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Abstract

Nonalcoholic fatty liver disease (NAFLD) is intrahepatic ectopic lipid deposition which is present despite a lack  
of other causes of secondary hepatic fat accumulation. It is the most common chronic liver disorder in the well- 
developed countries. NAFLD is a multidisciplinary disease that affects various systems and organs and is in-
extricably linked to simple obesity, metabolic syndrome, insulin resistance and overt diabetes mellitus type 2.  
The positive energy balance related to obesity leads to a variety of systemic changes including modified levels of 
insulin, insulin- like growth factor-1, adipokines, hepatokines and cytokines. It is strongly linked to carcinogenesis 
and new evidence proves that NAFLD is associated with higher risk of all-cause mortality and cancer-specific mortal-
ity among cancer survivors. This article focuses on the association between NAFLD and extrahepatic gastrointestinal 
tract cancers, aiming to shed light on the pathomechanism of changes leading to the development of tumors.
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of histological hallmarks including hepatic steatosis, 
intralobular inflammation and hepatocyte ballooning 
regardless of the presence of fibrosis [1]. Non-alcoholic 
fatty liver disease is more prevalent in the group of pa-
tients with metabolic syndrome and insulin resistance 
(IR). There is strong evidence of associations between 
NAFLD and type 2 diabetes mellitus (T2DM), abdo-
minal obesity, dyslipidemia, and arterial hyperten-
sion [3, 5, 6]. Obesity is a risk factor for both cancer 
development with poor outcomes in different tumor 
types and NAFLD. The positive energy balance re-
lated to obesity leads to a  variety of systemic chang-
es including modified levels of insulin, insulin-like 
growth factor-1 (IGF-1), leptin, adiponectin and other 
adipokines, hepatokines, steroid hormones and cyto-
kines. Furthermore, an overabundance of circulating 
free fatty acids (FFAs) potentiates hepatic lipid stor-
age, increases oxidative stress and accelerates IR [7, 8]. 
Two essential types of NAFLD have been postulated, 
genetic and metabolic, with the primary role of IR and 

Introduction

Nonalcoholic fatty liver disease (NAFLD) is an in-
creasingly recognized disorder characterized by intra-
hepatic ectopic lipid deposition which is present despite 
a lack of other causes of secondary hepatic fat accumu-
lation (e.g., heavy alcohol consumption, hepatitis B or C, 
autoimmune hepatitis, toxins, etc.) [1]. It is the most 
common chronic liver disorder in the well-developed 
countries. The estimated prevalence of NAFLD ranges 
from 10% to 25%. The prevalence depends on sever-
al factors including age, gender, ethnicity, kind of diet 
and life style (physical activity) [2-4]. The term NAFLD 
encompasses various histological diagnoses from pure 
(simple) steatosis – nonalcoholic fatty liver (NAFL), 
through nonalcoholic steatohepatitis (NASH), cirrho-
sis and hepatocellular carcinoma (HCC). The defini-
tion of NAFL is the presence of hepatic steatosis with 
no evidence of hepatocellular injury revealed by bal-
looned hepatocytes. NASH is defined as the presence 
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abdominal obesity in the latter [9]. The “multi paral-
lel hits hypothesis” postulates multiple metabolic and 
environmental factors impacting together on genetically 
predisposed subjects [10]. The presence of NAFLD 
is closely associated with extrahepatic serious abnor-
malities including cardiovascular system with athero-
sclerosis/cardiovascular disease (CVD) and hyperten-
sion, endocrinopathies, T2DM, chronic kidney disease 
and osteoporosis [11]. The risk of developing these 
cardiometabolic diseases parallels the underlying se-
verity of NAFLD. Accumulating evidence suggests that 
the presence and severity of NAFLD are associated 
with an increased risk of incident T2DM and hyper-
tension [12]. It is strongly linked with carcinogenesis 
and not only leads to HCC, but also is proven to be an 
independent risk factor of colorectal polyps and can-
cer development. Although the basic liver pathology 
refers to hepatic structure and function to cause mor-
bidity and mortality from cirrhosis, liver failure and 
HCC, the majority of deaths among NAFLD patients 
can be assigned to cardiovascular disease [13]. New 
evidence proves that NAFLD is associated with higher 
risk of all-cause mortality and cancer-specific mortal-

ity among cancer survivors [14]. This article focuses 
on the association between NAFLD and extrahepatic 
gastrointestinal tract cancers in order to shed light on 
the growing problem of complications among patients 
with NAFLD.

Pathogenesis

Insulin resistance

Insulin plays a great role as a metabolic regulator, 
but it also acts as a growth factor with proliferative and 
mitogenic activities (Fig. 1) [15, 16]. Insulin resistance 
is often considered as the primary cellular defect in the 
development of T2DM. The definition of IR assumes 
that it is a state which requires higher-than-normal in-
sulin concentrations to obtain suitable biological effects 
[17, 18]. The combination of IR and consequent hyper-
insulinemia leads to hyperglycemia and the develop-
ment of conditions associated with T2DM. However, 
the majority of obese and insulin-resistant subjects 
initially do not develop hyperglycemia because of the 
compensatory capacity of the islets of Langerhans and 
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Fig. 1. Association between non-alcoholic fatty liver diseases and the mechanism of carcinogenesis 

