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INTRODUCTION
Soccer is a team sport characterized by intermittent bouts of sub-
maximal running distances interspersed with high-intensity efforts, 
including maximum sprints [1]. Recent trends in professional soccer 
reveal a significant increase in high-intensity running distances [2, 3], 
with sprint distances in the English Premier League rising by 30–50% 
between 2006/2007 and 2012/2013 [4, 5, 6]. Additionally, sprint 
actions play a crucial role in soccer, frequently preceding goal situ-
ations [7]. Indeed, sprint ability has proven to be a differentiating 
factor among soccer players of different competition standards [8] 
and age categories [9, 10].

During soccer matches, sprint actions are not limited to linear 
sprint (LS) trajectories. Recently research by Caldbeck & Dos’Santos [11] 
found that approximately 85% of maximum velocity manoeuvres in 
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professional adult men’s soccer involve curvilinear sprints (CS). Brief-
ly, CS can be defined as “the upright running portion of the sprint 
completed with the presence of some degree of curvature” [12], typ-
ically within a radius ranging from 3.5 to 11 m in soccer [13]. Both 
LS and CS share a variation between 34% to 37% among experi-
enced adult men soccer players, indicating distinct physical capabil-
ities [14]. Specifically, CS requires the ability to generate centripetal 
forces, involving not only different kinetic [15] and kinematic [16] 
characteristics than LS, but also different neuromuscular activity in 
the outside and inside leg in semiprofessional adult men soccer play-
ers [16]. The inside leg’s adductor and semitendinosus muscles ex-
hibit higher electromyography (EMG) activity, while the gluteus me-
dius and biceps femoris muscles of the outside leg demonstrate 
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MATERIALS AND METHODS 
Experimental Approach to the Problem
A randomized pre-post parallel group trial design was used to assess 
the effect of 6 weeks of LST and CST intervention (twice a week) on 
sprint performance, COD, and F-V profile in U-16 youth soccer play-
ers. To ensure that participant allocation was unbiased, a computer-
generated sequence was used for randomization. After the random-
ization procedure, the participants were assigned to either the linear 
(LSG) or the curvilinear (CSG) sprint group. During the mid-season 
period (the year 2023), the sprint intervention programmes were 
integrated into the regular soccer training routine of each group 
(Table 1). Two familiarization sessions were carried out before the 
baseline testing session to acquaint participants with the testing 
protocol. The following multidirectional speed tests were performed: 
(a) 5 m sprint, (b) 10 m sprint, (c) 15 m sprint, (d) 20 m sprint, 
(e) 30 m sprint, (f) CS, and (g) modified 505 test. To reduce the 
potential influence of confounding variables, all participants were 
instructed to uphold their usual lifestyle and dietary intake before 
and during the intervention. In addition, to minimize fatigue effects, 
all tests were performed after 72 hours of recovery from an official 
match or strenuous physical training. Baseline and post-testing ses-
sions took place at the same time of the day (6–8 PM) to reduce the 
effects of circadian rhythms and under similar environmental condi-
tions. Participants were instructed to wear the same athletic equip-
ment during testing sessions.

Participants
Nineteen U16 male soccer players from the same soccer academy 
were recruited to this study. Previously to the recruitment procedure, 
a priori power analysis (G*Power, version 3.1.9.7, Universität Kiel, 
Düsseldorf, Germany) with an assumed type I error of 0.05 and 
a type II error rate of 0.20 (80% statistical power) was performed 
for sprint performance [20]. Based on the a priori power analyses, 
a minimum sample size of eight subjects per group would be sufficient 
to detect medium group × time interaction effects. Players were ran-
domly assigned to the LSG (n = 9; age: 15.6 ± 0.5 years, height: 
172.1 ± 6.9 cm; body mass: 65.7 ± 6.7 kg) or the CSG (n = 10; 
age: 15.9 ± 0.3  years, height: 174.9 ± 6.3  cm; body mass: 
63.2 ± 6.8 kg). To be included in the present study, participants had 
to fulfil the following inclusion criteria: (a) a minimum of four years’ 
experience in systematic training and competition in soccer, and  

increased activation [16]. Consequently, both actions seem to be 
trained separately to target the specific adaptations.

