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ABSTRACT: Currently, there is limited evidence regarding various neurophysiological responses to strength 
exercise and the influence of the adopted practice schedule. This study aimed to assess the acute systemic 
effects of snatch training bouts, employing different motor learning models, on skill efficiency, electric brain 
activity (EEG), heart rate variability (HRV), and perceived exertion as well as mental demand in novices. In 
a within-subject design, sixteen highly active males (mean age: 23.13 ± 2.09 years) randomly performed snatch 
learning bouts consisting of 36 trials using repetitive learning (RL), contextual interference (blocked, CIb; and 
serial, CIs), and differential learning (DL) models. Spontaneous resting EEG and HRV activities were recorded 
at PRE and POST training bouts while measuring heart rate. Perceived exertion and mental demand were 
assessed immediately after, and barbell kinematics were recorded during three power snatch trials performed 
following the POST measurement. The results showed increases in alpha, beta, and gamma frequencies from 
pre- to post-training bouts in the majority of the tested brain regions (p values ranging from < 0.0001 to 0.02). 
The CIb model exhibited increased frequencies in more regions. Resting time domain HRV parameters were 
altered following the snatch bouts, with increased HR (p < 0.001) and decreased RR interval (p < 0.001), 
SDNN, and RMSSD (p values ranging from < 0.0001 to 0.02). DL showed more pronounced pulse-related 
changes (p = 0.01). Significant changes in HRV frequency domain parameters were observed, with a significant 
increase in LFn (p = 0.03) and a decrease in HFn (p = 0.001) registered only in the DL model. Elevated HR 
zones (> HR zone 3) were more dominant in the DL model during the snatch bouts (effect size = 0.5). Similarly, 
the DL model tended to exhibit higher perceived physical (effect size = 0.5) and mental exertions (effect size 
= 0.6). Despite the highest psycho-physiological response, the DL group showed one of the fewest significant 
EEG changes. There was no significant advantage of one learning model over the other in terms of technical 
efficiency. These findings offer preliminary support for the acute neurophysiological benefits of coordination-
strength-based exercise in novices, particularly when employing a DL model. The advantages of combining EEG 
and HRV measurements for comprehensive monitoring and understanding of potential adaptations are also 
highlighted. However, further studies encompassing a broader range of coordination-strength-based exercises 
are warranted to corroborate these observations.

CITATION:  Ammar A, Boujelbane MA, Simak ML et al. Unveiling the acute neurophysiological responses to 
strength training: An exploratory study on novices performing weightlifting bouts with different 
motor learning models. Biol Sport. 2024;41(2):249–274.

Received: 2023-11-12; Reviewed: 2023-11-21; Re-submitted: 2023-11-27; Accepted: 2023-12-03; Published: 2023-12-18.

Original Paper DOI: https://doi.org/10.5114/biolsport.2024.133481

Key words:
EEG
Brain activity
HRV
Autonomic nervous system
Olympic snatch
Exertion
Mental demand

Corresponding author:
Achraf Ammar
Sport Sciences, Department
of Training and Movement 
Science, Institute of Sport 
Science, Johannes 
Gutenberg-University Mainz, 
55128 Mainz, Germany
E-mail: ammar.achraf@ymail.com 
acammar@uni-mainz.de

ORCID:
Achraf Ammar
0000-0003-0347-8053

Mohamed Ali Boujelbane
0000-0002-6243-9321

Marvin Leonard Simak
0000-0003-2979-0985

Irene Fraile-Fuente
0009-0004-9719-4290
Nikolas 
Rizzi:0000-0002-0477-4295

Jad Adrian Washif
0000-0001-8543-4489

Piotr Zmijewski
0000-0001-8933-4127

Haitham Jahrami
0000-0001-8990-1320

Wolfgang I. Schöllhorn
0000-0002-4558-1991

© Institute of Sport – National Research Institute



250

Achraf Ammar et al. Neurophysiology, motor learning models and strength training

INTRODUCTION
A debate on the most effective motor learning theories for optimizing 
skill acquisition and neurophysiological adaptation is often “heated” 
and recurring topic among sports scientists, physical education teach-
ers, and coaches. The most discussed motor learning approaches in 
sports within this context include repetitive learning (RL), variability 
of practice (VP), contextual interference (CI), and differential learn-
ing (DL), although only the RL and DL have been designed for the 
field of sports [1].

Historically, the RL model, initially popularized by psychologists’ 
animal experiments, is rooted in the early theories of learning, and 
often associated with early behaviorist principles of learning. The RL 
model emphasized the importance of repeating correct trials for op-
timal skill acquisition. The belief was that through repetition of cor-
rect movements, the motor system becomes more efficient, and the 
learner can perform the specific skills with greater precision and ac-
curacy. However, over time, this theory was challenged. Initially, just 
following the theory of behaviorism, there was a primary focus on 
inducing changes in movement behaviors by manipulating external 
stimuli, including variations in instructions, equipment, environmen-
tal factors, etc. [1]. Subsequently, in the second half of the 20th cen-
tury, the emergence of other models, such as the VP and CI, intro-
duced a shift of variations from the system’s environment toward the 
system itself, represented by the learner. Both models involve task 
differentiation, with the VP model varying only the variable param-
eters, such as absolute timing, absolute forces, etc. [2], while the 
CI model extends this differentiation to “invariants” (i.e., the gener-
alized motor programs (GMP)) for learning multiple movements in 
parallel and the schedule (i.e., temporal structuring of the learning 
process) [3, 4].

More recently, in the late 1990s, the DL model emerged [5, 6], 
asserting that effective learning requires the more general introduc-
tion of differences facilitated by the incorporation of stochastic per-
turbations or noise [7, 8] that is finely tuned to the learner’s individ-
ual and situational characteristics during the learning process [1, 9]. 
The origin of this model was derived from a variety of other recent 
research areas. These research areas primarily include (i) the study 
of individuality in whole-body movements and their non repeatabil-
ity [10–12]; (ii) principles related to system dynamics, involving the 
direct or indirect amplification of observed fluctuations to destabi-
lize the system and initiate controlled or guided self-organizing learn-
ing processes; (iii) the application of this approach to large degrees 
of freedom (DGF) movements and the integration of its principles 
with other models such as CI [1]; and (iv) the utilization of machine 
learning, specifically artificial neural network (ANN) training meth-
ods for pattern recognition, recently used as a valuable tool for quan-
tifying similarities and classifying skills [13–16].

While the RL model aims to map changing behavior/thinking by 
repetitively imitating a role model, the DL model, in its most extreme 
interpretation, involves no repetition and no augmented feedback. 
In between, the CI model originally involves learning a single 

movement through repetitions that are interleaved with other move-
ments [17–19]. Meanwhile, the CI model is most often applied to 
the parallel learning of multiple movements (i.e., more than one fine 
motor skill is practiced in either random or serial order) but consid-
ers movement and target errors as destructive to learning progress. 
In contrast, DL suggests that only differences (facilitated by adding 
stochastic perturbations during the acquisition process) allow learn-
ing to occur and considers errors, which always occur during RL, as 
essential fluctuations that have a constructive influence on learning 
through a real self-organizing process where no concrete informa-
tion about the solution is provided [5, 6, 20, 21].

In studies investigating the CI effect, structured practice setting 
usually involves two primary forms, namely, blocked and random 
practices. In blocked practice, learners perform all trials of a task be-
fore transitioning to a different task with diverse variable parameters 
according to the VP model. This approach minimizes the variability 
of the invariants and allows for repeated task performance [22]. In 
contrast, random practice involves interleaving tasks with different 
GMPs in an unpredictable order, with tasks rarely repeated in con-
secutive trials [22]. The paradoxical two effects of CI assume that 
random practices hinder performance during the acquisition phase 
while providing more permanent benefits during the retention or 
learning phase compared to blocked practice [3, 4].

The advantages of the second effect, random practice in the re-
tention phase, were most often attributed to either increased elabo-
ration, assumed to involve learners in deeper and more elaborate in-
formation processing [23], or increased forgetting and reconstruction, 
which requires extra retrieval practice and reconstruction of tasks’ 
plans of action [24, 25]. Based on both theoretical positions, dur-
ing random practice, a more detailed and permanent representation 
of the task is being memorized, which may be the origin of the en-
hanced retention performance. Regarding the reduced likely bene-
fits of a random schedule during the acquisition phase, these theo-
retical positions rely on cognitive load theory [26], suggesting 
overloading the capacity of working memory during random practice 
to hinder performance during the acquisition phase, causing the first 
effect.

Taking into consideration the abovementioned cognitive-psycho-
logical explanations regarding the interference phenomenon, further 
overloaded cognitive abilities are expected following DL compared to 
CI practice because of higher variety of movements in the DL acqui-
sition sessions. According to the overload of working memory [26], 
one should anticipate relatively modest improvements in newly ac-
quired skills during the acquisition phase following the DL compared 
to the CI schedule. Moreover, in the context of DL, the putative cor-
rect skill is executed only once, and since the added noise corresponds 
to erroneous movements, one can anticipate generally poor learning 
outcomes. Nevertheless, previous studies on DL contradict the cog-
nitive overload theory and non-erroneous movements in the CI mod-
el and provide evidence supporting the superiority of stochastic DL 
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training, already during the acquisition phase, over repetition-based 
training in the context of learning a single movement [13, 27–32], as 
well as over CI learning in the context of learning multiple skills simul-
taneously in football [32] and volleyball [27, 28, 33].

The failure of the CI-related cognitive load theory to corroborate 
the superiority of DL over CI acquisition practice can be attributed 
to the fact that the working memory model relied upon by CI was 
originally developed only for sequential, visual-spatial content [34], 
a domain where the model still demonstrates its highest reliability. 
Therefore, a comprehensive explanation based on reliable neurophys-
iological measurements is still needed to elucidate how DL practice 
exhibited the largest short-term benefits while being assumed to fur-
ther overload the learner’s cognitive abilities compared to CI and RL.

Neurophysiological evidence from MRI and EEG research sup-
ports the theoretical constructs of the different motor learning mod-
els. Findings from MRI studies provided evidence for corroborating 
different brain activations during blocked vs. randomized prac-
tice [35, 36]. However, this has only been observed in movements 
with few DGFs due to restrictions associated with the available mea-
surement devices. Additionally, these studies only compared differ-
ent levels of CI practice, with no emphasis on comparative measure-
ments between CI and DL. Comparing brain activity immediately 
after RL, CI, and various forms of DL practice in badminton, previ-
ous EEG-based studies have shown distinct patterns [37, 38]. After 
CI practice, an increase in gamma and beta frequencies has been 
recorded in the frontal lobe, indicating the engagement of executive-
ly controlled cognitive processes [38]. In contrast, following all forms 
of DL practice, increases in theta and alpha activities were obtained 
in somatosensory and motor areas, while activation in the frontal 
cortex was downregulated toward increased theta and decreased 
beta and gamma frequencies [38]. This shift in the anterior brain ar-
eas suggests that the CI model may induce increased cognitive stress 
in badminton learners when compared to DL [37, 38]. In this con-
text, recent reports have suggested that the wide range of skill vari-
ations in DL acts as a mitigating factor, reducing the risk of medium- 
and long-term frontal lobe overload, which in turn aids in the motor 
learning of movements with a high DGF [1, 38, 39]. However, ad-
ditional neurophysiological comparative studies are necessary to val-
idate this explanation across a broader spectrum of sports skills. On 
the other hand, combining high CI practice (random) with complex 
and highly demanding motor tasks could exacerbate cognitive load, 
thereby reducing the likely benefits of random practice. Again, such 
assumptions need to be proven using reliable neurophysiological 
measurements during the acquisition of highly demanding sport skills 
with high DGF.

