, and Table 2). The more pronounced increases in cfDNA 
concentrations in males may be attributed to the longer duration of 
the exercise test, higher LA concentration, and a higher relative PPO 
(Table 2) [31]. Hormonal differences, including menstrual cycle fluc-
tuations in women, could also contribute to sex differences in rela-
tive changes in cfDNA [33], although literature on this topic is 
scarce [34]. To our knowledge, only Pölcher et al. [34] have shown 
that cfDNA levels do not differ during the different phases of the 
menstrual cycle when studying healthy participants and cancer pa-
tients. Our study did not control for the menstrual cycle, which could 
have affected the immune response. Therefore, it remains to be de-
termined which factors impact sex differences in cfDNA.

Previous studies have shown an increase in cytokine concentra-
tions during prolonged running [11, 14] with athletes generally show-
ing an attenuated response [3, 35]. Our results showed slight sig-
nificant increases in IL-2 and IL-6 in males (Table 3), while other 
studies have demonstrated acute increases in other cytokines as well 
(e.g., TNF-α, IL-10, IL-1 receptor antagonist) [3, 10, 14, 18, 20, 35]. 
In particular, IL-6 has been identified as an exercise-sensitive bio-
marker [18]. Lobo et al. [20] observed similar responses in IL-6 lev-
els in females and males (2.8- and 2.3-fold) after a fatiguing aero-
bic exercise protocol, suggesting similar immunological responses 
between sexes. Conversely, we found a significant increase in IL-6 
concentrations in male participants, while baseline values in females 
were lower and did not change significantly. Bernardi et al. [21] 
found higher baseline values in IL-6, IL-1β, and TNF-α in healthy 
males compared to females.

Whole blood count markers (e.g., MCV, HGB, PLT, RBC, HCT, 
and MCHC) have been shown to be reliable and sensitive to acute 
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in cluster 1 (Supplement Figure C). In addition, our cluster classifi-
cation accounts for all levels of cytokine distributions, which is es-
sential for a comprehensive understanding of immune response. Sim-
ilar to a study by Xiong et al. [48], where k-means clustering was 
employed as part of a machine learning approach, aiming to eluci-
date the distribution patterns of cytokines and their significance in 
the context of cytokine release syndrome detection. Despite prior re-
search investigating biomarkers associated with exercise and phys-
ical performance, only one study has explored the potential differ-
ences in biomarker profiles based on biological sex and resulting 
clustering patterns [49].

Utilizing cluster analysis based on biological sex may provide in-
sights into potential sex-related differences in biomarker response to 
exercise. Furthermore, the holistic examination of multiple biomark-
ers remains essential for a comprehensive understanding of immune 
responses to exercise. Through k-means clustering, we identified dis-
tinct patterns among the biomarkers. However, it is important to note 
that the small sample size may limit the generalizability of the find-
ings. One inherent limitation of k-means clustering is its sensitivity 
to unbalanced group sizes. The algorithm aims to minimize within-
cluster variance, which can be dominated by larger clusters, poten-
tially overshadowing smaller but significant clusters [50]. To address 
these limitations and improve the robustness of our analyses, a larg-
er sample size with a more balanced sex distribution would be ben-
eficial. This would enable more robust statistical analyses and fur-
ther improve the machine learning predictions, enhancing the 
evaluation of the predictive power of the identified biomarkers. Con-
sequently, replication studies on a larger sample size would advance 
work in this area.

Our observations are limited to two time points and do not indi-
cate whether there are any cluster-specific effects in the kinetics of 
these biomarkers returning to baseline. In addition, the evaluation of 
the subjective assessment in the evening may have been influenced 
by uncontrolled factors (e.g., stress in personal and work life). This 
study did not control for the menstrual cycle phase of female partic-
ipants, which could have impacted the biomarker concentrations. 
Investigating menstrual shifts in hormonal status could provide fur-
ther detail regarding sex differences in the acute exercise response. 
Lastly, further analysis for biomarker sensitivity is essential as refer-
ence ranges for athletes are missing, and there are high intra-indi-
vidual differences. In particular, the cytokine results showed a cer-
tain variability and data were missing because there was not 
a concentration detected for each cytokine.

