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Abstract

Aim of the study: Hepatic encephalopathy and hyperammonemia is a clinical complication associated with liver 
cirrhosis. The brain is the target organ for ammonia toxicity. Ammonia-induced brain injury is related to oxidative 
stress, locomotor activity dysfunction, and cognitive deficit, which could lead to permanent brain injury, coma 
and death if not appropriately managed. There is no promising pharmacological intervention against cirrhosis- 
associated brain injury. Taurine (TAU) is one of the most abundant amino acids in the human body. Several 
physiological and pharmacological roles have been attributed to TAU. TAU may act as an antioxidant and is an 
excellent neuroprotective agent. This study aimed to evaluate the effect of TAU supplementation on cirrhosis- 
associated locomotor activity disturbances and oxidative stress in the brain.

Material and methods: Rats underwent bile duct ligation (BDL) surgery, and plasma and brain ammonia level, 
plasma biochemical parameters, and rats’ locomotor function were monitored. Furthermore, brain tissue markers 
of oxidative stress were assessed. 

Results: It was found that plasma and brain ammonia was increased, and markers of liver injury were signifi-
cantly elevated in the cirrhotic group. Impaired locomotor activity was also evident in BDL rats. Moreover, an 
increase in brain tissue markers of oxidative stress was detected in the brain of cirrhotic animals. It was found 
that TAU supplementation (50, 100, and 200 mg/kg, gavage) alleviated brain tissue markers of oxidative stress 
and improved animals’ locomotor activity. 

Conclusions: These data suggest that TAU is a potential protective agent against cirrhosis-associated brain injury.
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neurotoxicity [3, 4]. It has been found that ammonia 
has direct toxic effects on neurons and astrocytes [4]. 
Ammonia causes brain edema, neuroinflammation, and 
oxidative stress when its level rises during HE [5]. Con-
sequently, suppression of the brain function, coma, 
permanent brain injury, or death might occur in pa-
tients with HE [5]. Impaired locomotor activity and 
cognitive dysfunction are well-established symptoms 
of ammonia neurotoxicity [6, 7]. Suppression of brain 
function during HE and hyperammonemia could lead 
to coma and death if not appropriately managed [6, 7]. 
Altered motor function in patients with chronic HE 

Introduction

Hepatic encephalopathy (HE) and hyperammo-
nemia is a  clinical feature of chronic liver injury and 
cirrhosis [1]. Although the exact mechanism(s) of HE- 
associated complications is not known, there is agree-
ment on the predominant role of ammonia [2]. Typical-
ly, ammonia is metabolized to urea by the liver. When 
the liver is damaged (e.g., by diseases or xenobiotics), 
this organ is not able to detoxify ammonia. The brain 
is a  crucial target organ for ammonia toxicity. Several 
mechanisms have been proposed for ammonia-induc ed  
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and hyperammonemia could reduce the quality of life 
of cirrhotic patients. 

Oxidative stress and its associated complications are 
known to be implicated in ammonia-induced brain in-
jury [3, 8, 9]. It has been reported that ammonia caused 
severe oxidative/nitrosative stress, biomembrane dis-
ruption, lipid peroxidation, and defects in cellular anti-
oxidant systems in the brain tissue [10-15]. Hence, an-
tioxidants and protective agents might have therapeutic 
value in the management of hyperammonemia-associ-
ated brain injury and its associated complications. 

Taurine (2-aminoethane sulfonic acid; TAU) is one 
of the most abundant amino acids in the human body 
[16]. Although TAU is not incorporated in protein 
structures, several physiological and pharmacological 
properties are attributed to this amino acid [17-21]. 
The cytoprotective properties of this chemical have 
been widely investigated [22-27]. The therapeutic ef-
fect of TAU against several diseases has also been men-
tioned [28-30]. It has been found that TAU provides 
protection against several neurological disorders as 
well as xenobiotic-induced neurotoxicity [31-36].

Although the protective properties of taurine have 
been widely investigated, the effect of this chemical 
against hyperammonemia-associated complications 
such as impairment of locomotor activity and brain in-
jury has not been entirely revealed. In the current study, 
bile duct ligation (BDL) was used as a  reliable animal 
model of cirrhosis [37, 38]. Then, plasma biomarkers of 
liver injury were assessed. Moreover, brain tissue oxida-
tive stress markers were measured, and animals’ loco-
motor activity was monitored to investigate the effect 
of TAU supplementation on cirrhosis-associated brain 
injury and impairment of locomotor activity.