According to Cioroslan [40], Olympic weightlifting is a sport of 
outstanding neuromuscular coordination, fine kinesthetic perception, 
agility, and the ability to perform explosive movements in a specific 
line of technique with maximum accuracy. Additionally, Olympic 
weightlifting exercises, acknowledged as the most intense and de-
manding strength exercises, are among the few exercises with high 

DGF that involve the entire body musculature by activating complete 
muscle chains [41]. It is worth noting that the majority of neuro-
physiological studies have concentrated on endurance-based sports, 
leaving a notable gap in our understanding regarding brain activity 
responses to strength-based exercises [42], such as weightlifting 
(e.g., snatch, clean and jerk). These exercises present an excellent 
opportunity to empirically investigate motor learning related assump-
tions discussed above, using reliable neurophysiological measure-
ments. In this context, electroencephalogram (EEG) is a commonly 
used tool in research to monitor the brain’s electrical activity. It ef-
fectively provides insights regarding brain waves in different frequen-
cy bands, including the theta (4–7.5 Hz), alpha (8–13 Hz), beta 
(13–30 Hz), and gamma (30–40 Hz) signals, which are the crucial 
indicators for understanding neurophysiological states or responses 
to the different motor learning tasks. Furthermore, recent studies 
have emphasized the role of the autonomic nervous system in reg-
ulation of mental stress level, cognitive functioning, and motor per-
formance [43–45]. Indeed, a greater heart rate variability (HRV) has 
been associated with reduced stress level and enhanced cognitive 
and motor functioning [43, 45]. Therefore, it is pertinent to incorpo-
rate HRV parameters as part of neurophysiological measurements 
within the domain of motor control.

Nonetheless, only a few studies have concurrently assessed both 
EEG and HRV while also controlling the rates of perceived exertion 
(RPE) during exercises with high DGF performed following different 
motor learning approaches. For instance, John and Schöllhorn [46, 47] 
compared the effects of RL and DL approaches, including instruct-
ed and self-created variable learning, for learning rope skipping move-
ments on multiple neurophysiological responses. The authors sug-
gested that combining rope skipping with additional cognitively 
demanding tasks in the form of the DL approach might lead to short-
term cognitive overload. They also emphasized the promising, yet 
inconclusive advantages of DL over RL and highlighted the need for 
further research, including the CI approach, to comprehensively ex-
plore the reciprocal influence of cardiac and central nerve strains in 
greater detail.

In view of the limited evidence regarding the impact of different 
motor learning approaches on technical efficiency and the accom-
panying neurophysiological aspects, specifically in response to 
strength-based exercise, the present study aimed to investigate the 
acute systemic effects of three different motor learning models, name-
ly, the RL, CI, and DL, on the technical efficiency the Olympic snatch, 
along with EEG brain activity and HRV responses in novice learners. 
This research seeks to provide a more comprehensive understand-
ing of the complex interplay between cognitive load, practice varia-
tions, and brain and autonomic nervous system activation patterns. 
Such insights are crucial for customizing training interventions and 
optimizing skill acquisition and performance in diverse motor learn-
ing contexts.

We hypothesize that, due to the increased mental effort involved 
in the execution of various coordination tasks, the DL approach would 
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coded with numbers for the anonymity of personal data. The study 
was approved by the local ethics committee of Faculty 02: Social 
Sciences, Media, and Sport at Johannes Gutenberg University of 
Mainz.

Experimental design
A randomized within-subject design was employed to assess the 
short-term effects of four different motor learning approaches. After 
a familiarization session, participants reported to the laboratory on 
four separate occasions, with at least a one-week washout period in 
between. In a randomized order, during each test session, one single 
motor learning approach was conducted in a single training bout. 
This training bout consisted of 36 trials of power-snatch derivates 
according to one of the four tested motor learning approaches: RL, 
CI blocked (CIb) or CI serial (CIs), and DL, with a standardized dura-
tion of ≈ 3 minutes. The sequence of motor learning approaches was 
randomized, and all test sessions were performed at the same time 
of day (in  the afternoon, as previously suggested by Ammar 
et al., [50, 51]) to minimize the effect of diurnal biological varia-
tions [52]. The measurements were carried out under laboratory 
conditions. Changes in brightness, volume, and temperature were 
standardized and kept to a minimum.

The procedure for each testing session is detailed in Figure 1. 
Upon arrival at the laboratory, participants completed the short form 
of the International Physical Activity Questionnaire (IPAQ-SF) and 
questions 4 and 6 of the Pittsburgh Sleep Quality Index (PSQI). These 
questionnaires were used to assess their physical activity behaviors 
and sleep duration and quality over the previous 7 days prior to test-
ing. Spontaneous EEG activity and electrocardiography (ECG) HRV 
were recorded in a sitting position with eyes open before (PRE-rest, 
duration: 5 min) and after (POST-rest, duration: 5 min) each 

engage more regions of the cortex than RL and CI, particularly at the 
somatosensory and motor areas. In contrast, CI would specifically 
involve executive processing in the frontal area. Additionally, we hy-
pothesize that DL would lead to a lower activation of the sympathet-
ic system through a decrease in the high-frequency band and an in-
crease in the low-frequency band, as well as a greater perceived 
exertion and mental demand.

MATERIALS AND METHODS 
Participants
The sample size was calculated a priori based on procedures sug-
gested by Beck [48] and using the software G∗power [49]. Values 
were set at 0.05 for α and 0.95 for power. Based on the studies of 
John & Schöllhorn [46] and discussions between the authors, the 
effect size was set to be 0.5 (medium effect). The minimum needed 
sample size for this study was 10. Sixteen highly active males were 
recruited to voluntarily participate in this study. After receiving a de-
scription of the protocol, potential risks, and benefits of the study, 
participants gave their written consent to participate in this investiga-
tion. The criteria for participant inclusion in the present study are as 
follows: all participants should be aged between 18 and 29 years old, 
male, right-handed as assessed by the Edinburgh Handedness Inven-
tory, and should have at least 2 years of experience in fitness and/or 
CrossFit club (i.e., including at least 6 months of performing barbell-
based exercises). Exclusion criteria included previous experience in 
Olympic weightlifting, current or a history of neurological and/or car-
diovascular impairment, eye disorders, psychiatric illnesses, orthope-
dic diseases, and/or muscular disorders, and the intake of medication 
that may have influenced EEG brain activity and/or HRV.

The study was conducted according to the Declaration of Helsin-
ki; all subjects were naive to the purpose of the study and were 

FIG. 1. Study Design.



Biology of Sport, Vol. 41 No2, 2024   253

Achraf Ammar et al. Neurophysiology, motor learning models and strength training

training session. Ratings of perceived exertion (RPE) and perceived 
physical and mental demand (NASA Task Load Index_NASA-TLX) 
were assessed immediately following each training bout. Additional 
HR was recorded using the Polar H10 HR monitor during each train-
ing bout. To determine the effects of the different learning approach-
es on technical efficiency, barbell kinematics were recorded during 
three-power snatch trials performed following the POST-rest mea-
surement (Figure 1).

Motor Learning Approaches
The training bouts for the RL approach consisted of 36 repetitions 
of power snatch. The training bouts of both CI approaches (CIb and 
CIs) included the power snatch and two power snatch variations: the 
snatch power jerk (known to improve overhead strength, stability, 
balance, and barbell control in the catch phase; Soriano et al. [53]) 
and the high pull snatch (known to improve strength, speed, power, 
posture, and balance in the extension of the snatch; [54]). Specifi-
cally, the training bout of the CIb approach consisted of practising 
high pull snatch (A), snatch power jerk (B), and power snatch (C) in 
blocked order: 12 reps (A), 12 reps (B), and 12 reps (C) for a total 
of 36 trials. The training bout of the CIb approach consisted of 
practising high pull Snatch (A), snatch power jerk (B), and power 
snatch (C) in serial order: ABC × 12, with a total of 36 trials.

These three movements were also practiced in serial order 
(ABC × 12 with a total of 36 trials) during the training bout of the 

DL approach. However, variations in different movement/environ-
mental parameters, such as foot starting position (for A, B, and C), 
barbell starting position (for A and C), final positions (for B), eyes 
closed (for A, B, and C), and/or unstable surface (using the aeris® 
muvmat [55] for A, B, and C), have been adopted to generate addi-
tional movement variability and increase fluctuations. In general, DL 
training applies movement variations and increased fluctuations to 
make the system unstable and thereby foster a self-organized learn-
ing process by achieving greater effects on brain activity [56]. In ad-
dition to the referential condition (no additional movement variabil-
ity), three levels of movement variability are identified in the present 
power snatch DL approach: level 1: variation in only one movement/
surrounding parameter; level 2: variation in 2 movement/surround-
ing parameters; and level 3: variation in 3 movement/surrounding 
parameters.

To homogenize physical (cardiac) exertion in all motor learning 
approaches according to exhaustion influence on brain activi-
ty [57, 58] as well as on the cardiovascular system [59, 60], a nine-
second interblock (12 repetitions) rest period was adopted in the RL 
and both CI conditions (total rest period of 18 seconds during the 
36 trials), and a six-second inter-set rest period was adopted in the 
DL condition (total rest period of 18 seconds during 36 trials). This 
procedure allowed us to adopt a standardized training bout duration 
of ≈ 3 minutes. Furthermore, the training bouts for all approaches 
were performed using the same empty barbell (10 kg).

FIG. 2. Scalp location.
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A bandpass filter was set from 2–40 Hz. Independent component 
analysis (ICA) was performed to deduce recurrent movement from 
the signal, such as eye blinks, muscle activity, or channel noise. Im-
paired electrodes were interpolated using a spherical spline interpo-
lation method [63]. A final visual inspection of the time series and 
the power spectrum was conducted to remove any remaining 
artifacts.

Spectral power was calculated for each testing session using fast 
Fourier transformation with a Hanning window, a window size of 
4,096 samples (4  s), and a window overlap of 50% for the-
ta [3.5–7.5 Hz], alpha [7.5–12.5 Hz], beta [12.5–30 Hz], and gam-
ma [30–40 Hz]. Band ranges were chosen according to previous 
studies that involved movement and EEG [38, 47, 55, 64]. The 
power spectrum was computed for each test session.