FFAs – free fatty acids, IGFs – insulin-like growth factors, VEGS – vascular endothelial growth factor, FXR – farnesoid X receptor, TLRs – Toll-like receptors, LPS – lipopolysaccharide,  
NLRs – NOD-like receptors, HIFs – hypoxia-inducible factors, ROS – reactive oxygen species, IL-6 – interleukin-6, TNF-α – tumour necrosis factor a, NFkB – nuclear factor kappa B,  
MMPs – matrix metalloproteinases
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an elevated hormone output [19-21]. The positive ener-
gy balance related to obesity leads to an excess of circu-
lating FFAs, increased oxidative stress and accelerated 
IR [7]. Short-term exposure to FFAs results in increased 
insulin secretion following a meal and enables storage 
of excess energy as fat, while long-term exposure to 
FFAs involves impaired glucose metabolism, reduced 
insulin biosynthesis and beta cell loss [22, 23]. There is 
also evidence of the important role of chronic hepatitis 
C as a special type of metabolic disease, associated with 
hepatic steatosis due to lipid metabolism abnormalities, 
but also IR and T2DM as a result of impaired glucose 
metabolism [24]. 

Activation of the insulin receptor (Ir) under hyper-
insulinemic condition results in up-regulation of the 
mitogenic pathway [25]. The insulin receptor is a trans-
membrane receptor which belongs to the large class of 
tyrosine kinase receptors. Ligands of this receptor in-
clude insulin, insulin growth factor (IGF)-1 and IGF-2 
[15]. Alternative splicing of the Ir gene causes presence 
of two isoforms – IrA and IrB. These receptors are te-
trameric proteins consisting of two α- and two β-sub-
units. Indeed IrA differs from IrB by the exclusion of 
exon 11, and the additional 12 amino acids remain 
present at the C-terminus of the IR α-subunit [26, 27].  
The isoforms of IR differ in affinity for IGFs, internal-
ization and recycling rate, which is higher and greater in 
favor of IrA [28, 29]. Consequently, IrB exhibits an as-
sociation with metabolic and differentiating signals and 
is highly specific for insulin, while IrA plays an essen-
tial role in mitogenic and antiapoptotic signals induced 
mainly by IGF-2 (with lesser affinity for IGF-1) [28, 30]. 

As a growth factor to stimulate mitogenesis insulin 
activates the Ras-Raf-Map kinase signaling pathway 
[31]. Insulin binds to its receptor on the cell membrane, 
leading to phosphorylation/activation of insulin recep-
tor substrates (IRSs). The Shc protein binds phospho-
rylated Ir and IRS-1, whereupon they serve as effective 
adapters for the GRB2-SOS complex. The complex ac-
tivates Ras and the mitogen activated protein kinase 
(MAPK) cascade [32, 33]. The Ras-MAPK pathway 
leads to activation of genes involved in the mitogenic 
response to insulin and the IGFs, promoting inflamma-
tion and atherogenesis [34, 35]. 

Insulin growth factors have primary structural ho-
mology to proinsulin. Most of them are produced by 
hepatocytes in response to growth hormone stimula-
tion [36, 37]. In addition to IGFs, the IGF axis includes 
two receptors – IGF1R and IGF2R – and a  family of 
high-affinity IGF-binding proteins (IGFBPs). IGFs are 
stimulators of mitogenesis, survival and cellular trans-
formation. Insulin, pro-insulin and IGFs with different 
affinities and potencies are capable of binding and acti-

vating both Ir and IGF-1R. IGF2R has a higher affinity 
for IGF2, and its main function is modulation of the 
bioavailability of extracellular IGF-2 [38-40]. 

All IGFBPs serve as growth-inhibitory factors 
by competitively binding IGFs and preventing their 
binding to IGF1R, which stimulates cell proliferation.  
IGFBPs modulate the amount of bioavailable free IGFs 
and reduce their transfer from the bloodstream to tis-
sue, inhibiting their action [39].

Growing evidence indicates that NAFLD aggravates 
IR and is an independent risk factor for developing 
and worsening of existing T2DM. Many studies also 
demonstrate that fatty liver with IR plays an important 
role in development of chronic complications, such as 
CVD, chronic kidney disease and extra-hepatic can-
cers [11, 41-43]. Due to IR progression among patients,  
hyperinsulinemia leads to higher production of IGF-1, 
resulting in activation of cellular growth and prolifer-
ation and down-regulation of apoptosis [36, 38, 44]. 
Up-regulated and uncontrolled cellular growth and 
proliferation within the organs may contribute to car-
cinogenesis. Higher IGF expression was associated with 
tumor progression in colorectal and pancreatic caners 
[45-47]. Increased levels of IGF-1 and its receptor in 
gastrinomas were related to accelerated tumor growth 
and aggressiveness, and occurrence of liver metastases 
[48]. It has been identified that IGF-1 activated vari-
ous pathways of the epithelial-mesenchymal transition 
(EMT) in gastric cancer. IGF-1 signaling activated sur-
vivin (BIRC5) expression and controlled the expression 
of EMT biomarkers during the development of gastric 
cancer [49]. There is also evidence that a higher IGF-1/
IGFBP-3 molar ratio represents increased free IGF-1, 
which may be a risk factor for pancreatic cancer [50]. 
IGF-2 expres sion was significantly increased in prima-
ry colon tumors [51].