An emerging area of research in soccer is the categorization of 
sprint training modes based on task specificity. These modes pro-
vide a valuable framework for optimizing athletic performance, be-
ing classified into primary (e.g., sprint technique, unresisted sprint), 
secondary (e.g., resisted or assisted sprinting), and tertiary (e.g., 
non-specific methods such as resistance training and plyometrics) 
categories [17, 18]. From a performance perspective, Nicholson 
et al. [17] questioned the effectiveness of primary methods in im-
proving short-sprint performance in soccer players and suggested 
that this effectiveness may also be influenced by mediator variables 
such as age or maturation status. Importantly, the role of the sprint 
trajectory (linear vs. curvilinear) within unresisted sprint training re-
mains unknown. Similarly, another research gap in the current liter-
ature relies on understanding whether CS training impacts the me-
chanical capabilities of the neuromuscular system to produce force 
during LS. This ability is well summarized through the horizontal 
force-velocity (F-V) profile, which integrates the theoretical maximal 
force (F0), velocity (V0), maximal power output (Pmax), maximal ra-
tio of force applied in the forward direction at the sprint start (RFpeak), 
and the athlete’s ability to maintain a net horizontal force produc-
tion despite increasing running velocity (DRF) [19].

Because sprinting has been considered a crucial ability in soc-
cer [7, 11], understanding the manipulation of load factors (e.g., in-
tensity, trajectory, frequency) in primary sprint training methods seems 
to be necessary. As mentioned previously, the effects of sprint tra-
jectory manipulation (linear vs. curvilinear) in youth soccer players 
remain unknown. Consequently, there is a notable research gap re-
garding the effects of curvilinear sprint training on key parameters 
of the horizontal F-V profile and sprint performance in youth soccer 
players. Addressing these gaps could help strength and condition-
ing coaches to individualize and optimize sprint training interven-
tions. Therefore, the aim of this study was to analyse the effects of 
linear sprint training (LST) compared to curvilinear sprint training 
(CST) using an equivalent session training volume, on LS and CS 
performance, horizontal F-V profile, and change of direction (COD) 
ability in young soccer players. In line with the principle of specific-
ity, we hypothesized that CST would provide greater effects in CS 
performance and COD ability, and LST would induce greater improve-
ments in different LS distances and the horizontal F-V profile.

TABLE 1. Training contents for each microcycle session.

Day Description

MD+1 Rondos, medium-to-large sided possession games, small-to-medium-sided matches

MD-4 Strength training, small possession and position games, small-to-medium-side games

MD-2 Rondos, speed-agility training, pressing task, tactical drills and shooting drills

MD Match day

MD+1: 1 day after match; MD-4: 4 days before match; MD-2: 2 day before match. 
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(b) no history of injuries within the three months prior to the interven-
tion. During the intervention period, players regularly performed three 
training sessions and one official match per week. In addition, the 
final statistical analyses considered only those players who com-
pleted familiarization sessions, testing sessions, and at least 80% of 
all training sessions. After the explanation of the experimental pro-
tocol and its potential benefits and risks, the legal representatives 
provided written informed consent to participate in the current study. 
The research protocol and associated procedures were approved by 
the Local Ethics Committee (code: 04-280723). All procedures were 
conducted according to the Declaration of Helsinki for human stud-
ies [21].

Testing Procedures
Prior to the pre-testing, two familiarization sessions were conducted 
in order to mitigate the potential learning effects. In these familiariza-
tion sessions, the participants received instructions about the correct 
execution of each experimental test. Afterward, the physical tests 
were performed in a single session 1 week before starting the train-
ing intervention on the same artificial grass soccer pitch. At the 
beginning of the pre-test session, prior to the standardized warm-up, 
the participants’ anthropometric measurements were taken. Spe-
cifically, the standing height was obtained using a fixed stadiometer 
(Holtain Limited, Crosswell, United Kingdom), and body mass was 
measured to the nearest 0.1 kg using a digital scale (BC-554 Iron-
man Body Composition Monitor, Tanita, Illinois, USA). Afterward, 
a standardized warm-up routine was established, including 5 min of 
low-intensity running, 5 min of dynamic stretching, and short pro-
gressive accelerations (four submaximal sprints, progressing to 90% 
of the players’ self-perceived maximal speed over 30 m distance). 
Additionally, the participants were encouraged by supervisors to ex-
ecute maximal effort during physical tests.