CONCLUSIONS 
In summary, our results identified exercise-sensitive biomarkers 
(cfDNA90, cfDNA222, and blood count markers) for monitoring the 
acute exercise response. While sex differences were found in certain 
blood count markers and cfDNA, the k-means cluster analysis revealed 
three distinct groups with varying proportions of female participants 
and different cytokine levels. This suggests that investigating 

exercise [18]. This is consistent with our results, as 15 biomarkers 
were acutely elevated in male and female participants, as an exer-
cise-induced stress response (Table 2). The highest overall increas-
es (2.0–2.7-fold) were observed in leukocytes (i.e., WBC, LYM, MO) 
which is in line with other studies [10, 20, 36]. Our data disagrees 
with the findings from Lobo et al. [20] who reported similar chang-
es in both sexes in WBC and LYM. However, the training protocol 
differed from the current protocol with participants having a lower 
training level compared to our participants [20]. Alis et al. [37] re-
ported, concurring with our results, an increase in platelets after ex-
haustive exercise. Low HGB concentration in athletes, specifically in 
females can be to the results of iron deficiency [38], even though 
our results showed no acute differences in male and female partic-
ipants. Conflicting results regarding sex differences and limited in-
formation for athletes persist about haematological markers and re-
quire further investigation [37].

Creatine kinase has been used in acute and chronic situations to 
monitor internal load and an immediate exercise-induced increase 
has been observed in various modes of exercise, in accordance with 
our data [39]. However, peak levels can be observed 48 hours to 
five days after exercise, and men generally have higher resting se-
rum CK concentrations than women [40–42]. Similarly, in our study, 
CK levels immediately increased after the exercise in two partici-
pants who had higher baseline values, while others increased slight-
ly (Figure 2B i). This shows that post-exercise CK levels have high 
variability, e.g., due to different types of responders [43, 44].

We observed no significant changes in subjective vitality, motiva-
tion, or energy (Table 4). However, motivation declined from morn-
ing to evening and reached borderline significance (p = 0.05). The 
original SVS by Ryan and Frederick [45] has shown to be influenced 
by long-term exercise, however, the SVS-GM has not been used in 
an acute exercise setting. Buchner et al. [25] reported an increase 
in vitality throughout the day in an everyday life scenario rather than 
an acute response. Hereby, it requires further investigation if lower 
exercise intensities than in our study lead to increases in subjective 
vitality. Fatigue increased significantly in male and female partici-
pants, reflecting the exhaustive nature of the exercise test (RPE > 19).

The study identified three distinct groups of athletes with differ-
ing proportions of female participants, which emphasizes the rele-
vance of sex-specific biomarker profiles and individualized exercise 
response within athletic populations. In the exclusively female clus-
ter, markers such as IL-2, IL-10, IL-13, and cfDNA90 were identi-
fied, suggesting the possibility of targeted interventions to modulate 
immune responses specifically in female athletes. In cluster 2 (pri-
marily composed of males), relevant markers included MO, IFN-y, 
LYM, and CK, whereas cluster 3 (featured both males and females) 
exhibited RBC, LYM, and CK markers. Since previous studies have 
reported mixed findings regarding sex-related differences in exercise-
induced immune responses [11, 14, 20, 21, 46, 47], it remains 
uncertain whether biological sex influenced the observed negative 
correlation between IL-2, IL-10, and IL-13 and female participants 
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sex-specific cytokine profiles, particularly related to IL-2, IL-10, IL-
13, and cfDNA90, may play a crucial role in exercise research and 
practice. Differences between women and men in certain biomarkers 
highlight the need for establishing a set of biomarkers for exercise 
testing and to further investigate sex differences in athletes.
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SUPPLEMENT FIGURE A: Heatmap of Spearman’s correlation matrix of log-scaled data. This figure shows the heatmap of the 
Spearman’s correlation matrix of the log-scaled data. The heatmap provides a visual representation of the correlations between each 
pair of variables, with red indicating positive correlations and blue indicating negative correlations.

SUPPLEMENT FIGURE B: Plot of WSS versus number of clusters. This figure shows the plot of the Within-Cluster-Sum-of-Squares 
(WSS) versus the number of clusters in the K-means algorithm. The WSS is a measure of the sum of distances between data points 
and the centroid of their respective clusters. The plot provides a visual representation of how the WSS changes with the number of 
clusters, and can be used to determine the optimal number of clusters.
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SUPPLEMENT FIGURE C: Heatmap of Cluster Centers. This figure shows the heatmap of the cluster centers after being clustered 
using the K-means algorithm with 3 clusters. The heatmap provides a visual representation of the cluster centers, which are the 
average of the data points in each cluster. The center values represent the importance of each variable in representing the cluster.