Angiogenesis

Insulin also induces production of a  variety of  
other potential regulators of cell proliferation and dif-
ferentiation, such as cytokines, adipokines and growth 
factors including leptin, vascular endothelial growth 
factor (VEGF) and interleukin(IL)-6 [52-54]. Bind-
ing to IGF1R, it plays an important role in increased 
production of VEGF by endothelial cells [37, 55, 56]. 
VEGF is not only a trigger and regulator of angiogen-
esis, vasculogenesis and vascular permeability, but 
VEGF-mediated signaling influences key aspects of 
tumorigenesis, including the function of cancer stem 
cells and tumor initiation [56, 57]. The role of VEGF 
overexpression is proven in gastric cancer, esophageal 
cancer and colorectal cancer [55, 58-61]. 
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During chronic inflammation, which is an inher-
ent element of excess hypotrophy of adipose tissue and 
NAFLD, the accumulation of inflammatory cells col-
lectively with fibrosis leads to hypoxia, by aggravating 
resistance of damaged tissue to blood flow and oxygen 
(O2) supply [62, 63]. Hypoxia induces angiogenesis as 
a  result of signaling mediated by hypoxia-inducible 
factors (HIFs) [64]. Three isoforms of HIFα subunits 
(HIF-1α, HIF-2α, and HIF-3α) expression and the 
downstream activation of the hypoxic stress response 
play an important role in many cancers. HIF-1 and HIF-
2 play complementary roles in the regulation of eryth-
ropoiesis, angiogenesis, cell proliferation and apopto-
sis. Each HIF regulates a unique subset of target genes. 
HIFα stabilization has a role in genetic alterations such 
as mutations in the Wnt/β-catenin signaling pathway in 
colon carcinoma and other oncogenic events [65-68]. 

However, some data show that hypoxia alone could 
be important in the stimulation of angiogenesis and can 
also boost inflammation, causing a circle between inflam-
mation and angiogenesis [69]. Interestingly, evidence 
showed that in morbidly obese patients the activation of 
angiogenesis was observed very early at the stage of sim-
ple steatosis, while in non-obese patients angiogenesis 
took place later at the level of NASH. In severe obesity, 
there was also a positive association between the progres-
sion of fibrosis and neovascularization activity [65, 70]. 

In a study performed on 72 patients with chronic 
hepatic disease, infected with hepatitis C virus geno-
type 1b (BMI < 30 kg/m2), Kukla et al. demonstrated 
that higher grades of steatosis are positively associat-
ed with a more advanced stage of fibrosis and CD34  
expression [71]. CD34 is a  sialomucin-like glycopro-
tein expressed on hematopoietic progenitor cells, nor-
mal vascular endothelium and fibroblasts, which has 
been used as an endothelial antigen to emphasize vas-
cular density as a direct indicator of neoangiogenesis 
in cancers [72].

Inflammation

Adipose tissue includes mature adipocytes, stro-
mal preadipocytes, but also immune cells, extracellular  
matrix and the vascular endothelium [73]. IR, exces-
sive release of FFAs and ectopic fat deposition are pro-
moted by macrophage infiltration [74]. Adipocytes, 
macrophages and the interaction between them cause 
lipotoxicity-induced metabolic dysfunction. Activation  
of inflammatory pathways and adipocyte necrosis  
induces “signals” (adipokines, hormones) that locally 
recruit macrophages. This leads to adipocyte-macro-
phage crosstalk aggravating lipoto xicity and IR [74-77].

Low-grade chronic inflammation and IR create 
a specific microenvironment, which is suitable for can-
cer development due to stimulation of the IGF-1 axis 
by hyperinsulinaemia [78]. The chronic inflammato-
ry state is likely to be associated with increased pro-
duction of IL-6 by adipose tissue. Expression of this  
cytokine positively correlates with IR both in vivo and 
in vitro [52, 79]. Proinflammatory cytokines, such as 
tumor necrosis factor (TNF)-α, IL-6, IL-8 and plas-
minogen activator inhibitor-1 (PAI-1), play important 
roles in cellular proliferation, angiogenesis and nega-
tive regulation of apoptosis [80, 81]. 

IL-6 acts through several classic protein kinase 
cascades such as MAPK and phosphatidylinositol- 
triphosphate kinase (PI-3 kinase), but can also directly 
activate the signal transducers and activators of tran-
scription (STAT) factors STAT1 and STAT3, due to the 
capability of acting by Janus kinases (JAK). Activation 
of these pathways is a serious unwanted consequence 
in the context of progression to neoplasia [82]. Fur-
thermore, several experimental studies have shown 
that IL-6 promotes tumorigenesis and angiogenesis, 
facilitates metastases and increases treatment resis-
tance [82-84]. IL-6 is associated with carcinogenesis 
in gastric cancer and colorectal cancer [85-87]. In-
creased expression of IL-6 was also found in human 
pancreatic cancer cells [82, 88]. A number of reports 
also indicate that TNF-α is a very important factor in 
carcinogenesis. It induces tumor initiation and promo-
tion, mediates proliferation and potentiates invasion 
of tumor cells. It supports tumor development due to 
development and persistence of angiogenesis [89, 90]. 
Animal models showed higher expression of TNF-α in 
colorectal cancer [91]. TNF-α influences cancer devel-
opment by activating the tumorigenic Wnt signaling 
pathway [92]. 