Heart rate and heart rate variability (HRV) measurements
Before and immediately after the different training bouts, HRV pa-
rameters were measured using a Polar H10 HR monitor with a Pro 
Strap (Polar Electro Oy, Kempele, Finland). The Polar H10 system 
measures the electrical signal of the heart in the form of a 1-channel 
electrocardiogram (ECG) signal using two dry electrodes. From the 
ECG signal, the R-peaks are detected to derive the RR interval time 
series. Both the ECG quality [65] and the quality of the derived RR 
intervals [66, 67] using Polar H10 were previously compared to the 
gold standard ECG measurement using a 12-channel medical-grade 
ECG device and found to be excellent.

HRV measurement and analysis
Prior to the test sessions, the Polar H10 electrodes were moistened 
with room-temperature water prior to being placed on the xiphoid 
process of the sternum with the chest strap fitted around the par-
ticipant’s chest (just below the chest muscles) [55, 68]. The Android 
app “Polar Sensor Logger” [69] was used to record the RR intervals. 
Five minutes of resting in an upright sitting position was recorded. 
The recorded data were later imported and analyzed in Kubios HRV 
Standard 3.5.0 analysis software [70]. Using Kubios, artifact re-
moval and detrending were performed as necessary preprocessing 
steps. Therefore, RR intervals that were larger or smaller than a set 
threshold compared to the local average were corrected by replacing 
the identified artifacts with interpolated values using cubic spline 
interpolation. The threshold was adjusted individually but was gen-
erally in the range of 0.25–0.35 seconds (low or medium threshold). 
Afterwards, the smoothness priors detrending method [71] was used 
to avoid the effect of slow nonstationary trends in the analysis.

Using the preprocessed RR intervals, several time- and frequen-
cy-domain parameters were calculated. From the time domain, we 
chose the most often used parameters for short-term analysis, which 
are the mean (MeanRR), the standard deviation (SDNN) and the 
root mean square of successive differences (RMSSD) of the RR in-
tervals. We also analyzed the lowest (HR-min) and highest (HR-max) 
values, as well as the average of HR values (HR-mean). To calculate 

Measurements
Physical activity and sleep pattern
The IPAQ-SF has been extensively validated in different cultures and 
populations [61]. The total weekly PA (MET-min · week-1) was esti-
mated by multiplying the reported weekly time for each IPAQ-SF 
item (vigorous intensity, moderate intensity, and walking) by their 
respective metabolic equivalent of task (MET) values [62]. We utilized 
the original MET values recommended by the official IPAQ guidelines 
for young and middle-aged adults (18–65 years old): vigorous PA = 
8.0 METs, moderate PA = 4.0 METs, and walking = 3.3 METs. 
Following the IPAQ scoring protocol, participants in the study were 
categorized into three groups based on their MET–min/wk, which 
represents the cumulative sum of walking, moderate-intensity phys-
ical activities, and vigorous-intensity physical activities: lowly active 
(<  600 MET–min/wk), moderately active (600 MET–min/
wk ≤ PA < 3000 MET–min/wk), and highly active (≥ 3000 MET–min/
wk) (http://www.ipaq.ki.se).

Electroencephalogram (EEG) measurement
EEG Data Acquisition
Spontaneous resting EEG was assessed by means of the Micromed 
SD LTM 32 BS EEG system (Venice, Italy) with a sampling rate of 
1024 Hz. This EEG system is composed of 19 electrodes, including 
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, 
T6, O1, and O2, organized according to the international 10–20 
system. The 10–20 system is based on the relationship between the 
electrode location and the subregions of the cerebral cortex. Each 
point on the system indicates a possible position for the electrode, 
with a letter to identify the lobes and a number to identify the hemi-
sphere. The 10–20 system ensures accurate electrode placement, 
enabling researchers to obtain reliable EEG signals. Resting EEG 
signals were continuously registered before (5 min) and after (5 min) 
the different training bouts in a sitting position. For all EEG measure-
ments, a homogeneous and low impedance (< 10 kΩ) of the elec-
trodes at all points was sought. Five scalp locations (Figure 2), fron-
tal “F” (Fp1, Fp2, F7, F3, Fz, F4, F8), central “C” (C3, Cz, C4), 
temporal (left (T-L): T3, T5; right (T-R): T4, T6), and parietal-occip-
ital “P/O” (P3, Pz, P4, O1, and O2), were chosen to gather the 
signals from the 19 electrodes. The conduction of brain activity was 
unipolar, with grounding on the nose. Furthermore, a two-channel 
electrooculogram with electrodes at the medial upper and lateral 
orbital rims of the right eye was applied. Data were recorded by 
means of commercially available software (SystemPlus Evolution—
Micromed, Venice, Italy).

EEG data preprocessing and analysis
Once the raw signals were recorded, we exported them to MATLAB 
(EEGLAB-Toolbox 2019 from the University of California, San Diego) 
for processing.

The data were first visually inspected to remove noisy segments 
related to electrode placement or technical disturbances. 
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the frequency parameters, the time series was resampled to 4 Hz, 
and the FFT spectrum was derived using Welch’s periodogram. The 
low frequency (LF, 0.04–0.15  Hz) and high frequency (HF, 
0.15–0.4 Hz) power (n.u.) and the LF/HF ratio were computed from 
the FFT spectrum. Furthermore, we calculated the coefficient of vari-
ation (CVNN) by the formula CVNN = 100 * SDNN/MeanRR. The 
CVNN tries to minimize the mathematical dependence of the stan-
dard deviation from the mean through normalization.

HR zones
HR zones are a useful method for monitoring training intensity [68]. 
These zones categorize training intensity based on a percentage of 
the maximum heart rate and are commonly divided into five ranges. 
For our study, we adhered to the Polar recommendations for each 
HR zone (https://www.polar.com/blog/running-heart-rate-zones-ba-
sics/): Zone 1 (50–60%), Zone 2 (60–70%), Zone 3 (70–80%), 
Zone 4 (80–90%), and Zone 5 (90–100%). The time spent in each 
HR zone was calculated as a percentage of the whole training bout 
time (e.g., spending 1 minute in zone 3 during the three-minute 
training bouts corresponds to 33.3%). Similar to the HRV, HR zones 
were controlled using the Polar H10 HR monitor with a Pro Strap 
(Polar Electro Oy, Kempele, Finland).

Rating of perceived exertion (RPE)
The RPE was obtained immediately following each training bout 
using an 11-point scale, with scores ranging from 0 (very, very light) 
to 10 (very, very hard). An intraclass correlation coefficient (ICC) of 
0.83 showed that RPE was a good measure of physical effort. It also 
had good psychometric properties and a strong correlation with 
a number of other physiological measures of effort [72].

Subjective mental workload
The subjective rating of mental workload was assessed using the 
NASA-Task Load Index scale (NASA-TLX). The NASA-TLX uses six 
subscales to assess mental workload, including mental demand, 
physical demand, temporal demand, performance, effort, and frustra-
tion [73]. In the present project, we focused on the analysis of 
mental demand.

Kinetic and kinematic measures
The three snatch trials performed on a 2.4 × 0.9 m weightlifting 
platform were recorded using nine synchronized, commercially avail-
able infrared cameras (Oqus 300/310+, Qualisys AB, Sweden) 
positioned around the platform at a distance of ~6 m from the lifting 
area, and kinematic data were collected at 250 Hz using Qualisys 
Track Manager 2.7 (Qualisys AB, Sweden). Two reflective markers 
were attached to the right and left ends of the barbell, and the cali-
bration was executed beforehand using a calibration wand according 
to the Qualisys manual.

As suggested by Kipp, Harris, and Sabick [74], during postpro-
cessing, the barbell data were filtered by means of a 2nd-order 

Butterworth filter with a cutoff frequency of 20 Hz. Computations of 
vertical and horizontal barbell displacements were conducted using 
the average location of the right and left markers on the barbell. The 
average of both markers provides movement of the bar center and 
avoids the induction of artifacts associated with asymmetrical move-
ment [75, 76]. In the present study, we focused on the peak verti-
cal displacement of the barbell registered during the turnover phase 
and on three key horizontal displacement values, which include the 
maximal horizontal displacement during the first pull (mh1) and the 
second pull (mh2) and the horizontal displacement from the most 
forward position to the catch position (DXL or loop) [41, 75–77].

Statistical analyses
Mean and standard deviation (SD) values were calculated for each 
variable. The Shapiro-Wilk W-test was used to verify normal distribu-
tion of data. A two-way repeated measures analysis of variance 
(RMANOVA) (i.e., 4 levels [motor learning approaches] × 2 lev-
els [PRE/POST-training]) was used to analyze the EEG and HRV data, 
and a one-way analysis of variance (RMANOVA) (4 levels [motor 
learning approaches: RL, CIb, CIs, and DL]) was used to analyze 
differences between training practices in terms of HR zones during 
the training bouts, perceived exertion and perceived mental workload, 
and barbell displacements. When the main effects were found to be 
significant, post hoc t tests with Bonferroni correction or Wilcoxon 
tests were used. The equality of variances (homogeneity) was verified 
using Bartlett’s test. To estimate the meaningfulness of significant 
differences, effect sizes were calculated as partial eta-squared (ηp2) 
for the main effects and the interaction between them and as Cohen’s 
d (d) for the paired comparison. Values of 0.01, 0.06, and 0.13 for 
partial eta-squared and 0.2, 0.5, and > 0.8 for Cohen’s d represent 
small, moderate, and large effect sizes, respectively. To estimate the 
magnitude of significant differences, difference (Δ) or percent differ-
ence (Δ (%)) scores were calculated as follows: Δ =postbouts value 
– prebouts value; Δ (%)=[((post value – pre value))/(pre value)] × 100. 
The differences between training models in terms of Δ, particularly 
for EEG and HRV parameters, were analyzed using a one-way 
RMANOVA (4 levels [motor learning approaches: RL, CIb, CIs, and 
DL]). Additionally, relationships between EEG and HRV-related pa-
rameters at post-training bouts were analyzed using the Pearson 
correlation coefficient (r). Significance was accepted for all analyses 
at the level of p < 0.05. Exact p values have been given; results 
given as ‘‘0.000’’ in the statistics output have been reported as 
‘‘ < 0.0005’’.

RESULTS 
Participants’ characteristics
Sixteen highly active athletes (mean age: 23.13 ± 2.09 years) were 
recruited to participate in this study. Their average body mass index 
(BMI) was 24.14 ± 2.17, indicating a normal weight range. All par-
ticipants reported no chronic diseases or sleep disturbances. They 
reported a fairly good to very good level of sleep quality. Regarding 
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TABLE 1. The acute effect of the weightlifting training bouts on resting brain activity for theta, alpha, beta, and gamma frequencies.