Material and methods

Chemicals

Fatty acid-free bovine serum albumin (BSA) frac-
tion V, dithiobis-2-nitrobenzoic acid (DTNB), 6-hy-
droxy-2,5,7,8-tetramethyl chroman-2-carboxylic acid 
(Trolox), 4,2hydroxyethyl,1-piperazine ethane sulfonic 
acid (HEPES), thiobarbituric acid (TBA), 2′,7′dichlo-
rofluorescein diacetate (DCFH-DA), taurine (TAU), 
malondialdehyde (MDA), glutathione (GSH), sodi-
um phosphate dibasic (Na2HPO4), sucrose, potassium 
chloride (KCl), Coomassie brilliant blue, dithiothreitol, 
ethylene glycol-bis (2-aminoethyl ether)-N,N,N′,N′-
tetraacetic acid (EGTA), and ethylenediaminetetraacetic 
acid (EDTA) were purchased from Sigma Chemical Co. 
(St. Louis, MO, USA). Hydroxymethyl aminometh-
ane hydrochloride (Tris-HCl), and trichloroacetic acid 

(TCA) were obtained from Merck (Darmstadt, Germa-
ny). All salts (analytical grade) for preparing buffer solu-
tions were obtained from Merck (Darmstadt, Germany).

Animals

Male Sprague Dawley rats (n = 48; 200-250 g weight) 
were obtained from the Animal Breeding Center, Shiraz 
University of Medical Sciences, Shiraz, Iran. Rats were 
housed in plastic cages over wood-chip bedding (ambient 
temperature of 23 ± 1ºC, 12L: 12D photo schedule, ≈40% 
of relative humidity). Animals were allowed free access to 
a standard chow diet (Behparvar, Tehran, Iran) and tap 
water. All the experiments were conducted in conformity 
with the guidelines for care and use of experimental an-
imals approved by the local ethics committee of Shiraz 
University of Medical Sciences, Shiraz, Iran (#14822).

Animal model of cirrhosis

Bile duct ligation (BDL) in rats is an animal mod-
el of cirrhosis with all complications of chronic HE 
including a rise in blood ammonia and its associated 
neurobiological complications [14, 39]. For BDL sur-
gery, animals were anesthetized (10 mg/kg of xylazine 
and 70 mg/kg of ketamine, i.p.), a midline incision was 
made, and the common bile duct was identified, dou-
bly ligated, and cut between these two ligatures [40]. 
The sham operation comprised laparotomy and bile 
duct identification and manipulation without ligation.

Animal treatments

TAU (dissolved in tap water) was administered oral-
ly (Gavage) for 28 consecutive days. The treatments were 
as follows: 1) Control (vehicle-treated; tap water 2 ml/
kg); 2) BDL; 3) BDL + TAU 50 mg/kg/day, oral; 4) BDL 
+ TAU 100 mg/kg/day, oral; 5) BDL + TAU 200 mg/kg/
day, oral; 6) TAU 200 mg/kg/day, oral. On day 29 af-
ter the BDL operation, animals’ locomotor activity was 
assessed. Then, animals were anesthetized (thiopental, 
80 mg/kg, i.p.) and samples were collected. The sole TAU 
(200 mg/kg, oral) was administered to ensure its safety.

Motor coordination and activity tests

All motor coordination and activity tests were con-
ducted on day 29 after BDL surgery.

Open field test behavior

Open field behavior is applied as an index of animals’ 
locomotor activity in animal models of HE [41, 42]. In the 
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current investigation, the open field apparatus was made of 
a white Plexiglas box (100 cm L × 100 cm W × 30 cm H, 
and the box floor was divided into squares of 10 × 10 cm) 
[43]. The open field arena was equipped with a webcam 
(2.0 Megapixel, Gigaware, UK) and animals activity was 
monitored and recorded from a separate room. Rats’ be-
havior was recorded for fifteen minutes, and the total num-
ber of crossed squares was counted (total locomotion) [44].

Rotarod test

Based on a previously reported procedure, each rat 
underwent five sessions of rotarod performance [45]. 
The speed of the rotarod was 5 and 15 rpm with a cut-
off point 300 s. The time up to which the rat stayed on 
the rotating rod was automatically recorded [45, 46]. 

Gait test

Animals’ hind paws were wetted with ink. After-
ward, using a  runway procedure, rats were allowed to 
walk down on a paper strip (60 cm long, 10 cm wide) 
from the brightly lit corridor toward a  dark side. The 
distance between the points of the left and right hind 
paws was measured and recorded [45].

Beam walk

Animals had to cross a beam (15 mm diameter; 80 cm 
long; elevated 50 cm over the ground). The beam com-
municated with a  box at one end. Animals were first 
trained with a series of three approximate trials. Then, 
the time of beam cross and the number of foot slips were 
recorded [47].