Hedhehog

Hedhehog (Hh) is the best characterized signaling 
pathway that mediates hepatic fibrosis in NAFLD. This 
pathway is an accepted master of the wound-healing 
response, which is a reaction to liver damage [93, 94]. 
Deregulation of wound healing promotes the develop-
ment of progressive fibrosis, which determines liver 
prognosis [95]. In healthy hepatocytes Hedgehog path-
way activation is properly absent, but injured ballooned 
hepatocytes are the main source of Hh ligands (mostly 
Sonic hedgehog, Shh; others: Indian hedgehog, Ihh; and 
Desert hedgehog, Dhh) in NAFLD [94, 96]. In human 
NAFLD the magnitude of activation of the Hh pathway 
is related to the severity of liver disease and correlates 
with the severity of fibrosis [96, 97]. The number of Shh 
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expressing ballooned hepatocytes strongly correlates 
with fibrosis severity, as well as with the severity of the 
ductular reaction, which is closely related to fibrogenesis 
and carcinogenesis [96, 98]. Hh signaling is associated 
with inflammatory and chronic degenerative diseases. 
Overactivation of this signaling may lead to many tu-
mors such as pancreatic cancer [99].

Gut microbiota

Obesity, T2DM and low physical activity induce 
quantitative and qualitative changes of gut microbiota 
composition [100]. Dysbiosis of gastrointestinal micro-
organisms in NAFLD has been confirmed in many 
studies. There is evidence that children with NAFLD 
exhibited higher abundance of Gammaproteobacteria, 
Epsilonproteobacteria and Prevotella spp. than healthy 
controls [101]. In the case of NASH and obesity the in-
crease of representation of Bacteroidetes and Prevotella 
was found. In the same study, elevated blood-etha-
nol concentration was observed among patients with 
NASH, when compared to healthy subjects and obese 
patients. The role of alcohol metabolism in oxidative 
stress and liver inflammation suggests a significant role 
of the alcohol-producing microbiome in the pathogen-
esis of NASH [102]. Also the higher Bacteroides con-
centration is related to NASH development while the 
increased abundance of Ruminococcus is associated 
with risk of liver fibrosis [103]. Additionally, the cross 
talk between the immune system and gut microbiota 
components plays a key role in maintenance of gastro-
intestinal epithelial barrier function [104]. Disability 
of the immune epithelial network leads to dysfunction 
of tight junctions, increased gut permeability, bacteri-
al translocation and leakage of bacterial components 
[105, 106]. Likewise, reports have demonstrated that 
a decrease in Akkermansia muciniphila, which is ob-
served in the obese, causes a thinner intestinal mucus 
layer and promotes gut permeability [107].

Gut microbial enzymes facilitate dietary fat diges-
tion and absorption through formation of micelles, 
which is possible due to the ability of transformation 
of the primary bile acids into conjugated bile acids. 
Studies carried out on mice showed that germ-free 
(GF) mice or antibiotic treated mice had low concen-
trations of conjugated bile acids; these results under-
line the central role of the gut microbiota in regulating 
bile acid composition, conjugation, and diversity [108-
110]. Bile acids bind the nuclear farnesoid X receptor 
(FXR), which is known as a transcription factor con-
trolling their endogenous synthesis and release [111]. 
Mice with IR and obesity have a  low diversity of gut 
microbiota, associated with a  reduction in bile acid 

composition, higher intestinal expression of FXR and 
FXR-related genes (FGF15) and decreased hepatic  
Cyp7a1 [112]. 

There is strong evidence regarding the role of small 
intestinal bacterial overgrowth (SIBO) and endotox-
emia in NAFLD progression. A critical point is acti-
vation of the family of pattern recognition receptors 
(Toll-like receptors, TLRs) with translocated bacterial 
endotoxins such as lipopolysaccharide (LPS), bacterial 
fragments, bacterial DNA and peptidoglycan. Circulat-
ing pathogen-associated molecular pattern (PAMPs) 
and damage-associated molecular patterns (DAMPs) 
and their interaction with TLRs induce production of 
reactive oxygen species and activation of the inflam-
masomes [113-116]. The inflammasome (NLRP3) is 
a  cytosolic multiprotein complex of receptors from 
the family of NOD-like receptors, with pro-caspase-1 
and an adaptor: apoptosis-associated speck-like 
CARD-domain containing protein (ASC). Activation 
of the complex causes autocatalytic cleavage and ac-
tivation of caspase-1, which activates IL-1β and IL-18 
and neutralizes IL-33. The inflammasomes are present 
in the liver in parenchymal and non-parenchymal cells 
[117, 118]. Increased expression of this multiprotein 
complex and its components was observed in NASH, 
which may suggest the key role in NASH development 
and progression [119, 120]. Stimulation of TLRs also 
results in the production of various inflammatory 
mediators through transcriptional factor nuclear fac-
tor kappaB (NF-κB) and/or c-Jun N-terminal kinase 
(JNK) activation [121]. Changes in the tumoral genet-
ic and immunological microenvironment can lead to 
malignancy growth in the colon and influence esopha-
geal and pancreatic tumorigenesis [122-124]. 

Adipokines

Adipose tissue derived hormones, termed adipokines, 
play a pivotal role in NAFLD. They have been suggested 
to significantly influence cell proliferation, apoptosis, car-
cinogenesis and angiogenesis. They regulate intrahepatic 
fat accumulation, IR, inflammation and fibrosis [125]. 
The family of adipokines has been extending in recent 
years. Some of them exert protective effects, whereas oth-
ers exert proinflammatory, profibrotic, prosteatotic and 
procarcinogenic effects [125-129].