 
 

Pre-Training bouts Post-training bouts ANOVA 2 ways

CIb CIs DL R CIb CIs DL R
Interaction 

Group × Training  
(F, p value, ηp²)

Group effect  
(F, p value, ηp²)

Training effect  
(F, p value, ηp²)

Theta frequency (N ± SD)  

F
0.85

± 2.09
0.87

± 2.45
1.81

± 2.14
1.43

± 2.3
1.22

± 2.36
1.34

± 2.35
1.46

± 2.38
1.28

± 2.93
(F=1.26, p=0.30, 
ηp²= 0.06) 

(F=0.24, p=0.87, 
ηp²= 0.01) 

(F=0.17, p=0.68, 
ηp²= 0.003) 

C
4.66
± 2

4.77
± 2.28

5.27
± 2.16

4.92
± 2.39

5.08
± 2.52

5.04
± 2.69

5.25
± 2.72

5.15
± 2.68

(F=0.32, p=0.82, 
ηp²= 0.02) 

(F=0.10, p=0.96, 
ηp²= 0.01) 

(F=1.09, p=0.31, 
ηp²= 0.02) 

T-L
2.87

± 2.36
2.93

± 2.21
3.74

± 2.59
3.57

± 2.66
3.22

± 3.34
3.22

± 3.01
3.47

± 3.84
3.72

± 2.96
(F=0.68, p=0.57, 
ηp²= 0.03) 

(F=0.25, p=0.86, 
ηp²= 0.01) 

(F=0.20, p=0.66, 
ηp²= 0.003) 

T-R
3.08

± 2.79
3.25

± 2.63
3.59

± 2.62
3.36

± 2.81
3.41

± 3.03
3.17

± 3.22
3.78

± 2.98
3.8

± 2.95
(F=0.46, p=0.71, 
ηp²= 0.02) 

(F=0.13, p=0.94, 
ηp²= 0.01) 

(F=1.86, p=0.18, 
ηp²= 0.03) 

P/O
5.02

± 2.37
5.25

± 2.5
5.55

± 2.56
5.36

± 2.62
5.38

± 2.96
5.59

± 2.98
5.73

± 3.09
5.83

± 2.74
(F=0.11, p=0.96, 
ηp²= 0.01) 

(F=0.10, p=0.96, 
ηp²= 0.01) 

(F=4.54, p=0.04, 
ηp²= 0.08) 

Alpha frequency (N ± SD)  

F
-0.16

± 3.08
-0.45

± 3.03
0.26

± 2.92
0.33

± 3.22
0.58

± 3.04
0.43

± 2.74a
0.55

± 2.94
0.67

± 2.99
(F=1.18, p=0.33  
ηp²= 0.06) 

(F=0.10, p=0.96, 
ηp²= 0.01) 

(F=17.05, p=0.0001, 
ηp²= 0.22) 

C
4.79

± 3.35
4.55

± 3.27
4.97

± 3.3
4.91

± 3.48
5.75

± 3.46a
5.4

± 3.38
5.75

± 3.27
5.93

± 3.23a
(F=0.17, p=0.91  
ηp²= 0.01) 

(F=0.06, p=0.98, 
ηp²= 0.003) 

(F=45.89, p < 0.0001, 
ηp²= 0.43) 

T-L
4.24

± 3.86
4

± 3.46
4.75

± 3.54
4.91

± 3.8
5.05

± 4.01
4.93

± 3.6
5.29

± 4.12
5.54

± 3.16
(F=0.37, p=0.77, 
ηp²= 0.02) 

(F=0.14, p=0.94, 
ηp²= 0.01) 

(F=24.98, p < 0.0001, 
ηp²= 0.30) 

T-R
4.87

± 4.37
4.97

± 3.78
5.11

± 3.71
5.13

± 4.11
5.68

± 4.23
5.24

± 4.28
5.94

± 3.38a
6.27

± 3.63a
(F=1.05, p=1.95, 
ηp²= 0.13) 

(F=0.07, p=0.98, 
ηp²= 0.004) 

(F=18.49, p < 0.0001, 
ηp²= 0.36) 

P/O
7.55

± 3.92
7.73

± 3.86
7.88

± 3.74
8.05

± 3.89
8.55

± 4.04a
8.73

± 3.93a
8.93

± 3.57a
9.07

± 3.42a
(F=0.01, p=0.99, 
ηp²= 0.0004) 

(F=0.06, p=0.98, 
ηp²= 0.003) 

(F=61.35, p < 0.0001, 
ηp²= 0.51) 

Beta frequency (N ± SD)    

F
-6.28

± 2.72
-6.1

± 2.41
-5.46

± 2.01
-5.49

± 2.51
-4.95

± 2.55a
-5.13

± 1.96a
-4.69

± 2.08
-4.79

± 2.14
(F=1.19, p=0.32, 
ηp²= 0.06) 

(F=0.27, p=0.85, 
ηp²= 0.01) 

(F=53.10, p < 0.0001, 
ηp²= 0.47) 

C
-2.95

± 2.27
-2.97

± 2.06
-2.59

± 1.92
-2.54

± 2.42
-1.89

± 2.2a
-2.17

± 2.08a
-1.74

± 2.06a
-1.7

± 2.13a
(F=0.28, p=0.83, 
ηp²= 0.01) 

(F=0.16, p=0.92, 
ηp²= 0.01) 

(F=65.27, p < 0.0001, 
ηp²= 0.52) 

T-L
-4.07

± 2.53
-3.61

± 2.16
-2.98

± 1.66
-2.96

± 2.23
-2.53

± 2.63a
-2.59

± 2.17
-2.43

± 2.48
-1.96

± 2.14
(F=1.30, p=0.28, 
ηp²= 0.06) 

(F=0.49, p=0.70, 
ηp²= 0.02) 

(F=33.15, p < 0.0001, 
ηp²= 0.36) 

T-R
-3.85
± 2.7

-3.32
± 2.41

-3.17
± 1.78

-3.36
± 2.57

-2.48
± 2.33a

-2.87
± 2.66

-2.04
± 1.79a

-2.19
± 2.16a

(F=2.37, p=0.08, 
ηp²= 0.11) 

(F=0.22, p=0.88, 
ηp²= 0.01) 

(F=62.25, p < 0.0001, 
ηp²= 0.51) 

P/O
-2.25

± 2.36
-2

± 1.96
-2

± 1.77
-1.82
± 2.3

-1.15
± 2.48a

-1.27
± 2.2a

-1
± 2.07a

-0.87
± 1.87a

(F=0.80, p=0.50, 
ηp²= 0.04) 

(F=0.08, p=0.97, 
ηp²= 0.004) 

(F=116.54, p < 0.0001, 
ηp²= 0.66) 

Gamma frequency (N ± SD)  

F
-9.82

± 2.72
-9.47

± 2.24
-8.82

± 1.85
-8.9

± 2.38
-7.87

± 2.56a
-7.92

± 1.88a
-7.71

± 2.35
-7.5

± 1.88a
(F=0.70, p=0.56, 
ηp²= 0.04) 

(F=0.37, p=0.78, 
ηp²= 0.02) 

(F=51.88, p < 0.0001, 
ηp²= 0.46) 

C
-7.59
± 2

-7.34
± 1.9

-7.15
± 1.5

-7.02
± 2.23

-6.07
± 2.42a

-6.2
± 1.73a

-5.85
± 2.17a

-5.74
± 1.64a

(F=0.23, p=0.87, 
ηp²= 0.01) 

(F=0.22, p=0.89, 
ηp²= 0.01) 

(F=63.51, p < 0.0001, 
ηp²= 0.51) 

T-L
-8.06

± 2.55
-7.3

± 2.21
-6.45

± 1.84
-6.49

± 2.37
-5.81

± 3.06a
-5.75
± 2.1

-5.88
± 3.01

-5.05
± 2.33

(F=1.61, p=0.20, 
ηp²= 0.08) 

(F=0.80, p=0.5,  
ηp²= 0.04) 

(F=28.39, p < 0.0001, 
ηp²= 0.32) 

T-R
-8.1

± 2.68
-7.37

± 2.16
-7.04

± 1.62
-7.5

± 2.7
-6.13

± 2.69a
-6.39

± 2.38
-5.46

± 2.01a
-5.69

± 1.95a
(F=1.11, p=0.35, 
ηp²= 0.05) 

(F=0.48, p=0.70, 
ηp²= 0.02) 

(F=60.19, p < 0.0001, 
ηp²= 0.50) 

P/O
-7.39

± 2.61
-7.08

± 1.61
-7.02

± 1.62
-6.88

± 2.37
-5.87

± 2.88a
-6.05

± 2.03a
-5.75

± 2.33a
-5.52

± 1.69a
(F=0.41, p=0.75, 
ηp²= 0.02) 

(F=0.14, p=0.94, 
ηp²= 0.01) 

(F=67.26, p < 0.0001, 
ηp²= 0.53) 

a: significant difference from pre to post; Frontal (F), Central (C), temporal left (T_Left), temporal right (T_right) and parieto-occipital 
(P/O) regions; Contextual interference blocked CIb, Contextual interference serial (CIs), differential learning (DL), Repetitive (R) motor 
learning models.

lifestyle habits, 87.5% were nonsmokers, and 25% abstained from al-
cohol consumption. Concerning the time spent on all types of sports 
activities, participants reported weekly averages of 225.9 ± 137.1 min-
utes in vigorous activity, 108.4 ± 77.9 minutes in moderate activity, and 

631.7 ± 629.5 minutes in walking. Overall, they engaged in a week-
ly average of 966.1 ± 274.5 minutes across all sports activities.