Adhesive-removal test

The adhesive removal test was performed to evalu-
ate animal’ sensorimotor impairment, [48, 49]. A small 
adhesive-back paper dot (8-mm diameter) was placed  
on the rat forepaw to cover the hairless part of the paw. 
The animal was placed in a box (40 cm L × 40 cm W × 
15 cm H) and the time to remove the strip (with a cut-
off point of 180 s) was recorded [48, 49].

Negative geotaxis test

Based on a  previously reported procedure, rats 
were placed on an inclined surface (30°) with their 
heads facing downward [50]. The time for each ani-
mal to turn 180° was measured with a cut-off point of 
90 s [50].

Blood biochemistry

A Mindray BS-200 autoanalyzer (Mindray chemis-
try analyzers for low-volume laboratories, Guangzhou, 
China) and standard commercial kits (Pars Azmun, 
Tehran, Iran) were used to measure serum albumin, bil-
irubin, alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), and lactate dehydrogenase (LDH) 
[51]. Plasma ammonia level was measured with stan-
dard kits based on the absorbance photometry method 
of phenate-hypochlorate reaction [52]. Brain ammonia 
level of cirrhotic animals was determined according 
to a previously reported method [44] (Table 1). Brief-
ly, forebrain (cerebral cortex) samples (100 mg) were 
dissected, homogenized, and deproteinized in 3 ml of 
an ice-cooled (4°C) lysis solution (trichloroacetic acid, 
6% w/v in double distilled water). After centrifuga-
tion (12,000 g, 10 minutes, 4°C), the supernatant was 
collected and neutralized (KHCO3; 2 mol/l, pH = 7).  
Afterward, the ammonia content of the supernatant 
was measured using standard kits [52]. 

Statistical analysis

Data are shown as mean ± SD. The comparison of 
data sets was performed by the one-way analysis of 
variance (ANOVA) and Tukey’s post hoc test. Differ-
ences between groups were considered statistically sig-
nificant when p < 0.05. 

Results

Liver cirrhosis in BDL rats was accompanied with 
severe changes in blood biochemistry as compared 
with the sham-operated group. On the other hand, it 
was found that TAU treatment (50, 100, and 200 mg/
kg/day, oral) decreased serum biomarkers of liver inju-
ry in cirrhotic animals. A higher level of ammonia was 
detected in the plasma of BDL rats. Brain tissue am-
monia level was also significantly higher in cirrhotic 
animals in comparison with the sham-operated group. 
It was found that both plasma and brain ammonia  
level was lower in TAU-supplemented animals (200 mg/ 
kg/day, oral).

Evaluation of animals’ motor coordination re-
vealed a  significant decrease of locomotor activity 
in BDL rats. Lower open field activity, and impaired 
rotarod, beam walk, and gait test were evident in cir-
rhotic animals. The adhesive removal test as an index 
of sensorimotor activity was also impaired in the BDL 
group. It was found that TAU supplementation (50, 
100, and 200 mg/kg/day, oral) significantly decreased 
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the impairment of animals’ locomotor activity in BDL 
rats (Fig. 1). 

It was found that markers of oxidative stress were 
significantly higher in the brain tissue of cirrhotic rats. 
A  high level of reactive oxygen species (ROS), along 
with tissue glutathione depletion, and severe lipid 
peroxidation, were detected in the brain tissue of the 
BDL group in comparison with sham-operated ani-
mals. Moreover, the antioxidant capacity of the brain 
tissue was significantly decreased in cirrhotic rats. It 
was found that TAU treatment (50, 100, and 200 mg/
kg, i.p.) significantly mitigated brain tissue biomarkers 
of oxidative stress in cirrhotic animals. Lower levels of 
ROS and lipid peroxidation were detected in TAU-sup-
plemented groups. TAU (50, 100, and 200 mg/kg, i.p.) 
also preserved tissue antioxidant capacity and prevent-
ed brain glutathione depletion (Fig. 2).

It is noteworthy that the sole TAU administration 
caused no significant changes in animals’ locomotor 
activity in comparison with the control (vehicle-treat-
ed) group (data not shown). On the other hand, mark-
ers of oxidative stress remained unchanged (except for 
glutathione content, which was higher; p < 0.05) in 
the brain tissue of TAU-treated animals in compari-
son with the control group (data not shown). On the 
other hand, the effect of different doses of TAU (50, 
100, and 200 mg/kg/day, oral) on animals’ locomotor 
activity and brain markers of oxidative stress was not 
dose-dependent.