In obesity, like NAFLD, leptin levels increase with 
a  simultaneous decrease of adiponectin (Fig. 2) [78, 
130]. Leptin is a hormone which is mainly produced 
by adipose tissue and whose function is to control food 
intake and energy balance [131]. Circulating leptin  
levels are higher in patients with NAFLD than in con-
trols, and these are associated with increased severity of  
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NAFLD [132, 133]. Leptin is associated with increased 
carcinogenesis, indirectly through regulation of in-
flammation and oxidative stress or directly through 
up-regulation of cell proliferation, inhibition of apop-
tosis, potentiation of angiogenesis and modulation 
of the immune response [134]. Its pro-cancerogenic 
activity takes place through the JAK/STAT (Janus ki-
nase/signal transducer and activator of transcription), 
PI3K/PTEN/Akt/mTOR (phosphoinositide 3-kinase/ 
phosphatase and tensin homolog/protein kinase B/mam-
malian target of rapamycin), Raf/MEK/ERK (proto- 
oncogene c-RAF/mitogen-activated protein kinase ki-
nase/extracellular signal-regulated kinase) pathways 
[130, 135]. There was noted a dependence between el-
evated levels of leptin and risk of occurrence of esoph-
ageal adenocarcinoma in the overweight population 
[136]. In a  study comparing the expression of leptin 
and adiponectin in esophageal squamous cell carcino-
ma (122 patients) and normal esophageal mucosa (40 
subjects) Duan et al. found that also in esophageal car-
cinoma there occurs imbalanced expression of adipo-
cytokines and a link of lymph node metastasis and/or 
tumor stage with expression of leptin and adiponectin, 
which may have potential significance in carcinogen-
esis and poor outcomes [137]. Stomach cancer is also 
linked to leptin levels. Leptin induces proliferation of 
gastric cancer cells by activating STAT3 and ERK1/2 
pathways. It is involved in increasing expression of 
VEGF and mediating angiogenesis, which is engaged 
in tumor progression [138, 139]. Expression of the 
leptin receptor (Ob-R) depending on clinical stage was 

assessed, and it showed a  tendency to increase from 
gastric adenoma (2%), through early gastric cancer 
(8%), to advanced gastric cancer (18%) [138]. In the 
same study, an association between leptin expression 
and incidence of cardia cancer location was demon-
strated. Colorectal cancer studies documented a  link 
between increased serum leptin levels and lymph node 
involvement, microvascular invasion and advanced 
tumor stage [134, 140, 141]. Wang et al. confirmed 
this correlation in a  study including 108 patients  
(57 males/51 females, mean age 58.9 years) with tu-
mors located in the colon in 78 and the rectum in  
30 patients. The distribution by TNM stage at diagno-
sis was: stage I  in 24 patients, stage II in 27 patients, 
stage III in 45 patients, and stage IV in 12 patients 
[141]. Leptin could regulate proliferation and apopto-
sis of colorectal cancer through the PI3K/Akt/mTOR 
signal pathway [141]. At early stages of colorectal can-
cer it also acts as a growth factor through activation of 
the signal transducer and activator of transcription 3 
(STAT 3) pathway [142]. 

Adiponectin is a  30 kDa protein hormone pro-
duced and secreted almost exclusively by adipocytes, 
which demonstrates insulin-sensitizing, vascular-pro-
tective and anti-inflammatory properties [140]. In 
serum this adipokine occurs in three forms: trimers, 
hexamers and high-molecular weight (HMW) mul-
timers, which is the most biologically active isoform 
[143, 144]. Three APN receptors have been discovered 
– AdipoR1, AdipoR2 and T-cadherin. The first two 
have been reported to be expressed in several cancer 
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cells in vitro and in vivo [144, 145]. Through these re-
ceptors adiponectin affects many pathways showing 
anti-carcinogenic activity. It activates AMP-activated 
protein kinase (AMPK), which plays a central role in 
disturbing cellular growth signaling via mTOR and 
inhibits adhesion and migration of tumor cells [146, 
147]. It also acts as an inhibitory factor of the phospha-
tidylinositol 3-kinase/protein kinase B (PI3K/AKT) 
pathway, which is activated in a  few types of cancers 
by promoting cellular growth and proliferation by in-
sulin- and growth factor-induced signaling [147]. Ad-
iponectin down-regulates carcinogenesis-promoting 
glycogen synthase kinase-3β (Wnt-GSK3β) pathways, 
extracellular regulated kinase 1 or 2 (ERK1/2), Janus 
kinase/signal transducer and activator of transcription 
(JAK/STAT) pathways and NF-κB [147-149]. Hypo- 
 adi ponectinemia extends the production pro-inflam-
matory cytokines including TNF-α and IL-6, acting 
as a pro-inflammatory factor and tumor cell prolifera-
tion and angiogenesis promoter [78, 145]. In NAFLD 
reduced levels of adiponectin were found [150-152]. 
Adiponectin serum levels are dependent on abdom-
inal adiposity distribution, with a  decreased amount 
in obese individuals [152]. Lower levels of adiponec-
tin were found to be associated with cancer develop-
ment. The relationship was confirmed for colorectal, 
gastric and esophageal cancers [153-156]. Yıldırım 
et al. [153] studied 62 patients (30 males/32 females, 
aged 64 years, BMI 22.2 kg/m2) with esophageal can-
cer classified into two types based on the histological 
characteristics: adenocarcinoma and squamous cell 
carcinoma of the esophagus. They found that the se-
rum adiponectin level in the cancer group was signifi-
cantly lower than that in the healthy control group. 
Moreover, it was gradually decreasing with increase in 
tumor stage. Additionally, the patients with esophageal 
adenocarcinoma had lower levels of adiponectin than 
patients with squamous cell carcinoma. Ishikawa et al. 
[154] in a study of 75 gastric cancer patients divided 
into two groups depending on the degree of malignan-
cy of differentiated (32 males/11 females) and un-dif-
ferentiated (22 males/10 females) gastric cancer found 
that a  reduced adiponectin level was associated with 
an increased risk for gastric cancer and it had a poten-
tial role in tumor progression, especially in undiffer-
entiated type cancers in the upper stomach. A  study 
performed on 165 Chinese male patients of the Han 
nationality aged ≥ 35 years and with pathologically 
diagnosed colorectal cancer (CRC) – intraepithelial 
carcinoma and submucosally invasive carcinoma as 
early cancer (patients aged 62.1 years, with BMI 23.5 
kg/m2) and pathological stage T2 or higher was de-
fined as advanced cancer (patients aged 61.8 years, 