According to the IPAQ-SF, the participants were highly active, 
with an average of 4325.82 ± 2666.27 MET.
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TABLE 2. The acute effect of the weightlifting training bouts on HRV’s time and frequency domains parameters

 
 

Pre-training bout Post-training bout ANOVA 2 ways

CIb CIs DL R CIb CIs DL R
Interaction 

Group × Training (F, 
p value, ηp²)

Group effect (F, 
p value, ηp²)

Training effect (F, 
p value, ηp²)

HRV’s time domain (N ± SD)    

HR-min
59.76

± 9.09
62.05

± 11.46
61.68

± 8.78
63.05

± 10.92
72.07

± 11.83a
72.45

± 12.90a
78.39

± 11.17a
80.11

± 13.42a
(F=2.61, p=0.06, 
ηp²= 0.12) 

(F=0.93, p=0.43, 
ηp²= 0.05) 

(F=190.48, p=0.0000, 
ηp²= 0.76) 

HR-max
80.29

± 15.13
80.94

± 13.78
78.47

± 14.06
80.19

± 14.98
86.50

± 12.84
86.48

± 13.53
95.57

± 11.66a
92.87

± 15.68a
(F=3.27, p=0.03, 
ηp²= 0.14) 

(F=0.35, p=0.79, 
ηp²= 0.02) 

(F=46.17, p=0.0000, 
ηp²= 0.44) 

HR-
mean

66.74
± 10.27

68.56
± 11.89

67.68
± 9.89

69.62
± 12.76

77.89
± 12.29a

77.85
± 12.94a

84.47
± 11.11a

85.23
± 14.24a

(F=3.28, p=0.03, 
ηp²= 0.14) 

(F=0.70, p=0.56, 
ηp²= 0.03) 

(F=178.15, p=0.0000, 
ηp²= 0.75) 

Mean RR
925.85

± 144.78
906.10

± 161.04
908.42

± 131.80
893.93

± 165.93
790.56

± 122.90a
794.81

± 140.70a
725.75

± 107.10a
729.09

± 156.41a
(F=2.14, p=0.11, 
ηp²= 0.10) 

(F=0.46, p=0.71, 
ηp²= 0.02) 

(F=186.74, p=0.0000, 
ηp²= 0.76) 

HRV-
SDNN

59.66
± 21.05

58.05
± 25.48

53.08
± 18.06

56.73
± 18.32

37.30
± 19.01a

38.26
± 20.72a

30.78
± 25.75a

24.70
± 11.56a

(F=0.92, p=0.44, 
ηp²= 0.05) 

(F=0.90, p=0.45, 
ηp²= 0.04) 

(F=71.99, p=0.0000, 
ηp²= 0.55) 

HR-
RMSSD

57.41
± 24.22

55.32
± 22.99

52.86
± 23.66

56.16
± 23.32

38.15
± 26.10a

39.68
± 24.90a

27.30
± 18.91a

25.21
± 16.24a

(F=1.62, p=0.19, 
ηp²= 0.08) 

(F=0.69, p=0.56, 
ηp²= 0.03) 

(F=72.87, p=0.0000, 
ηp²= 0.55) 

Frequency domains and covariance (N ± SD)    

HFn
0.41

± 0.21
0.42

± 0.18
0.49

± 0.23
0.46

± 0.19
0.40

± 0.20
0.44

± 0.22
0.33

± 0.14a
0.41

± 0.16
(F=2.53, p=0.07, 
ηp²= 0.11) 

(F=0.12, p=0.95, 
ηp²= 0.01) 

(F=4.05, p=0.04, 
ηp²= 0.06) 

LFn
0.41

± 0.22
0.40

± 0.19
0.36

± 0.18
0.39

± 0.19
0.40

± 0.20
0.41

± 0.19
0.49

± 0.12a
0.41

± 0.14
(F=2.02, p=0.12, 
ηp²= 0.09) 

(F=0.07, p=0.97, 
ηp²= 0.003) 

(F=3.22, p=0.08, 
ηp²= 0.05) 

LFHF
2.01

± 2.90
1.37

± 1.25
1.30

± 1.39
1.27

± 1.30
1.44

± 1.18
1.39

± 1.12
1.98

± 1.46
1.33

± 1.04
(F=1.22, p=0.31, 
ηp²= 0.06) 

(F=0.42, p=0.74, 
ηp²= 0.02) 

(F=0.05, p=0.83, 
ηp²= 0.001) 

CVNN
6.40

± 1.89
6.37

± 2.51
5.82

± 1.71
6.34

± 1.63
4.58

± 1.99a
4.67

± 2.19a
3.97

± 2.49a
3.29

± 0.93a
(F=1.01, p=0.39, 
ηp²= 0.05) 

(F=0.97, p=0.42, 
ηp²= 0.05) 

(F=44.26, p=0.0000, 
ηp²= 0.43) 

a: significant difference from pre to post; Frontal (F), Central (C), temporal left (T_Left), temporal right (T_right) and parieto-occipital 
(P/O) regions; Contextual interference blocked CIb, Contextual interference serial (CIs), differential learning (DL), Repetitive (R) motor 
learning models.

Resting EEG
The acute effects of the weightlifting training bouts on resting brain 
activity are presented in Table 1 for theta, alpha, beta, and gamma 
frequencies.

Theta
For the theta frequency range, the two-way ANOVA revealed no 
statistically significant effects for training, group, or their interaction 
in all studied regions (F, C, T-L, T-R, and P/O), except for a significant 
training effect found in the P/O region (p = 0.04). All pairwise com-
parisons in the post hoc analyses were not significant (Table 1). 
Similarly, no significant differences among the groups were identified 
in the Δ pre-post training bouts.

Alpha
Regarding the alpha frequency, there was no significant interaction 
(training × group) and no significant main effect of the group across 
all parameters. However, statistically significant main effects of train-
ing were found in all examined regions (F, C, T-L, T-R, and P/O). 
Particularly, significantly higher values during the post-training bouts 
compared to the pre-training bouts were found in CIb in the C (p = 

0.02) and P/O (p = 0.01) regions, in CIs in the F (p = 0.05) and 
P/O (p = 0.02) regions, in DL in the T-R (p = 0.05) and P/O (p = 
0.004) regions, and in the R group in the C (p = 0.01), T-R (p = 
0.001) and P/O (p = 0.01) regions (Table 1). Regarding the Δ pre-
post training bouts, a significantly lower increase was observed in 
CIs compared to the RL group in the T-R region (p = 0.02). In 
contrast, in the frontal region, the CI group showed a trend toward 
nonsignificant increases compared to DL and RL (ES = 0.5, Figure 3).

Beta
Similarly, in the beta frequency, there was no significant interaction 
(training × group) and no significant main effect of group across all 
parameters. However, significant main effects of training were found 
in all examined regions (F, C, T-L, T-R, and P/O). Particularly, signifi-
cantly higher values during the post- compared to the pre-training 
bouts were found in CIb in all regions with p < 0.001, in CIs in the 
F (p=0.01), C, and P/O (p=0.02) regions, in DL in the C (p=0.01), 
T-R (p=0.002), and P/O (p=0 < 0.0001) regions, and in the RL 
group in the C (p=0.01), T-R and P/O (p < 0.001) regions (Table 1). 
Regarding the Δ pre-post training bouts, a significantly lower increase 
was observed in the CIs compared to CIb group in the T-R region 
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lower CVNN values at post- compared to pre-training bouts in all 
tested groups (p values range between < 0.0001 and 0.02) and 
higher LFn values (p=0.03) and lower HFn values (p=0.001) at 
post-compared to pre-training bouts only in the DL group.

Regarding the difference between groups in terms of Δ pre-post 
training bouts (Figure 7), the DL group showed significantly more 
prominent increases in LFn and decreases in HFn compared to the 
CIb (p=0.03 and 0.04, respectively) and CI groups (p=0.05 and 
0.01, respectively). Likewise, a more prominent increase in LFHF 
was revealed in the DL group compared to CIb (p=0.05).

HR zones of the weightlifting training bouts
Times (in %) spent in HR zones 1, 2, and 3 during the weightlifting 
training bouts are presented in Figure 8. As this figure shows, less 
time was spent in HR zone 1 (< 60% of HR max) following DL and 
RL practices compared to CIb (p=0.01). In contrast, although not 
significant, during the DL practice, participants tended to spend more 
time in HR zone 3 (70–80% of HR max) compared to CIb (ES=0.5) 
and CIs (ES=0.4).

Correlation between HRV and EEG-related parameters
The correlation coefficients between selected HRV and EEG re-
sponses to the weightlifting training bouts are presented in Table 3. 
As this table indicates, pooled HFn was significantly correlated 
with (i) beta and gamma frequencies in all tested brain regions 
except the frontal lobe (r=0.3 with p range between 0.01 and 
0.03) and (ii) alpha frequencies only in the frontal lobe (r=0.3, 
p=0.03). Additionally, the LFHF ratio was shown to significantly 
correlate with alpha and beta frequencies in the frontal and P/O 
lobes, respectively (r=-0.3 and p=0.03). Looking at the correlation 
in response to each motor learning model, significant negative 
correlations were found between SDNN and alpha P/O and beta 
F with r=-0.5 and p=0.04.

RPE and mental demand
There was no significant main effect of group on perceived exertion 
and mental demand. Post hoc comparison showed no significant 
differences between groups in RPE values, with only a trend for 
higher values in DL compared to CIb and CIs (ES= 0.5) (Figure 9). 
Regarding mental demand, post hoc comparison showed signifi-
cantly higher values following DL compared to RL practice (p=0.04) 
and trends toward higher values compared to both CI practices 
(ES ranging between 0.5 and 0.6) (Figure 9).

Kinematic variables
The acute effects of the weightlifting training bouts on technical ef-
ficiency based on barbel paths and selected barbel displacements 
are presented in Figure 10. The one-way ANOVA showed no sig-
nificant main effect of the group in any of the tested parameters (peak 
vertical displacement; mh1, mh2 and DXL). In the same way, pair-
wise comparisons showed no significant differences between groups.

(p=0.01). In the same way, CIb showed a trend toward nonsignificant 
higher increases compared to DL and RL in frontal (ES=0.7 and 0.6, 
respectively) and T-L (ES=0.8 and 0.5, respectively) regions and 
compared to CIs in T-R (p=0.8) and P/O (p=0.6) regions (Figure 4).

Gamma
Equally, the analysis of gamma frequency yielded significant main 
effects of training in all examined regions (F, C, T-L, T-R, and P/O), 
with no significant interaction (training × group) and no significant 
main effect of group across all parameters. Particularly, significantly 
higher values during the post- compared to the pre-training bouts 
were found in CIb in all regions (p range between 0.0001 and 0.003), 
in CIs in the F (p=0.01), C (p=0.03) and P/O (p=0.04) regions, 
in DL in the C (p=0.01), T-R (p=0.01) and P/O (p=0.004) regions, 
and in the R group in the F (p=0.004), C (p=0.01), T-R (p=0.001) 
and P/O (p=0.002) regions (Table 1).

Regarding the Δ pre-post training bouts, significantly lower in-
creases were observed in the DL compared to CIb group in the T-L 
region (p=0.03). In the same way, CIb showed a trend toward non-
significant higher increases compared to DL in frontal T-L (ES=0.8) 
regions and compared to CIs in T-R (p=0.6) and P/O (p=0.5) re-
gions (Figure 5).

Resting HRV
The acute effect of the weightlifting training bouts on the HRV time 
and frequency domains parameters are presented in Table 2.

Time domain parameters
There was no significant main effect of the group for any of the time 
domain parameters, while significant main effects of training were 
registered for all parameters, and a  significant interaction 
(Time × group) was registered in HR-mean and HR-max. Particu-
larly, significantly higher values of HR-min (p < 0.0001) and HR-
mean (p < 0.001) and lower values of mean RR (p < 0.0001), 
SDNN and RMSSD (p values range between < 0.0001 and 0.02) 
were found during the post- compared to the pre-training bouts in 
all groups. Higher values of HR-max were registered at post- compared 
to pre-training bouts only for the DL and R groups (p < 0.0001 and 
p=0.003, respectively) (Table 2).