Linear Sprint Tests and Horizontal Force-Velocity Profile
Sprint times were measured using a system of six pairs of dual-beam 
photoelectric cells (Witty, Microgate, Bolzano, Italy), positioned at 
distances of 0, 5, 10, 15, 20, and 30 m. Players were instructed to 
initiate the LS from a standing start, with their preferred front foot 
placed 0.5 m behind the first timing gate. A verbal instruction of 
“sprint as fast as possible” was received by supervisors. To ensure 
reliable and consistent data, players were allowed two trials, with 
a 3 min recovery between them. Specifically, the fastest trial and 
their split times were recorded to analyse the LS test performance 
and variables derived from the horizontal force-velocity profile. Based 
on previous correction factors proposed in scientific literature [22, 23], 
0.5 s was added to all sprint times for converting the first movement 
triggering. A custom-made spreadsheet developed by Morin & Samo-
zino [24] was used to calculate force-velocity derived variables. This 
spreadsheet employs a monoexponential time-velocity function to fit 
raw time-position data. The main mechanical variables obtained from 
the horizontal force-velocity profile were [19]: F0, V0, Pmax, the slope 

of the linear F-V relationship (FV slope), RFpeak, and DRF. Moreover, 
data about temperature and atmospheric pressure were collected.

Curve Sprint Test
According to Fílter et al. [12], the CS test was established as reliable. 
In line with the aforementioned research, the curve trajectory cor-
responds to the arc of the penalty area of an official soccer field. This 
curve trajectory was standardized as follows: (a) a 9.15 m radius 
from the penalty spot, (b) covering a distance of 14.6 m from start-
ing point to the final point of the curve in a straight line, and (c) form-
ing an angle of 105.84° of amplitude from the penalty spot. Derived 
from trigonometrical analyses, sprint time was measured for players 
over 17 m during the CS test. To measure CS time, photoelectric 
timing gates (Witty, Microgate, Bolzano, Italy) were positioned at the 
starting and final points of the curved trajectory. All players began 
from a standing start, with the front foot positioned 1 m from the 
first timing gate [12]. Two trials were completed for each side, sep-
arated by 5 min resting period [25]. The sides were categorized as 
“good” and “weak”. Specifically, the “good” side corresponds with 
the fastest time recorded, while the “weak” side indicates the slow-
est time recorded. These categorizations were determined based on 
the best time trial obtained for each respective side.

Modified 505 Test
A photoelectric cells system (Witty, Microgate, Bolzano, Italy) was 
used to record the performance in the modified 505 test [26]. In this 
test, players began from a standing start with their preferred foot 
0.5 m behind the timing gate. When participants received an audio 
signal start, they sprinted through the timing gate, reached the 
5 m turn line, executed a 180º COD with their dominant leg, and 
sprinted back 5 m through the timing gate. To ensure data consis-
tency, a supervisor was placed at the turning line. If a player performed 
the COD before the turning point, the trial was discarded and retried 
after a recovery period. All participants completed three trials with 
3 min recovery time between them. Furthermore, the COD deficit 
(CODdef) for the modified 505 test was calculated as follows: 505 COD 
time – 10 m sprint time [27]. The COD deficit calculation was ap-
plied to provide a more isolated measure of COD ability, reducing the 
influence of acceleration and LS ability [27].

Training Programme
The intervention programme took place during the mid-season pe-
riod. After pre-testing, the 6-week sprint protocol (a total of 11 ses-
sions) was performed twice during the first 5 weeks with at least 
48 hours of recovery period between sessions. In the last week of 
the training intervention, a tapering procedure was planned to grad-
ually reduce the total distance covered by both groups. Both groups 
were exposed to the same distance per repetition, session, and week 
(Table 1). Additionally, all players were instructed to provide maximal 
effort (i.e., all-out mode) during each LS and CS repetition [28, 29]. 
According to previous research, young male athletes are capable of 
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trivial (d < 0.2), small (0.2 ≤ d < 0.6), moderate (0.6 ≤ d < 1.2), 
large (1.2 ≤ d < 2.0), and very large (≥ 2.0). Also, the within-sessions 
reliability was analysed using the intraclass correlation coefficient 
(ICC3,1) and coefficient of variation (CV) and interpreted according 
to Hopkins et al. [32]. All statistical analyses were conducted using 
the statistical software SPSS for Macintosh (version 25.0; Armonk, 
NY: IBM Corp). The significance level for all analyses was set at 
p ≤ 0.05.