with BMI 22.4 kg/m2) – confirmed that a decreased 
level of adiponectin was a strong risk factor for both 
early and advanced CRC [155].

Resistin is a 12.5-kDa protein of the “resistin-like 
molecules” (RELMs) family secreted from adipocytes, 
but it is also produced by monocytes and macrophages 
[11, 157]. Some authors have reported higher circu-
lating resistin levels in NAFLD than in control groups 
[158, 159]. An increased level of resistin was found 
in patients with NASH compared to those with sim-
ple steatosis, and it was linked to the severity of liver 
inflammation and fibrosis in those patients [160]. Re-
sistin was suggested to play a pivotal role in adipocyte 
maturation through the influence on lipid metabo-
lism. Higher levels of resistin may also be related to 
development of obesity-mediated IR, T2DM and in-
flammation [161, 162]. Resistin stimulates growth, dif-
ferentiation and migration of endothelial cells, which 
is substantial in the processes of cancerogenesis and 
angiogenesis [163]. Although levels of resistin might 
be elevated in obesity-related cancers, it cannot be la-
beled as a risk predictor of these tumors’ occurrence. 
Higher resistin levels can be considered as a substan-
tive biomarker of obesity-related cancer risk [164]. In 
a  study performed on 85 patients with histological-
ly confirmed gastroesophageal cancer (male/female 
61/24; age 60 years) compared to 60 healthy individ-
uals (male/female 47/13; age 58) serum resistin levels 
were found to be higher in cancer patients compared 
to controls. Resistin concentration was associated with 
cachexia and gastroesophageal cancer metastasis de-
velopment [165]. Resistin stimulates the expression of 
stromal cell-derived factor 1 (SDF-1), which works as 
a growth and survival factor in gastric cancer cells. It 
acts through TLR4 and activation of NKκB and p38 
MAPK pathways [166].

Visfatin is an adipokine with multipotential activi-
ties, which is expressed not only in visceral adipose tissue 
but also by peripheral, bone marrow and hepatic lym-
phocytes, pneumocytes and hepatocytes [129, 167]. 
Visfatin exerts both extracellular (cytokine-like) and 
intracellular (enzymatic) functions, which are re-
sponsible for its role in the immune, metabolic and 
stress responses [125]. Visfatin mediates biosynthe-
sis of nicotinamide adenine dinucleotide (NAD) by 
conversion of nicotinamide to nicotinamide mono-
nucleotide. NAD biosynthesis is involved in inflam-
mation, cellular differentiation and tumor progression 
through downstream regulators such as sirtuins and 
poly (ADP-ribose) polymerase (PARP). The sirtuins 
are responsible for regulation of both cell survival and 
TNF-α secretion [168-170]. Visfatin demonstrates 
mostly pro-inflammatory activity by inducing cyto-
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kines such as TNF-α and IL-6 [171]. Visfatin directly 
interacts not only with Ir but also with the insulin-like 
growth factor receptor, and can afterwards promote 
cancer cell proliferation [172]. Some authors reported 
higher visfatin levels in NAFLD compared to controls 
[173]. Elevated levels of visfatin were observed in gas-
tric and colorectal cancers [168, 174, 175]. In gastric 
cancer visfatin levels can reflect the stage of progres-
sion. Moreover, elevated preoperative plasma visfatin 
levels were a  poor prognostic factor of 5-year mor-
tality and overall survival in gastric cancer patients 
[176]. The results of a  case-control study by Naka-
jima et al. carried out on 115 colorectal cancers pa-
tients (69 males and 46 females, aged 63.7 years, BMI  
22.9 kg/m2) with mainly recognized well-differentiated 
adenocarcinoma showed that visfatin may be a good 
biomarker of cancer malignancy independently of 
BMI and stage of progression [177]. Visfatin induces 
stromal SDF-1 expression in colorectal cancer, which 
is mediated through β1 integrin activation, the ERK 
and p38 MAPK intracellular signaling cascades, and 
transcription factors such as NF-κB and activator pro-
tein-1 (AP-1) [178].