Regarding the difference between groups in terms of Δ pre-post 
training bouts (Figure 6), the DL group showed significantly more 
prominent increases in HR-min (p=0.03), HR-max (p=0.01) and 
HR-mean (p=0.01) and a decrease in mean RR (p=0.02) com-
pared to the CIs. Additionally, more prominent increases in HR-mean 
(p=0.02) and HR-min (p=0.02) and a decrease in RMSSD (p= 
0.04) were recorded in the RL group compared to CIs.

Frequency domain parameters
There was no significant main effect of group or significant interaction 
(Training × group) in any of the tested parameters. Significant main 
effects of training were found for HFn, LFn and CVNN (Table 2), with 
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FIG. 3. The acute effect of weightlifting training bouts on Δ (pre-post bouts) alpha frequency recorded at different brain regions.
a: significant difference between groups at p < 0.05; Frontal (F), Central (C), temporal left (T_Left), temporal right (T_right) and 
parieto-occipital (P/O) regions; Contextual interference blocked (CIb), Contextual interference serial (CIs), Differential Learning (DL), 
Repetitive (R) motor learning models.
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FIG. 4. The acute effect of weightlifting training bouts on Δ (pre-post bouts) Beta frequency recorded at the frontal, fronto-central, 
temporal (Left and right) and parieto-occipital regions.
a: significant difference between groups at p < 0.05; Frontal (F), Central (C), temporal left (T_Left), temporal right (T_right) and 
parieto-occipital (P/O) regions; Contextual interference blocked CIb, Contextual interference serial (CIs), Differential Learning (DL), 
Repetitive (R) motor learning models.
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FIG. 5. The acute effect of weightlifting training bouts on Δ (pre-post bouts) Gamma frequency recorded at the frontal, fronto-central, 
temporal (Left and right) and parieto-occipital regions.
a: significant difference between groups at p < 0.05; Frontal (F), Central (C), temporal left (T_Left), temporal right (T_right) and 
parieto-occipital (P/O) regions; Contextual interference blocked (CIb), Contextual interference serial (CIs), Differential Learning (DL), 
Repetitive (R) motor learning models.
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FIG. 6. The acute effect of weightlifting training bouts on Δ (pre-post bouts) HRV´s time domain parameters.
a: significant difference between groups at p < 0.05; Minimum heart rate (HR min); Maximum heart rate (HR max); Mean Heart 
Rate (HR mean); mean RR interval (Mean RR); Standard deviation of NN intervals (SDNN); Root mean square of successive differences 
(RMSSD); Contextual interference blocked (CIb), Contextual interference serial (CIs), Differential Learning (DL), Repetitive (R) motor 
learning models.
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DISCUSSION 
The purpose of the present study was to assess the acute systemic 
effects of weightlifting training bouts following different motor learn-
ing models on neurophysiological responses and technical efficiency 
in novices. The main findings revealed increases in alpha, beta, and 
gamma frequencies following weightlifting training bouts, while 
theta frequencies remained unaffected. Notably, CIb practice re-
sulted in increased frequencies across the alpha, beta, and gamma 
bands in 12 out of 15 brain regions (5 regions per band). Subse-
quently, RL practice showed increases in 10 out of 15 regions, and 
DL and CIs practice exhibited changes in 8 out of 15 regions. Regard-
less of the learning models, these changes in brain activity were 
accompanied by an alteration in HRV’s time domain parameters, 
characterized by increased HR- and decreased RR-related parameters, 

with more pronounced changes in DL compared to CI. In terms of 
HRV frequency domain parameters, only DL exhibited increased LFn 
and decreased HFn. HFn demonstrated positive correlations with 
beta and gamma frequencies across all tested brain regions except 
the frontal lobe. In the frontal lobe, this correlation was only signifi-
cant with the alpha frequency. During the weightlifting training bouts, 
elevated HR zones (≥ HR zone 3) predominated with DL showing 
a tendency toward more extended periods in HR zone 3 compared 
to the other models. Following the weightlifting training bouts, the 
DL model tended to exhibit higher perceived physical and mental 
exertions. Concerning the technical efficiency, assessed through se-
lected time discrete and averaged parameters from the barbell trajec-
tory, the current results indicate no significant advantage of one 
learning model over the other in novices.

FIG. 7. The acute effect of weightlifting training bouts on Δ (pre-post bouts) frequency domains and covariance.
a: significant difference between groups at p < 0.05; HF, high-frequency power; Low-Frequency power (LF); Ratio of Low Frequency 
to High Frequency (LF/HF ratio); coefficient of variation (CVNN); Contextual interference blocked (CIb), Contextual interference serial 
(CIs), Differential Learning (DL), Repetitive (R) motor learning models.
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ankle joint movements. However, the change from pre- to post-rest-
ing EEG activity was not controlled. In contrast, Brümmer et al. [86] 
investigated the change from pre- to post-exercise bouts. However, 
the explored exercise bouts focused on a strength-based exercise in-
volving only a single joint, controlled by a small muscle group in 
a seated position (i.e., dynamometer wrist flexion) to minimize co-
ordinative aspects. In our exploration of various databases and sourc-
es, we also identified two EEG-based studies on strength train-
ing [80, 83] that specifically investigated the electrical activity of 
the brain during the bench press. Maszczyk et al. [83] identified 
motivational patterns through frontal alpha asymmetry at an inten-
sity of 60% 1RM and above, while Engchuan et al. [80] observed 
increases in beta and gamma frequency bands during the bench 
press. However, careful interpretation is warranted due to certain 
methodological considerations. In the study by Engchuan et al. [80], 
EEG activity was recorded from only one location (Fp1), sensitive 

Resting EEG brain activity can be measured shortly before and 
after an exercise intervention, which offers a noninvasive, reliable 
method to study temporary changes in electrocortical activity [78, 79]. 
Although strength exercise is assumed to induce task-related brain 
activity [80] and is recognized for its demand on focus and concen-
tration [81, 82], increasing arousal and motivation [83], neurotrans-
mitter release, and blood flow [84], potentially altering associated 
brain wave patterns, most studies examining the acute effect of ex-
ercise on electric brain activity most often focus on endurance-based 
exercise [42]. A recent systematic review by Hosang et al. [42] re-
ported that out of the 47 included studies, only two [85, 86] eval-
uated brain activity responses (pre- vs. post-exercise) to strength-
based single joint exercises, while the remaining studies focused on 
cycling and running. Gwin and Ferrsis [85] compared the coherence 
between contralateral motor cortex EEG signals and lower-limb EMG 
in the beta and gamma bands during isometric vs. isotonic knee or 

FIG. 8. Proportion of the time spent in HR zones 1 to 3 during the weightlifting training bouts.
a: significant difference between groups at p < 0.05; Contextual interference blocked (CIb), Contextual interference serial (CIs), 
Differential Learning (DL), Repetitive (R) motor learning models.
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TABLE 3. The correlation coefficients between selected HRV and EEG responses to the weightlifting training bouts.

HRV’s time domain Frequency domains and covariance
Mean R-R SDNN RMSSD HFn LFn LFHF CVNN

Al
ph

a 
fre

qu
en

cy
 

Fp/F
r=-0.17 r=-0.06 r=0.002 r=0.27 r=-0.17 r=-0.27 r=0.02
p=0.19 p=0.65 p=0.99 p=0.03 p=0.18 p=0.03 p=0.87

C
r=-0.15 r=-0.11 r=-0.05 r=0.22 r=-0.12 r=-0.18 r=-0.06
p=0.24 p=0.40 p=0.71 p=0.08 p=0.35 p=0.17 p=0.66

T_links
r=-0.16 r=-0.15 r=-0.08 r=0.21 r=-0.15 r=-0.18 r=-0.10
p=0.20 p=0.23 p=0.53 p=0.10 p=0.25 p=0.15 p=0.42

T_recht
r=-0.17 r=-0.13 r=-0.10 r=0.19 r=-0.11 r=-0.20 r=-0.09
p=0.17 p=0.29 p=0.43 p=0.13 p=0.39 p=0.12 p=0.50

P/O
r=-0.19 r=-0.13 r=-0.07 r=0.23 r=-0.17 r=-0.22 r=-0.08
p=0.14 p=0.31 p=0.57 p=0.07 p=0.19 p=0.08 p=0.56

B
et

a 
fre

qu
en

cy

Fp/F
r=-0.16 r=-0.06 r=-0.01 r=0.22 r=-0.11 r=-0.13 r=-0.004
p=0.20 p=0.62 p=0.91 p=0.09 p=0.39 p=0.30 p=0.97

C
r=-0.05 r=-0.04 r=0.03 r=0.31 r=-0.18 r=-0.22 r=-0.01
p=0.69 p=0.78 p=0.82 p=0.01 p=0.16 p=0.08 p=0.92

T_links
r=-0.12 r=-0.15 r=-0.06 r=0.28 r=-0.18 r=-0.21 r=-0.12
p=0.33 p=0.25 p=0.65 p=0.03 p=0.16 p=0.10 p=0.36

T_recht
r=-0.10 r=-0.01 r=0.01 r=0.29 r=-0.16 r=-0.24 r=0.03
p=0.45 p=0.93 p=0.97 p=0.02 p=0.19 p=0.06 p=0.84

P/O
r=-0.07 r=-0.05 r=0.02 r=0.32 r=-0.20 r=-0.27 r=-0.01
p=0.60 p=0.73 p=0.91 p=0.01 p=0.11 p=0.03 p=0.91

G
am

m
a 

fre
qu

en
cy

Fp/F
r=-0.13 r=-0.02 r=0.01 r=0.18 r=-0.08 r=-0.03 r=0.03
p=0.32 p=0.89 p=0.94 p=0.16 p=0.52 p=0.79 p=0.79

C
r=-0.01 r=0.07 r=0.10 r=0.27 r=-0.15 r=-0.12 r=0.10
p=0.92 p=0.56 p=0.43 p=0.03 p=0.24 p=0.33 p=0.43

T_links
r=-0.04 r=-0.01 r=0.05 r=0.27 r=-0.17 r=-0.14 r=0.02
p=0.76 p=0.93 p=0.71 p=0.03 p=0.19 p=0.26 p=0.89

T_recht
r=-0.08 r=0.11 r=0.09 r=0.27 r=-0.17 r=-0.16 r=0.16
p=0.54 p=0.39 p=0.47 p=0.03 p=0.19 p=0.22 p=0.21

P/O
r=0.03 r=0.14 r=0.16 r=0.30 r=-0.18 r=-0.15 r=0.18
p=0.81 p=0.27 p=0.22 p=0.02 p=0.15 p=0.22 p=0.16