RESULTS 
Training compliance was 94% for the LSG and 90% for the LSG and 
CSG. Within-session reliability is shown in Table 2. For all fitness 
tests, relative reliability (ICC3,1) ranged from high to extremely high 
values for both groups. Furthermore, a CV of less than 10% was 
achieved, indicating acceptable absolute reliability.

Table 3 displays mean values, SD, and percentage change from 
pre- to post-intervention for the 5 m, 10 m, 15 m, 20 m, and 
30 m sprint test, CS test, and modified 505 test. Additionally, Fig-
ure 1 shows the standardized differences between the pre-test and 
post-test for LST and CST groups.

LS performance
Regarding LS performance, the between-group analysis revealed no 
significant time × group interactions (p > 0.05) for all split times. 
In the within-group analysis, there were significant effects for time 
in the 10 m (F = 17.398, p < 0.001), 15 m (F = 21.021, 
p < 0.001), 20 m (F = 21.022, p < 0.001), and 30 m (F = 27.570, 
p < 0.001) sprint test. For the LSG, the results showed significant 
small to moderate enhancements in 10  m  (d  =  -0.63), 
15 m (d = -0.62), 20 m (d = -0.67), and 30 m (d = -0.59) sprint 
performance between the pre- and post-intervention. In reference to 
the CSG, the statistical analyses revealed significant small improve-
ments in 10 m (d = -0.58), 20 m (d = -0.47), and 30 m (d = -0.52) 
sprint performance after the intervention period.

reliably regulating their performance during high-speed forward run-
ning (> 90% maximal effort) [30]. The main difference between the 
2 intervention groups was the trajectory: the LSG executed all sprints 
in a straight line, while the CSG performed sprints with a curved 
trajectory. In this regard, Altmann et al. [31] found very large to 
nearly perfect associations (r = 0.79–0.91) of linear sprint time 
performance with three different CS radii (i.e., narrow angle: 7.15 m; 
medium angle: 9.15 m; wide angle: 11.15 m). Consequently, to 
standardize the curved trajectory for the CSG group, all CS were 
performed around the penalty arc (i.e., 105.84° amplitude) on a soc-
cer pitch with official dimensions. To maintain a homogeneous 
stimulus between both legs (i.e., good and weak sides), players 
executed the same number of repetitions starting from the different 
sides (i.e., clockwise and anticlockwise paths) of the penalty arc. All 
sessions took place on the same artificial pitch turf. Before each 
intervention session, the participants followed the same standardized 
warm-up routine performed during the testing sessions. A certified 
strength and conditioning coach supervised each warm-up routine 
and sprint training session, providing verbal feedback and encourag-
ing players to give a maximal effort.

Statistical Analyses
Data are presented as mean ± standard deviation (SD). The normal-
ity assumption was checked both graphically and through the Sha-
piro-Wilk test, and it was found that all analysed variables displayed 
a normal distribution. A 2 (Time: Pre vs. Post) × 2 (Group: LSG vs. 
CSG) repeated measures analysis of variance (ANOVA) with Bonfer-
roni post hoc corrections was conducted to analyse the effects of 
sprint training protocols for each performance variable. In this anal-
ysis, the partial eta squared (ηp2) was calculated and interpreted as 
follows: ≥ 0.01 indicates a small effect, ≥ 0.059 a medium effect, 
and ≥ 0.138 a large effect. Additionally, effect sizes were determined 
using Cohen’s d with the following formula: d = (M2 – M1)/SDpooled. 
According to Hopkins et al. [32], effect sizes were categorized as 

TABLE 2. Descriptive characteristics of the sprint training program performed by both experimental groups (linear sprint vs. curve 
sprint).