Chemerin is an adipokine whose expression has 
been found in different tissues, including the liver, 
pancreas, lung and adipose tissue. It has been shown 
to be associated with BMI, plasma triglycerides, blood 
pressure and IR [179-181]. Some studies have demon-
strated both a  pro- and anti-inflammatory chimeric 
nature of chemerin [182]. Kukla et al. reported that 
levels of chemerin were higher in NAFLD patients 
than in healthy individuals. In their study they com-
pared 41 Polish patients (26 males and 15 females) 
with biopsy-proven NAFLD with up-regulated ALT 
activity, aged 45.7 years, with BMI 30.4 kg/m2 [179]. 
The levels of chemerin are generally higher in obesity 
and IR conditions and decrease after weight loss [183]. 
Chemerin exerts an insulin-sensitizing effect on β cells 
and adipocytes [184, 185]. It also has been shown to 
be involved in the development of inflammation. An 
elevated serum level of chemerin is positively asso-
ciated with increased expression of visceral adipose 
tissue macrophage and proinflammatory cytokines 
such as TNF-α [183, 186]. Some data indicated higher 
chemerin levels to be associated with the occurrence of 
esophageal, gastric and colorectal cancers [187-190]. 
A  study of 36 gastric cancer patients (19 males and 
17 females, aged 47-83 years) by Wang et al. showed 
elevated levels of chemerin in gastric cancer patients 
compared to controls. Chemerin levels were related to 
advanced clinical stages and non-intestinal type of gas-
tric cancer [189]. Jian et al. demonstrated in a group 
of 196 gastric cancer patients (112 males, 84 females, 

BMI 23.0 kg/m2) with mainly histological recognition 
of adenocarcinoma that preoperative increased levels 
of chemerin are independently associated with poor 
prognosis of 5-year mortality, adverse events and short 
overall survival [188]. Chemerin increases phosphor-
ylation of ERK1/2 and p38 MAPKs and enhances the 
invasiveness of gastric cancer cells by upregulation of 
VEGF, matrix metalloproteinase 7 (MMP-7) and IL-6 
[189]. These factors are well-recognized negative pre-
dictors of gastric cancer outcome [191-193]. 

Association between NAFLD  
and gastrointestinal cancer

Esophageal and gastric cancer

Esophageal cancer is the sixth leading cause of can-
cer death worldwide [194]. High BMI, which is the 
main risk factor of NAFLD development, is also listed 
among all proven risk factors of esophageal adeno-
carcinoma [195]. NAFLD is independently associated 
with increased risk of erosive oesophagitis, which may 
be complicated by oesophageal ulcers, peptic stricture, 
Barrett’s esophagus and oesophageal adenocarcinoma. 
Also general and central obesity uncomplicated with 
NAFLD are included among risk factors of esophageal 
adenocarcinoma, although they have less significance 
than when associated with NAFLD [196]. Some data 
also confirm a relationship between MS and develop-
ment of Barrett’s esophagus, which is considered to be 
a  pre-cancerous condition for esophageal adenocar-
cinoma [197, 198]. Taking into account the influence 
of MS and obesity on the occurrence of carcinogenic 
risk factors, it seems that there should be a  link be-
tween NAFLD and the development of gastric cancer. 
However, only one retrospective study has confirmed 
such a relationship. The study included 1840 Turkish 
patients who underwent esophagogastroscopy, 14 of 
whom (9 males/5 females, aged 56-85 years) were di-
agnosed with distal gastric cancer. NAFLD was found 
in 35.7% of cancer patients. The incidence of NAFLD 
was higher in gastric cancer patients compared to the 
average incidence in the Turkish population [199]. 

Pancreatic cancer

Pancreatic cancer is one of the most common caus-
es of cancer mortality worldwide and is emerging as 
a  growing health problem due to the distinctly poor 
prognosis [200, 201]. Some data have shown an asso-
ciation between pancreatic cancer and obesity. There 
is evidence that being overweight especially in early 
adulthood is strongly connected with an increased 
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risk of pancreatic cancer independently of T2DM 
prevalence. The duration of overweight and obesi-
ty is also relevant, being considerably longer among 
patients who developed pancreatic cancer. Likewise, 
a meta-analysis showed an increase of pancreatic can-
cer risk together with increasing waist circumference 
[202-204]. A meta-analysis published in 2011 revealed 
T2DM as a risk factor of pancreatic cancer regardless 
of gender. The same study showed that T2DM can be 
considered as an etiologic factor and an early manifes-
tation of pancreatic cancer [205]. NAFLD should be 
considered as an independent risk factor of pancreatic 
cancer, but further studies are needed to clarify and 
confirm this suggestion. 