FIG. 9. The acute effect of weightlifting training bouts on perceived exertion and mental demand.
a: significant difference between groups at p < 0.05; Contextual interference blocked (CIb), Contextual interference serial (CIs), 
Differential Learning (DL), Repetitive (R) motor learning models.
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motor learning approach, significant increases in beta and gamma 
frequencies were found in both the central and P/O regions follow-
ing the weightlifting training bouts. These findings align with those 
of Engchuan et al. [80] during bench press movements. Similarly, 
regardless of the adopted motor learning approach, the present find-
ings report an increase in alpha frequency in the P/O region. An in-
crease in alpha frequency is typically associated with memory con-
solidation  [88], integration of different brain areas  [89], and 
introspection [90], which appears to be particularly pronounced in 
the studied whole-body movement. According to the dual-mode the-
ory of exercise-related affect [91] and considering limited cortical re-
sources, it is suggested that acute whole-body exercise leads to a re-
distribution of brain activity, particularly in areas typically associated 
with preparing and performing motor commands, such as the mo-
tor and somatosensory cortex. The present findings only partially 
support this theoretical framework, specifically in relation to increased 
motor and somatosensory cortex activities. Indeed, alpha, beta, and 
gamma frequencies increased after most of the tested weightlifting 
bouts in the (i)  parietal lobe, known to contain the primary 

to muscular and ocular artifacts. Additionally, EEG activity was sole-
ly recorded during exercise, marked by a broader range of electrical 
muscle activity (10–200 Hz), potentially influencing gamma bands 
(30.5–60 Hz). Conversely, Maszczyk et al. [83] employed automat-
ic headcaps with 19 electrodes for EEG recording, but analysed EEG 
activity exclusively from two locations (F3 and F4). Additionally, it’s 
worth noting that resting EEG activity was recorded for only 15 sec-
onds before each intensity [83], whereas the recommended record-
ing duration for establishing a baseline resting state [87] and achiev-
ing reliable results, especially in lower frequency bands, is typically 
5–10 minutes. While these studies offered preliminary insights into 
the acute effects of strength exercise on neurophysiological EEG-
based responses, none conducted a comprehensive evaluation of the 
acute impact on resting brain activity within the context of a strength-
dominated whole-body task. Furthermore, none explored the effects 
of combined coordination-strength-based whole-body tasks. The 
present study on the latter type of movement represents, therefore, 
a pioneering effort to comprehensively explore this research field.

The present EEG findings indicate that regardless of the adopted 

FIG. 10. The acute effects of various weightlifting training bouts on technical efficiency based on barbel paths.
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somatosensory cortex crucial for spatial awareness and processing 
sensory information related to body position and movement; (ii) oc-
cipital lobe, which encompasses the primary visual cortex responsi-
ble for processing visual information from the eyes; and (iii) central 
lobe, incorporating the specific C3 and C4 electrodes capturing ac-
tivity in the primary motor cortex (M1). However, the present find-
ings did not fully support the redistribution of brain activity in re-
sponse to strength-based exercise, as such frameworks could indicate 
decreases in other brain regions, such as the frontal lobe, previous-
ly suggested by the transient hypo-frontality hypothesis [92]. Indeed, 
none of the different frequency bands showed a significant decrease 
in the frontal lobe or in the temporal lobe in response to the present 
weightlifting exercise.

Particularly, a deeper look at the frontal alpha activities following 
each of the motor learning models indicates either a significant in-
crease after the CIs model or a stagnation using the CIb, DL, and RL 
models. Thus, the hypo-frontality hypothesis, previously mentioned 
by some studies to explain the decrease in frontal alpha activity in re-
sponse to some endurance-based exercises [86, 93], cannot be sup-
ported in response to the conditions presented with combined coor-
dination-strength training. The notable increase in frontal alpha activity 
following the CI models might be reflective of the execution of cogni-
tive functions such as attentional focus and recovery strategies, known 
to be a germane process to exercise [42, 94, 95]. Significant increas-
es in central alpha activity have been previously suggested to reflect 
a decrease in neuro-connectivity from somatosensory afferents [96], 
as the central sites of the brain have been shown to overlay regions 
of the sensorimotor cortex that receive afferent feedback [97]. The 
present findings on alpha frequency did not align with this assump-
tion and showed that the increases in the central region following CIb 
and RL practices were accompanied by elevated alpha P/O following 
both models, along with increased alpha T-R following RL. In addi-
tion to these increases following the CIb and RL models, alpha fre-
quencies also exhibited increases in P/O following CIs and DL, along 
with an increase in frontal and T-R regions, respectively, following 
these two models. These findings are in line with previous studies in 
endurance-based training reporting enhanced alpha activity both dur-
ing and post-exercise across the limbic lobe/system (deep in the tem-
poral lobe) [98, 99]. It might be argued that such an increase in gam-
ma activity during exercise results from the cortical inhibition caused 
by the brainstem and subcortical activation [42, 100, 101]. Taken 
together, the present study provided evidence that in the P/O region, 
alpha frequency can increase regardless of the motor learning mod-
els applied to whole body movements, while in the other brain re-
gions, changes (increases or stabilizes) depend on the learning mod-
el used. These coordination-strength-related findings seem to align 
with findings from the majority of previous endurance-based studies 
reporting either an overall increase in alpha activity mainly across the 
frontal areas  [102,  103], with left lateralization  [104], cen-
tral [105, 106] and parieto-occipital [86, 107, 108] regions of the 
brain, or an absence of significant change in specific regions such as 

the left prefrontal cortex [109] and the bilateral frontal and temporal 
or parietal cortex [110, 111].

Regarding the beta frequency band, previous endurance-based 
exercise revealed primarily increased values, followed by decreased 
values and no significant changes from pre- to post-exercise [42], 
with increased activity during and after cyclic endurance activities 
mainly identified across the frontal [109, 112], central [112], and 
parietal [113] cortex regions [86] and limbic area [98]. The present 
coordination-strength-related findings align more with approaches 
suggesting enhanced beta activity in response to physical exercise 
by showing that in addition to the abovementioned central and pa-
rieto/occipital beta increases registered regardless of the motor learn-
ing model, there was also an increase in the remaining tested region 
for CIb, in the frontal region for CIs, and in the T-R region for DL and 
RL. Enhanced beta waves from pre- to post-exercise across the sen-
sorimotor areas, reflected in the present study by the increased cen-
tral and P/O beta activities following all tested strength bouts, can 
be associated with movement planning and production [114], while 
the enhanced beta activity across the temporal lobe using CIb (both 
left and right regions), DL, and R (only the right region), might re-
flect emotional arousal [115] in response to coordination-strength 
bouts. However, high-resolution EEG-based studies focusing on the 
limbic area, known to reflect affection [116], and measuring affec-
tive responses to exercise performed using different motor learning 
approaches are needed to test this hypothesis.

Concerning gamma activity, only a limited knowledge base is avail-
able regarding its response to physical exercise. According to the re-
cent systematic review by Hosang et al. [42], out of the 47 includ-
ed studies, only five explored this frequency band, with two of them 
testing pre- and post-exercise change and none of them focusing on 
strength or coordinative-strength exercises. Again, contradictory re-
sults between an increase [112] and a decrease [117] in response 
to endurance exercises in different contexts were reported. Similar 
to the beta frequency, the present coordination-strength-based find-
ings align more with approaches suggesting enhanced gamma ac-
tivity in response to physical exercise and showed that in addition to 
the abovementioned central and parieto/occipital beta increases reg-
istered regardless of the motor learning model, there was also an in-
crease in the remaining tested region for CIb, in the frontal region for 
CIs, and in the T-R region for DL and RL. Such increases in gamma 
activity in response to strength and/or endurance dominant exercise 
can be linked to the increased arousal that is germane to exercise 
performance [118, 119]. However, due to the limited knowledge in 
this field, further studies measuring gamma activity in response to 
strength and coordination strength-based exercises are warranted to 
arrive at firm conclusions.

Lastly, it should be highlighted that the present coordination-
strength-based findings showed no change between pre- and post-
exercise in terms of theta frequency in any of the tested regions. In 
response to endurance-based exercise, previous studies showed main-
ly a  significant change from pre- to post-exercise, with either 
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higher working memory utilization and executive function involvement. 
These suggestions align with the present results of the perceived men-
tal demand, indicating a trend toward higher mental demand follow-
ing DL compared to the other learning model (ES ranging between 0.5 
and 0.6), which reached significance when compared to RL practice. 
The extent to which this is related to the increased interaction between 
the heart and brain, previously reported in DL in combination with 
rope skipping [47], requires further research. Additionally, more coor-
dination-strength-based studies in different motor learning models are 
needed to corroborate these suggestions. The present effects of weight-
lifting-bouts exercise on HRV align with previous findings by de Pau-
la et al. [129], who demonstrated that both aerobic- and strength-
based exercise elicited an acute change in HRV characterized by 
increased HR, LF, and LFHF ratio, along with decreased RR interval 
and HF. However, this study focused only on individuals with auto-
nomic dysfunction. In healthy adults, previous HRV studies in the field 
of physical exercise have predominantly focused on the chronic effects 
of various exercise training regimens on HRV parameters. Notably, 
strength training has been comparatively less explored in this context 
and has yielded controversial results [130]. Isometric handgrip train-
ing (IHG) and high-intensity strength training fail to induce HRV mod-
ifications [131, 132]. Whole-body resistance training in young wom-
en has been shown to significantly improve geometric indices [133]. 
Similarly, 8 weeks of two different resistance training methods (clus-
tering vs. multisets) were found to increase RMSSD and decrease rest-
ing heart rate [134]. An increase in autonomically mediated heart rate 
complexity has also been registered after resistance training, reflect-
ing increased parasympathetic and/or reduced sympathetic cardiac 
autonomic control [135]. Comparing the chronic effects of high vs. 
low resistance training intensity, Lin et al. [136] reported improve-
ments in resting heart rate and specific HRV measures in high-inten-
sity training compared to low-intensity training. Again, more strength-
based studies in different motor learning models are needed to 
corroborate these suggestions. Regarding the acute effect, a previous 
study showed a decrease in RR interval and SDNN and an increase 
in LF following rope skipping bouts, with a more pronounced effect in 
the DL group [46]. Lower HRV has been previously correlated with 
higher cognitive demand, defined by greater executive task strain and 
particularly sustained attention [137]. Accordingly, the more pro-
nounced decrease in HRV parameters accompanied by the higher men-
tal demand perception and the increase in LF power in response to 
DL practice registered in the present as well as in the rope skipping 
study support once more the hypothesis of higher cognitive demands 
after DL accompanied by specific parasympathetic involvement.