Weeks
Sessions per 

week
Distance per 
repetition (m)

Repetitions Sets
Total distance per 

training (m)
Total distance per 

week (m)
Recovery between 
repetitions (min)

Recovery between 
sets (min)

1 2 17 6 1 102 204 2 5

2 2 17 4 2 136 272 2 5

3 2 17 5 2 170 340 2 5

4 2 17 3 4 204 408 2 5

5 2 17 3 4 204 408 2 5

6 1 17 3 4 204 204 2 5
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TABLE 3. Within-session reliability for each physical fitness test before and after sprint training.

Pre Post

Fitness Test ICC3,1 (95% CI) CV ICC3,1 (95% CI) CV

5 m sprint (s) 0.86 (0.71–0.93) 2.49 0.76 (0.54–0.89) 2.61

10 m sprint (s) 0.94 (0.87–0.97) 1.43 0.98 (0.97–0.99) 0.53

15 m sprint (s) 0.96 (0.92–0.98) 1.06 0.98 (0.95–0.99) 0.69

20 m sprint (s) 0.97 (0.93–0.99) 1.01 0.98 (0.97–0.99) 0.56

30 m sprint (s) 0.98 (0.95–0.99) 0.85 0.98 (0.97–0.99) 0.61

Curve Sprint Good Side (s) 0.94 (0.86–0.97) 1.08 0.91 (0.80–0.96) 1.71

Curve Sprint Weak Side (s) 0.94 (0.87–0.97) 1.03 0.96 (0.92–0.98) 0.95

M505 Test (s) 0.70 (0.42–0.85) 2.31 0.80 (0.60–0.91) 2.04

Abbreviations: LSG: linear sprint group; CSG: curve sprint group; M505 Test: modified 5-0-5 change of direction test; ICC3,1: intraclass 
correlation coefficient; CV: coefficient of variation.

TABLE 4. Changes in physical fitness after six weeks of sprint training in youth soccer players.

LSG CSG ANOVA P values (ηp
2)

(ηp
2 category)

Pre Post ∆ (%) Pre Post ∆ (%) Time Group Time × Group

5 m
sprint (s)

1.61
± 0.07

1.59
± 0.07

-1.04
1.58

± 0.08
1.59

± 0.04
0.98

0.599 (0.017)
small

0.550 (0.021)
small

0.362 (0.049)
small

10 m
sprint (s)

2.41
± 0.12

2.34
± 0.10**

-4.13
2.37

± 0.10
2.32

± 0.07*
-2.17

< 0.001 (0.506)
large

0.495 (0.028)
small

0.291 (0.065)
medium

15 m
sprint (s)

3.10
± 0.16

3.01
± 0.13**

-3.93
3.04

± 0.12
3.00

± 0.10
-1.55

< 0.001 (0.553)
large

0.568 (0.020)
small

0.081 (0.169)
large

20 m
sprint (s)

3.76
± 0.21

3.63
± 0.18**

-3.83
3.72

± 0.16
3.65

± 0.14*
-2.10

< 0.001 (0.553)
large

0.852 (0.002)
trivial

0.223 (0.086)
medium

30 m
sprint (s)

5.03
± 0.31

4.86
± 0.27**

-4.13
5.00

± 0.21
4.89

± 0.21*
-2.23

< 0.001 (0.619)
large

0.988 (0.001)
trivial

0.169 (0.109)
medium

Curve Sprint
Good Side (s)

2.82
± 0.13

2.83
± 0.19

0.02
2.84

± 0.10
2.73

± 0.11**
-4.16

0.007 (0.371)
large

0.526 (0.026)
small

0.006 (0.390)
large

Curve Sprint
Weak Side (s)

2.90
± 0.15

2.90
± 0.17

0.13
2.87

± 0.10
2.78

± 0.10**
-3.36

0.009 (0.352)
large

0.257 (0.080)
medium

0.006 (0.390)
large

M505 COD
Test (s)

2.71
± 0.13

2.65
± 0.14*

-2.30
2.65

± 0.10
2.57

± 0.07**
-3.07

< 0.001 (0.581)
large

0.196 (0.102)
medium

0.528 (0.025)
small

CODdef
0.80

± 0.08
0.82

± 0.08
2.87

0.79
± 0.14

0.75
± 0.09

-4.08
0.558 (0.022)

small
0.427 (0.040)

small
0.127 (0.139)

large

Abbreviations: LSG: linear sprint group; CSG: curve sprint group; M505 COD Test: modified 5-0-5 change of direction test; CODdef: 
change of direction deficit. **Significant differences (p < 0.01) between pre-and post-test. *Significant differences (p < 0.05) between 
pre-and post-test.