Colorectal cancer

The risk of colorectal cancer is higher for inflam-
matory bowel disease and in the case of a  history of 
colorectal cancer in first-degree relatives, increased 
BMI, red meat intake, cigarette smoking, low physi-
cal activity, and low vegetable and fruit consumption 
[206]. NAFLD is associated with higher prevalence of 
colorectal lesions and cancer. Hwang et al. presented 
evidence for an association between NAFLD and in-
creased prevalence of colorectal adenomatous polyps. 
The study included 2971 participants who underwent 
colonoscopy, hepatic ultrasonography scanning and 
biochemical tests such as serum glucose, triglycerides, 
total cholesterol, high-density lipoprotein cholesterol 
(HDL-C) and low-density lipoprotein cholesterol 
(LDL-C). Adenomatous polyps were diagnosed in 556 
(19.1%) subjects. The prevalence of NAFLD in the 
group of participants with colorectal lesions was 41.5% 
versus 30.2% in the control group. Multivariate analysis 
revealed NAFLD to be associated with increased risk 
of colorectal adenomas (OR 1.28; 95% CI: 1.03-1.60). 
Higher risk of NAFLD was significant in patients with 
many adenomatous polyps [207]. The next retrospec-
tive cohort study by Lee et al., which included 5517 
women who underwent life insurance company health 
examinations, confirmed those results. Conducted ul-
trasonography and exclusion criteria allowed NAFLD 
to be diagnosed in 15.1% of studied patients. The inci-
dence of adenomatous polyps in patients with NAFLD 
vs. without NAFLD was respectively 628.0 vs. 185.2/105 
persons/year (RR 1.94; 95% CI: 1.11-3.40), while that 
of colorectal cancer was 233.6 vs. 27.0/105 persons/year 
(RR 3.08; 95% CI: 1.02-9.34) [208]. 

Stadlmayr et al. performed a cross-sectional study 
including 1211 participants and obtained similar re-
sults. The prevalence of colorectal lesions was 34% 
in the NAFLD group and 21.7% in the control group  

(p < 0.001). Additionally, the study confirmed inci-
dence of colorectal lesions to be dependent on patients’ 
sex. The analysis showed that 40% of male patients 
with NAFLD included in the study had colorectal le-
sions compared to 28.3% of those without NAFLD  
(p = 0.010), whereas 25.6% of female patients with  
NAFLD had colorectal lesions compared to 17.2% of 
those without NAFLD (p = 0.014). Patients with NAFLD 
had a higher number of tubular adenomas and colorec-
tal carcinomas, and it was independent of gender [209]. 
Moreover, some data showed that patients with NAFLD 
had more multiple polyps [210], which were more often 
located in the right and transverse colon [211, 212]. In-
terestingly, patients with NASH had a higher prevalence 
of adenomas and advanced neoplasms than those with 
NAFL [212]. Lin et al. found that patients diagnosed 
with NAFLD were more often complicated with col-
orectal cancer, which predominantly was located in the 
sigmoid colon [213]. The majority of the studies showed 
comparable results, which are collated in Table 1. 

However, Touzin et al. in a  retrospective cohort 
study, which included 233 patients, aged 54.7 ± 6.0 years, 
who underwent screening colonoscopies, did not con-
firm those results. In the ultrasound 94 (40.3%) partic-
ipants were diagnosed with NAFLD. Colonic adenomas 
appeared in 24.4% of patients with versus 25.1% of those 
without NAFLD [214]. A prospective observational study 
conducted by Basyigit et al. including 127 patients found 
the prevalence of colorectal carcinoma to be significantly 
lower in patients with NAFLD (4.6%) compared to those 
without NAFLD (24.2%) (p = 0.001). Additionally, the 
incidence of adenomas was higher in the control group 
than in NAFLD patients (25.8% vs. 20.0%), but the dif-
ference was not statistically significant [215]. 

Conclusions

NAFLD is a growing health problem worldwide and 
has been described as a “global pandemic”. NAFLD is 
related to increased risk of development of some extra-
hepatic cancers. Additionally, it is associated with an 
increased risk of all-cause and cancer-specific mortali-
ty among cancer survivors. Therefore, it is important to 
reveal the pathomechanism of changes leading to the 
development of tumors and provide novel therapeutic 
approaches. NAFLD is a multidisciplinary disease that 
affects various systems and organs and is inextricably 
linked to simple obesity, metabolic syndrome, IR and 
overt T2DM. 

Many factors influence the development of car-
cinogenesis in the course of NAFLD:
•	 IR plays a major role in NAFLD-related carcino ge-

nesis. Stimulation of the IGF-1 factor axis by hyper-
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insulinemia leads to enhancement of proliferative 
and anti-apoptotic pathways.

•	 Chronic inflammation, aggravated by proinflam-
matory cytokines and factors, such as TNF-α, IL-6, 
IL-8, PAI-1 and NF-κB, which are overexpressed in 
obesity and NAFLD, accelerates cellular proliferation 
and angiogenesis, and modulates cellular signaling 
pathways, which are essential in carcinogenesis.

•	 Dysbiosis, which is closely associated with obesity, 
T2DM and NASH, weakens the intestinal barrier.  
Infiltration of bacterial fragments and products, such 
as endotoxins, activates TLRs, contributing to exac-
erbation of the inflammatory process in the liver and 
adipose tissue, activation of fibrogenesis and up-regu-
lation of oxidative stress and IR. 

•	 Dysregulation of adipose tissue derived hormones – 
adipokines – influences inflammation, fibrosis, angio-
genesis, apoptosis and IR, with predominance of the 
pro-carcinogenic effect. 

All these factors are suggested to play a critical role in 
extrahepatic tumor development. The predominance of 
pro-carcinogenic risk factors in NAFLD patients results 
from intricate and multi-faceted mechanisms which still 
are not fully explained and need further research. 
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