Concerning the correlation between EEG and HRV parameters, 
previous studies have mainly focused on simultaneously recording 
EEG and HRV in response to cognitive tasks [138–140]. These stud-
ies indicated that executive function is closely related to vagally me-
diated HRV parameters as a result of the involvement of inhibitory 
inputs from the prefrontal-subcortical inhibitory circuits to the heart 
via the vagus nerve [45]. Additionally, in several electrodes, beta 

a decrease across the left prefrontal cortex [109] and the central and 
parietal cortices [106] or an increase in the bilateral prefrontal cor-
tex [112]. Only one study showed no significant changes in this fre-
quency band. Decreases in theta activity have been suggested to be 
indicative of impaired cognitive performance immediately after ex-
ercise, as well as the absence of relaxation [109, 119]. It can there-
fore be argued that the absence of a significant decrease in theta ac-
tivity from pre- to post-weightlifting bouts in the present study can 
be reflective of reduced cognitive impairment and enhanced relax-
ation in response to this specific type of exercise. Such an assump-
tion provides an advantage of strength over some endurance-based 
training (i.e., previously shown to decrease theta activity in different 
regions of the brain) in terms of exercise-induced low-frequency bands. 
However, this assumption needs to be corroborated by a range of 
coordination-strength-based exercises.

In summary, the present study provides a more comprehensive 
understanding of the profound effect of coordination-strength exer-
cise, specifically weightlifting exercise, on EEG-based brain activity. 
In addition to the specific mechanisms associated with the different 
EEG frequency bands mentioned earlier, the relationship between 
exercise and brain activity in general has been previously associat-
ed with alterations in synaptic plasticity neurogenesis in the hippo-
campus in response to exercise [120]. The actions of signaling mol-
ecules such as brain-derived neurotrophic factor and insulin-like 
growth factor-1 may play pivotal roles in these processes [121–123]. 
Increased circulating cortisol immediately following exercise has also 
been shown to affect resting brain oscillatory activity post-exer-
cise [124]. Beyond potential biochemical and hormonal influences, 
future research should explore mid and long-term effects, as well as 
individual and situational specificities, to comprehensively under-
stand the complexity of these interactions [1].

To obtain a more comprehensive understanding of the neurophys-
iological responses to strength and coordination-strength exercise, the 
present study incorporated resting HRV measurements, known to main-
ly reflect the function of the autonomic nervous system (ANS) [125], 
in parallel with EEG recordings. A detailed analysis of the acute effect 
of coordination-based strength exercise on HRV-related parameters re-
vealed an increase in HR-related parameters (e.g., min, max, and av-
erage) and a decrease in RR-related parameters (i.e., mean RR, HRV-
SDNN, and RMSSD), with more pronounced changes in DL. In terms 
of HRV frequency domain parameters, only DL exhibited increased 
LFn and decreased HFn. These changes suggest the existence of strong 
physiological strain and a connected regulation of the ANS through-
out cardiac vagal control in response to the weightlifting training bouts. 
In general, HF-HRV is considered to be more prominently dominated 
by parasympathetic tone [126], while LF-HRV reflects brain activity 
involved in executive functioning, including working memory utiliza-
tion [127, 128]. It seems therefore reasonable to assume that strength 
exercise combined with DL practice seems to reduce parasympathet-
ic resting dominance through lowered vagal modulation and increased 
sympathovagal balance [129], as well as engage individuals in 
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relative power during the working memory task was found to be neg-
atively correlated with resting HF-HRV [139]. These findings suggest-
ed HRV as a possible biosignal indicator reflecting brain activity re-
lated to working memory [139], executive control functions such as 
the inhibition of unwanted responses [141], and mental health sta-
tus in general [44].

Despite these promising findings, limited number of studies that 
concurrently explore both EEG and HRV responses to physical exer-
cise. For instance, John et al. [142] analyzed the correlation between 
both measurements during and following (i.e., short-term recovery) 
incremental exercise testing [142]. The findings showed moderate 
negative correlations between LF power (ECG) and beta and gamma 
frequencies (EEG) in total power and the frontopolar, temporal, and 
occipital lobes with LF power during exercise, which were reduced 
to only cover the temporal lobe of beta and gamma total spectra. 
These results are partially in line with the present one, showing a sig-
nificant positive correlation between HFs and beta and gamma fre-
quencies in 4 out of 5 brain regions (C, T-L, T-R, and P/O) and alpha 
frequency only in the frontal lobe. These results suggest links between 
cardiovascular strain induced by strength exercise and motor and sen-
sory demands, followed by an executive function control requirement. 
A closer examination of the EEG-ECG correlation in each motor learn-
ing model revealed a negative correlation between SDNN and alpha 
frequency in the P/O region and beta frequency in the frontal lobe fol-
lowing DL practice. These findings indicate that the greater decrease 
in HRV-SDNN in response to coordination-strength exercise under DL 
practice was associated with greater brain activation in these specif-
ic regions.

It’s noteworthy that during DL practice, individuals were more en-
gaged in the elevated HR zone (i.e., HR zone 3) and less engaged in 
the lower HR zone (i.e., HR zone 1) compared to other motor learn-
ing models. This heightened HR during DL practice may contribute 
the trend toward higher perceived exertion following the same train-
ing bouts compared to the other practice models (ES = 0.5). These 
findings suggest an advantage of DL over other models in terms of 
improved cardiac autonomic modulation and cardiovascular benefits. 
This aligns with a previous study that reported greater cardiac bene-
fits of high-intensity exercise compared to low-intensity exercise [136]. 
Notwithstanding this, it is crucial to direct future attention to the ob-
served phenomenon wherein the learning approach leading to the 
highest increase in physiological and cognitive load—namely DL, to-
gether with the CIs presenting the second largest exercise variations—
demonstrated the lowest number of significant EEG-related increas-
es. This is noteworthy as such neuro-physiological responses are 
typically positively correlated [142]. These findings further under-
score the interplay between highly coordinated, variable training, 
whether in combination with endurance [47] or strength training, and 
its influence on the complex relationship between the heart and brain 
in unprecedented ways. The potential implications of these findings 
may extend to the field of therapies, offering novel avenues for explo-
ration in the future.

In terms of technical efficiency, a  recent study by Cunanan 
et al. [143] examining the barbell kinematics of top athletes partici-
pating in the 2015 world and 2017 Pan-American weightlifting cham-
pionships, reported that the most common barbell trajectory for snatch 
follows the “‘away-toward-away-toward’ pattern with a loop (the hor-
izontal displacement from the most forward position to the catch po-
sition) ranging between 9 and 15 cm for male athletes. This pattern 
describes that during the lift, the bar first moves away from the body, 
then toward the body, then away and toward the body again, result-
ing in negative-positive-negative-positive displacements [41, 52, 76]. 
The results from this weightlifting study, conducted with novices, in-
dicate that regardless of the motor learning models employed, the av-
eraged barbell paths do not align with the recommended trajectory. 
Indeed, positive horizontal displacement values are observed only 
during the “catch phase” at the end of the movement. Similarly, none 
of the loop values fell within the recommended range of 9–15 cm. 
Specifically, the absolute DXL values ranged between 23 and 27 cm 
following the four learning models, with no significant difference be-
tween them.

According to the overload of cognitive working memory [26], a worst 
technical performance was expected following the DL practice due to 
the higher cognitive demand, evidenced by the more pronounced de-
crease in HRV, increase in LF, and higher mental demand perception. 
The absence of significant differences between the different practice 
models in terms of technical outcomes calls this theory into question. 
Additionally, the present findings suggest that regardless of the motor 
learning model, one training bout of 36 total weightlifting trials was 
not enough to approach the high-performance model of complex Olym-
pic snatch movements, involving the entire body musculature. Wheth-
er a certain weight threshold must be surpassed or more substantial 
increase in exercise noise is necessary for more effective changes re-
quires further research. In the context of classical repetition-based mo-
tor learning, higher total trial numbers and/or longer practice durations 
have been previously recommended to elucidate differences in terms 
of technical efficiency between practice models [144, 145]. Whether 
individual characteristics dominate over motor learning models in re-
lation to the acute effect of learning bouts on weightlifting technical 
efficiency, must be shown by future research. Nevertheless, future stud-
ies investigating individual responsiveness to such training bouts and 
employing artificial intelligence methods, such as machine learning 
and pattern recognition based on individual vs. motor learning mod-
els, are needed to corroborate this suggestion [146–148]. Similarly, 
to what extent the total trial numbers and/or longer intervention dura-
tion may affect motor learning advantages, requires further exploration 
in future studies.

Strengths and limitations
This study represents a pioneering effort to assess the acute effects 
of weightlifting training bouts on neurophysiological response, per-
ceived exertion, and mental demand while controlling the possible 
influence of adopting different motor learning models. Nevertheless, 
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parameters. While the impact of the adopted motor learning models 
on brain activity remains somewhat ambiguous, a more pronounced 
effect is observed in the DL model on both time and frequency domain 
HRV parameters. Especially when coupled with the lowest number 
of significant EEG changes, the DL approach once again confirms its 
extraordinary impact, not only on the brain but also on its interaction 
with the heart. These findings provide preliminary support for the 
acute neurophysiological benefits of strength-based exercise, espe-
cially when performed using a DL model. However, further studies 
encompassing a broader range of coordination-strength-based exer-
cises are warranted to corroborate these suggestions. The use of stress-
related EEG features combined with correlated HRV features appears 
to offer a more comprehensive understanding of neurophysiological 
responses to human movement under stress, potentially enhancing 
the detection and monitoring of related adaptations following acute 
and/or chronic interventions with different motor learning approaches.
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the study’s design precludes generalization, and it is crucial to ac-
knowledge several limitations that should be considered when inter-
preting the present findings. Epistemologically, the scope of applica-
tion is determined by the boundary conditions of the study. Within 
these constraints, the study offers recommendations for further re-
search that could expand the findings in specific areas and overcome 
certain limitations.

Previous reports have suggested different functional significance of 
the two alpha ranges, namely, the lower component ranging between 
7.5 and 9 Hz and the upper component ranging between 9.5 and 
12.5 Hz [149], as well as the two beta ranges (beta 1 ranging be-
tween 13 and 20 and beta 2 ranging between 21 and 30 [150]). For 
instance, Abhang et al. [118] indicated that low beta waves (beta 1) 
are mainly associated with focused concentration, while beta 2 waves 
are more linked to increases in energy and performance. Hence, com-
puting the average alpha or beta power across all electrodes may yield 
imprecise results. Furthermore, in the present study, the EEG system 
and the Polar H10 sensor were not digitally synchronized. This limi-
tation restricted our analysis to calculating correlations between aver-
aged values recorded simultaneously during the 5-minute resting states 
and precluded the possibility of conducting cross-correlation analyses. 
Another limiting factor in the present study pertains to the number of 
electrodes employed for brain activity localization. A recent review, 
commissioned by the International Federation of Clinical Neurophys-
iology (IFCN), has suggested that a minimum of 48–64 electrodes 
may be necessary to achieve a high level of confidence in this local-
ization. Consequently, future studies in the field of applied neurophys-
iology may benefit from employing a more rigorous methodology to 
confirm the precise anatomical localization of exercise effects on the 
brain.

CONCLUSIONS 
Weightlifting training bouts show the potential to increase alpha, beta, 
and gamma frequencies in the majority of the tested brain regions, 
accompanied by an increase in HR and a reduction in RR-related 
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