CS performance
In reference to CS performance, the statistical analysis revealed sig-
nificant time × group interactions in CS good (F = 10.222, p = 0.006) 
and weak side (F = 10.220, p = 0.006). Additionally, significant 
time effects were observed in the good side (F = 9.435, p = 0.007) 
and weak side (F = 8.760, p = 0.009) CS test. Specifically, the CSG 
exhibited moderate improvements in the CS good side (d = -1.05) 
and weak side (d = -0.90) performance.

COD performance
In the modified 505 test, a significant main effect for time was ob-
served (F = 22.182, p < 0.001). Regarding the LSG, there were 
small (d = -0.44) enhancements in COD performance between the 
pre- and post-test. In this regard, the CSG presented moderate 
(d = -0.93) improvements between the pre- and post-test. Neverthe-
less, no-significant time × group interaction was found in COD test 
performance (F = 0.417, p = 0.528).
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FIG. 2. Standardized differences (95% CI) in horizontal F-V profile 
variables between pre-and post-test for linear (filled squared) and 
curvilinear (filled circles) sprint training groups. LST: linear sprint 
training group; CST: curvilinear sprint training group; ES: effect size; 
F0: maximal theoretical horizontal force; V0; maximal theoretical 
running velocity; Pmax: maximal power output; FV slope: slope of 
horizontal FV profile; RFpeak: proportion of total force production in 
the forward direction; DRF: decrease in the ratio of force with increasing 
running speed.

FIG. 1. Standardized differences (95% CI) in all physical fitness 
variables between pre-and post-test for linear (filled squared) and 
curvilinear (filled circles) sprint training groups. LST: linear sprint 
training group; CST: curvilinear sprint training group; ES: effect 
size; CS: curvilinear sprint; M505 COD Test; modified 505 change 
of direction test; CODdef: change of direction deficit.

TABLE 5. Changes in horizontal F-V profile after five weeks of sprint training in youth soccer players.

LSG CSG ANOVA P values (ηp
2)

(ηp
2 category)

Pre Post ∆ (%) Pre Post ∆ (%) Time Group Time × Group

F0 (N/kg)
5.35

± 0.38 
5.56

± 0.42 
4.20

5.72
± 0.60

5.73
± 0.27

0.83
0.298 (0.064)

medium
0.125 (0.133)

medium
0.352 (0.051)

small

V0 (m/s)
9.25

± 0.95
9.92

± 1.34**
7.31

8.93
± 0.52

9.40
± 0.81

5.22
0.006 (0.370)

large
0.300 (0.063)

medium
0.586 (0.018)

small

Pmax (W/kg)
12.42
± 1.89

13.78
± 2.13**

11.33
12.80
± 1.68

13.50
± 1.60*

5.80
< 0.001 (0.620)

large
0.952 (0.001)

trivial
0.118 (0.137)

medium

FV slope
-0.58

± 0.05
-0.57

± 0.09
-1.53

-0.64
± 0.07

-0.61
± 0.05

-3.98
0.274 (0.070)

medium
0.038 (0.230)

large
0.576 (0.019)

small

RFpeak (%)
37.51
± 2.37

38.93
± 2.19**

3.93
38.59
± 2.44

39.26
± 1.68

1.87
0.005 (0.385)

large
0.470 (0.031)

small
0.254 (0.076)

medium

DRF (%)
-5.48

± 0.48
-5.32

± 0.88
-2.63

-6.03
± 0.63

-5.74
± 0.46 

-4.07
0.219 (0.087)

medium
0.049 (0.208)

large
0.693 (0.009)

trivial

Abbreviations: LSG: linear sprint group; CSG: curve sprint group; F0: maximal theoretical horizontal force; V0: maximal theoretical 
running velocity; Pmax: maximal power output; FV slope: slope of horizontal FV profile; RFpeak: proportion of total force production in 
the forward direction; DRF: decrease in the ratio of force with increasing running speed. **Significant differences (p < 0.01) between 
pre-and post-test. *Significant differences (p < 0.05) between pre-and post-test.