Discussion

Chronic hepatic encephalopathy (HE) and hyper-
ammonemia is a  common event associated with cir-
rhosis [53, 54]. HE is a  neuropsychiatric syndrome 

which can lead to permanent brain injury, coma, and 
death if not appropriately managed [1, 5, 6]. On the 
other hand, chronic and frequently subclinical hyper-
ammonemia is associated with different degrees of 
cirrhosis and could affect patients’ CNS function and 
quality of life [55, 56]. A wide range of impaired psy-
chomotor performance including tremor, rigidity, 
akinesia, athetosis, as well as cognitive dysfunction, is 
associated with cirrhosis and chronic HE [1, 57-59]. 

Ammonia is the most suspected molecule involved 
in the pathogenesis of HE-induced brain injury [2]. 
Oxidative stress and its consequences are established 
to play a significant role in the pathogenesis of hyper-
ammonemia-induced brain injury [9-12, 60-62]. In 
the current study, it was revealed that TAU supple-
mentation (50, 100, and 200 mg/kg, i.p.) to cirrhotic 
rats recovered animals’ regular locomotor activity and 
alleviated brain tissue markers of oxidative stress.

The neuroprotective properties of TAU have been 
widely investigated [63]. It is well established that tau-
rine treatment efficiently encounters oxidative stress 
and its consequences in brain tissue [64-66]. Several 
neurological disorders have also been shown to benefit 
from TAU supplementation [31-36, 67]. The effects of 
this amino acid against xenobiotic-induced CNS inju-
ry have also been widely investigated [68, 69].

Oxidative stress and its associated events play a cen-
tral role in ammonia-induced neurotoxicity [12, 70]. It 
has been found that markers of oxidative stress were in-
creased in the brain tissue of cirrhotic animals [71-73]. 
Increased ROS level, severe lipid peroxidation, and de-
creased brain tissue glutathione stores were detected in 
the brain of cirrhotic animals (Fig. 2) [74]. Brain tissue an-
tioxidant capacity was also impaired in BDL rats (Fig. 2). 
In the current study, TAU (50, 100, and 200 mg/kg, i.p.) 

Table 1. Serum biochemical measurements

Biomarkers
assessed

Treatments

Control  
(vehicle-treated)

BDL BDL 
+ TAU 50 mg/kg

BDL 
+ TAU 100 mg/kg

BDL 
+ TAU 200 mg/kg

ALT (U/l) 51 ± 4 430 ± 25* 259 ± 60a 183 ± 61a 164 ± 65a

AST (U/l) 83 ± 15 302 ± 21* 250 ± 27a 116 ± 47a 102 ± 35a

LDH (U/l) 402 ± 79 917 ± 96* 688 ± 43 512 ± 30a 593 ± 24a

Total bilirubin (mg/dl) 0.054 ± 0.005 11 ± 2* 7 ± 3 6.5 ± 1.8 6.4 ± 3.47

Albumin (mg/dl) 3.66 ± 0.22 2.95 ± 0.41* 3.00 ± 0.22 3.19 ± 0.12a 3.30 ± 0.11a

Plasma ammonia (mg/dl) 237 ± 66 1262 ± 214* 969 ± 160 898 ± 239 827 ± 217a

Brain ammonia (mg/g tissue) 11 ± 2 41 ± 9* 32 ± 7 27 ± 10 23 ± 7a

Data are shown as mean ± SD (n = 8). 
*Indicates significantly different as compared with control group (p < 0.001). 
aIndicates significantly different as compared with BDL group (p < 0.05). 
BDL – bile duct ligated, Tau – taurine
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effectively alleviated oxidative stress and its consequenc-
es in the brain of cirrhotic animals. Previously we also 
found that TAU treatment alleviated brain tissue markers 
of oxidative stress in an acute liver failure animal model 
of hyperammonemia [75]. It has been reported that TAU 
could significantly mitigate oxidative stress and its related 
events in different experimental models including several 
neurological disorders [24, 76]. Hence, the antioxidant 

capacity of TAU might play a significant role in its neuro-
protective properties during liver failure.

Brain mitochondria are among major targets of am-
monia toxicity [77, 78]. It has been established that hy-
perammonemia leads to a brain energy crisis [77, 78]. 
Previously we found that TAU could preserve brain mi-
tochondrial function in hyperammonemic conditions 
[79, 80]. Hence, another dominant mechanism for the 

Fig. 2. Effect of taurine supplementation on brain tissue markers of oxidative stress in cirrhotic animals
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neuroprotective effects of TAU in cirrhosis could be 
mediated through its impact on cellular mitochondria. 
Interestingly, some investigations have also mentioned 
that the anti-oxidative stress effects of TAU might be 
mediated through its effects on cellular mitochondria 
[81-84]. Hence, another important mechanism for the 
neuroprotective properties of TAU in cirrhotic ani-
mals could be mediated through its effects on brain 
mitochondria. The impact of TAU supplementation on 
brain mitochondrial function and energy metabolism 
in cirrhosis deserves further investigations.