Horizontal FV profile
Table 4 shows mean values, SD, and percentage of change, while 
Figure 2 presents standardized differences between pre- and post-
intervention for horizontal F-V profile variables. No significant 
time × group interactions (p > 0.05) were observed for any me-
chanical sprinting variable. However, the within-group analysis 

revealed significant time effects for V0 (F = 9.987, p = 0.006), Pmax 
(F = 27.776, p < 0.001), and RFpeak (F = 10.645, p = 0.005). 
The results indicated small to moderate improvements in the LSG 
from pre-to-post-intervention for V0 (d = 0.58), Pmax (d = 0.68), and 
RFpeak (d = 0.62). In contrast, the CSG showed only small significant 
enhancements in Pmax (d = 0.53) from the pre- to post-test.
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Time motion analysis in soccer matches revealed that most sprint 
efforts follow a curvilinear trajectory, regardless of player posi-
tion [11, 41]. Thus, strength and conditioning coaches should de-
sign sprint-specific drills and training programmes based on CS de-
mands. In that sense, this is the first study analysing the effects of 
sprint training on CS performance, so a direct comparison with pre-
vious scientific literature is not possible. Notably, only the CSG dem-
onstrated moderate improvements in CS performance for both the 
good side (ES = 1.05) and weak side (ES = 0.90) in young soccer 
players. Considering the principle of specificity, it seems reasonable 
to suggest that sprint training protocols with curvilinear elements ap-
pear more effective in enhancing CS abilities than traditional LST. 
This notion is reinforced by McBurnie & Dos’Santos [42], who rec-
ommend assessing and training CS as a distinct athletic quality in 
young soccer players. Importantly, to ensure uniform lower-limb ad-
aptations and account for the distinct roles of the inside and outside 
leg in CS, we maintained an equal total distance per session for both 
clockwise and anticlockwise CS [14] According to soccer competi-
tive demands, multidirectional sprint programmes could include CST 
to help youth soccer players adjust technically and optimize force 
application [14, 42, 43]. However, due to limited scientific evidence, 
further research is necessary to clarify the impact of LST strategies 
on CS performance.

COD is a crucial attribute linked to success in offensive and de-
fensive soccer actions [7, 44, 45], with the potential to distinguish 
skill levels and playing standards [46, 47, 48]. Recent systematic 
reviews and a meta-analysis suggest that sprint training is effective 
for improving COD performance [49, 50]. In this study, both LSG 
and CSG demonstrated 2.3% and 3.1% improvements in the mod-
ified 505 test, respectively. However, the lack of significant differ-
ences between sprint training groups suggests that sprint trajectory 
may not be a determinant factor in COD improvement among youth 
soccer players. Fílter et al. [14] and Kobal et al. [51] found moder-
ate to large associations of CS time with Zig-Zag test performance 
in female and male soccer players. Likewise, the underpinning mech-
anisms of COD ability gains could be related to the optimization 
stretch-shortening cycle, change in sprint acceleration kinematic pa-
rameters (i.e., step length, stride frequency, contact time), and hor-
izontal propulsive force production (i.e., Pmax, RFpeak) [52, 53]. In 
line with our findings, McMorrow et al. [54] reported a significant 
increase in 180º COD performance by 3.3% and 3.7% among pro-
fessional soccer players following 6 weeks of in-season sprint train-
ing, both resisted and unresisted. Likewise, in a youth soccer play-
er age group, Rey et al. [28] observed a significant 4.7% to 5.5% 
improvement in T-Test performance after 6 weeks of unresisted sprint 
training, with varying distances. Due to the lack of studies assess-
ing the effects of CS on COD performance, further studies are need-
ed to corroborate these findings.

This study has limitations that must be acknowledged. Firstly, the 
small sample size (i.e., 19 young soccer players) could limit the pow-
er of this study, although it was similar to previous sprint training 

DISCUSSION 
This study analysed the effects of LST compared to CST with an 
equivalent session volume on LS and CS performance, horizontal F-V 
profile, and COD ability in young soccer players. To the author’s 
knowledge, this is the first study to explore the different adaptations 
induced by 6-week sprint training with different trajectories (linear 
vs. curve) on physical fitness. The main findings of this study indicate 
enhanced LS performance following both training conditions, with 
the LSG showing superior effects. Second, CS performance signifi-
cantly improved only following the CSG. Third, both training condi-
tions resulted in enhanced COD performance, with the CSG having 
slightly greater effects. Finally, the LSG had greater improvements in 
horizontal FV profile parameters than CSG. These results suggest 
that the application of both training regimes during sprint training 
programmes might play a crucial role in enhancing multidirectional 
speed performance in youth soccer players.

Previous research has indicated that sprint performance seems 
to develop due to anatomical growth and maturation processes, al-
though sprint training is required in order to maximize speed devel-
opment [33, 34]. In that vein, a recent meta-analysis conducted by 
Moran et al. [35] indicated that maturation could influence the dose-
response effectiveness related to primary sprint training methods, 
reporting greater benefits for mid- and post-peak height velocity (PHV). 
Additionally, recent systematic reviews and a meta-analysis conclud-
ed that primary training methods, such as sprint technique training 
and unresisted sprint training, do not significantly enhance short and 
long-sprint performance in football code athletes [17, 18]. Converse-
ly, our findings align with Rey et al.’s [28] research, showing signif-
icant improvements (range from -6.6% to -2.9%) in 10, 20, and 
30 m sprint performance following six weeks of short versus long-
distance unresisted LST in U19 male soccer players. Similarly, Mar-
zouki et al. [29] found small to moderate increases (ES range from 
0.48 to 0.77) in these distances after a 10-week training period in 
young male players participating at the junior regional level, regard-
less of the weekly frequency (1 vs. 2 sessions). Thus, the observed 
positive effects in these studies may be influenced by the player’s 
training status, as previous research has suggested that non-elite 
players may benefit more from training than elite players. For the 
first time, this study assessed the effect of the trajectory (LST vs. 
CST) during sprinting on the horizontal F-V profile. While the CSG 
only improved in Pmax, the LSG showed greater changes in V0, Pmax, 
and RFpeak. These changes contrast with a pilot study [36] which 
concluded that linear unresisted sprint training did not enhance the 
horizontal FV profile in adult male soccer players. From a biome-
chanical standpoint, CS involves increased ground contact time, de-
creased mean race velocity, decreased resultant ground reaction forc-
es, and different force orientations compared to LS [16, 37–39]. 
These CS characteristics may hinder players from displaying their 
maximal neuromuscular capacities, which have been a predictor of 
LS [40], potentially explaining the lack of a significant transfer effect 
on the horizontal FV profile parameters.
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studies. Furthermore, the sample was composed of only one soccer 
academy, so the current results might not be generalizable for other 
soccer academy backgrounds, or competitive levels. Secondly, the 
training intervention only comprised 6 weeks, which is a relatively 
brief time period to optimize training adaptations. However, the dura-
tion of the sprint training protocol was enough to obtain enhancements 
in young soccer players. Thirdly, the study design did not include a con-
trol group, which could limit the conclusions. Furthermore, the study 
did not record data to quantify the intensity of training sessions (e.g., 
rating of perceived exertion scales). Finally, both sprint groups could 
have been affected by potential learning effects related to their force 
vector specific trajectory. To provide more conclusive results, future 
studies should attempt to use a larger sample size, longer-term inter-
ventions, a control group, and a rating of perceived exertion scale.

CONCLUSIONS 
This research was the first to investigate the effects of CST on LS and 
CS performance, and horizontal force-velocity profile. The findings 

indicated that both CST and LST elicited trajectory-specific adapta-
tions. LST showed greater improvements in LS performance (10, 20, 
30 m sprint time) and the horizontal F-V profile parameters, while 
CST resulted in greater COD performance. Importantly, only CST 
significantly enhanced CS performance for both sides. Therefore, our 
current findings suggest that based on soccer’s demands, strength 
and conditioning coaches should integrate both LST and CST meth-
ods to effectively prepare soccer players and enhance their sprinting 
performance.
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