Impaired cycling of Gln-Glu between neurons and 
astrocytes is documented in the brain of hyperam-
monemic models [85]. Consequently, the extracellular 
concentration of glutamate is increased. Glutamate is 
the primary excitatory neurotransmitter in the CNS 
which activates the N-methyl aspartate (NMDA) type 
of glutamate receptors. Hence, brain glutamatergic 

neurotransmission is severely affected during hyper-
ammonemia and HE [86, 87]. It is well established 
that one of the leading contributors to the toxic effects 
of ammonia in the brain tissue is the over-activation 
of NMDA receptors [87, 88]. This over-activation 
is known as the ammonia-induced “excitotoxic” re-
sponse [87, 88]. It has been found that the “excitotoxic 
response” plays a  significant role in the pathogenesis 
of ammonia-induced brain injury [87, 88]. Deleteri-
ous events such as dysregulation of cytoplasmic calci-
um level and excessive formation of reactive oxygen/ 
nitrogen species might lead to NMDA receptor 
over-activation [5, 70]. Hence, the excitotoxic response 
is tightly linked to ammonia-induced oxidative/nitro-
sative stress in the CNS. The antiexcitotoxic effect of 
TAU is an essential feature of this amino acid [89, 90]. 
It has been shown that TAU mitigated the excitotoxic 
response in cultured neurons [91, 92]. Hence, the anti- 

Fig. 3. Schematic representation of the potential mechanisms of neuroprotection provided by taurine in cirrhotic rats. Taurine might protect against ammonia 
neurotoxicity through a series of interconnected mechanisms

– Preserving liver ammonia detoxificaton capacity
– Prevention of increase in blood and brain ammonia
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excitotoxic effects of this amino acid could also play 
a  role in its neuroprotective effects during hyperam-
monemic episodes.

Neuroinflammation is another major complica-
tion during hyperammonemia and HE [93-95]. It has 
been found that neuroinflammation during hyperam-
monemia significantly deteriorates locomotor activity 
[96]. On the other hand, the anti-inflammatory effect 
of TAU has been mentioned in several investigations 
[97-100]. Hence, this amino acid might also alleviate 
brain tissue inflammation in hyperammonemic ani-
mals. The effect of TAU on brain inflammation in dif-
ferent models of hyperammonemia could be the sub-
ject of future studies.

We previously found that TAU administration to 
chronic and acute liver failure animal models could 
prevent a  rise in blood and brain ammonia level [79, 
101]. The effect of TAU on ammonia level could be due 
to the direct effects of TAU on the liver and preserved 
ammonia detoxification capability of this organ. Hence, 
the hepatoprotective effects of TAU might also play 
a  significant role in the neuroprotection provided by 
this amino acid (Fig. 3). In the current study, we found 
that TAU supplementation efficiently mitigated blood 
and brain ammonia level as well as impairment in ani-
mals’ locomotor activity during cirrhosis. Furthermore, 
TAU treatment prevented ammonia-induced oxidative 
stress and its consequences in rat brain. All these data 
indicate TAU as a potentially safe and clinically appli-
cable agent against HE and its associated complications 
in humans.

Interestingly, it has been found that brain TAU level 
is changed during acute or chronic HE [102]. Hence, 
some investigations have mentioned a potential role of 
TAU in the pathogenesis of HE. It has also been found 
that TAU prevented bilirubin-induced neurotoxicity 
[68, 103]. As chronic liver failure and cirrhosis are as-
sociated with high bilirubin levels, part of the neuro-
protection provided by taurine in BDL animals might 
be mediated through its effect on bilirubin-induced 
CNS injury. The precise effects of TAU supplementa-
tion on bilirubin-induced neurotoxicity during cirrho-
sis need further research.

Collectively, the data presented in the current study 
suggest that TAU exhibits neuroprotective effects 
against impairment of locomotor activity and oxidative 
stress associated with cirrhosis. Hence, TAU supple-
mentation could be not only an excellent hepatopro-
tective strategy but also a potential therapeutic option 
against hyperammonemia-associated CNS compli-
cations. Indeed, further investigations are needed for 
understanding the effect of TAU supplementation on 
other critical aspects of HE such as brain edema. 
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