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Abstract

Aim of the study: Cholestasis is the stoppage of bile flow that primarily affects liver function. On the other hand, 
kidneys are also severely influenced during cholestasis. Cholestasis-induced kidney injury is known as cholemic 
nephropathy (CN). There is no precise pharmacological option in CN. Previous studies revealed that oxidative 
stress plays a crucial role in the pathogenesis of CN. On the other hand, the positive effects of pentoxifylline (PTX) 
against renal injury with different etiologies have been frequently reported. In the current study, the potential 
nephroprotective role of PTX in cholestasis-induced renal injury is investigated. 

Material and methods: Bile duct ligated (BDL) rats were treated with PTX (10, 50, and 100 mg/kg), and renal 
markers of oxidative stress, urine level of inflammatory cytokines, as well as renal histopathological alterations 
were monitored.

Results: Significant changes in oxidative stress markers were detected in the BDL group. On the other hand,  
it was found that PTX (10, 50, and 100 mg/kg) significantly ameliorated cholestasis-induced oxidative stress in 
renal tissue. Renal histopathological changes, including interstitial inflammation, tubular atrophy, fibrosis, and 
cast formation, were detected in the BDL rats. Moreover, urine pro-inflammatory cytokines [interleukin (IL)-1,  
IL-9, IL-18, tumor necrosis factor α (TNF-α), and interferon γ (INF-γ)] were significantly increased in the choles-
tatic animals. PTX (10, 50, and 100 mg/kg, 14 days) significantly ameliorated renal histopathological alterations 
and urine levels of inflammatory cytokines.

Conclusions: These data indicate a potential nephroprotective role for PTX in cholestasis. The effects of PTX 
on oxidative stress parameters and the inflammatory response could play a primary role in its renoprotective 
mechanisms.
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Introduction

Cholestasis is a clinical complication that could 
occur in response to different insults [1, 2]. Several 
diseases or xenobiotics could induce cholestasis in hu-
mans [1, 2]. Irrespective of the etiology of cholestasis, 
the accumulation of bile constituents primarily affects 
liver function [1, 2]. Prolonged cholestasis can lead to 
liver fibrosis, cirrhosis, and hepatic failure [1-3]. Other 
organs, apart from the liver, could also be influenced 
by cholestasis. Renal injury is a prevalent complica-
tion in cholestatic/cirrhotic patients and is known as 
cholemic nephropathy (CN) [4-6]. CN can lead to 
acute renal failure. On the other hand, the differential 
diagnosis of CN and accurate differential diagnosis of 
acute kidney injury (AKI) in cholestasis/cirrhosis is  
a clinical challenge, and standard diagnostic criteria 
are still missing [7]. Thus, there is an urgent need for 
more specific clinical tests or biomarkers to diagnose 
impaired renal function in cholestasis/cirrhosis [7]. 
Most CN patients might have been diagnosed too late 
due to inappropriate accuracy of renal injury biomark-
ers such as creatinine. In addition, CN patients might 
already exhibit subclinical structural kidney injury 
that is subsequently prone to AKI and limits thera-
peutic strategies in these patients. Hence, finding ther-
apeutic options to protect kidneys during cholestasis 
could have tremendous clinical value.

Hydrophobic bile acids are the most suspicious 
compounds in the pathogenesis of cholestasis-induced 
renal injury [4, 5, 8, 9]. It has been well documented 
that hydrophobic bile acids can disrupt the function 
of different cellular targets, including biomembrane 
lipids, various proteins, as well as vital organelles such 
as mitochondria [8, 10, 11]. Furthermore, previous 
studies mentioned oxidative stress as a key mechanism 
in cholestasis-induced renal injury [12-15]. Enhanced 
reactive oxygen species (ROS) formation or decreased 
antioxidant capacity of renal tissue has been repeatedly 
mentioned in CN models [12-18]. Interestingly, some 
studies also reported oxidative stress in the renal tissue 
of cholestatic patients [19]. Therefore, administering 
drugs with antioxidative stress capacity in the kidney 
tissue could protect this organ during cholestasis.

Pentoxifylline (PTX) is clinically administered 
against peripheral vascular diseases [20]. The im-
provement of blood cells’ flexibility and deformability 
is a prominent feature of PTX, which finally leads to 
improved blood flow in different organs [20]. On the 
other hand, it has been found that PTX could effective-
ly regulate glomerular filtration and blood flow [20]. 
Hence, this drug has been repeatedly administered as 
a renoprotective agent in various experimental models 

and human clinical trials. Furthermore, the effect of 
PTX on oxidative stress markers in the renal tissue is 
an interesting feature of this drug [21-25]. It has been 
found that PTX significantly blunted oxidative stress 
and preserved cellular antioxidant capacity in different 
models of renal disease [21-25].

In this study, we aimed to develop an animal mod-
el of cholestasis-related injury to investigate the poten-
tial protective effects of PTX administration. Different 
markers, including inflammatory response and cyto-
kines, oxidative stress biomarkers, renal histopatho-
logical alterations, renal tissue fibrotic changes, and  
finally serum and urine biomarkers of renal injury, were 
monitored.

Material and methods

Reagents and kits

Sodium acetate, 2,4,6-tri(2-pyridyl)-s-triazine, 
p-dimethyl amino benzaldehyde, n-chloro tosylamide 
(chloramine-T), ethanol HPLC grade, citric acid, per-
chloric acid, trichloroacetic acid, 5,5’-dithiothreitol, 
n-propanol, meta-phosphoric acid, sucrose, dichlo-
rodihydrofluorescein diacetate, thiobarbituric acid, 
ethylenediamine tetra-acetic acid (EDTA), sodium ci-
trate, and 2amino2-hydroxymethyl-propane-1,3-diol- 
hydrochloride (Tris-HCl) were purchased from Merck 
(Darmstadt, Germany). Pentoxifylline, acetonitrile 
HPLC grade, oxidized glutathione (GSSG), ethyl 
acetate, methanol HPLC grade, and reduced gluta-
thione (GSH) were obtained from Sigma-Aldrich  
(St. Louis, MO, USA). Kits for assessing biomarkers 
of organ injury were purchased from Pars-Azmoon 
(Tehran, Iran). Urine cytokines were analyzed using  
LEGENDplex kits (BioLegend).

Animals

We used male Sprague-Dawley (SD) rats (250-300 g) 
that are usually used for investigating the adverse ef-
fects of cholestasis on the kidney [26, 27]. Animals 
were purchased from Shiraz University of Medical Sci-
ences, Shiraz, Iran. Animals were kept in plastic cages 
in a typical environment (a 12L : 12D photoschedule, 
temperature of 23 ±1°C, and ~40% relative humidity). 
Rats had access to tap water and a commercial rodents’ 
diet (RoyanFeed, Esfahan, Iran). All experiments were 
performed in conformity with the guidelines approved 
by the ethical committee for using laboratory animals 
in Shiraz University of Medical Sciences, Shiraz, Iran 
(Code: IR.SUMS.REC.1397.550).
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Bile duct ligation operation  
and the experimental setup

Animals were anesthetized (a mixture of 10 mg/kg  
of xylazine and 70 mg/kg of ketamine, i.p.), and  
a midline laparotomy was made through the linea alba. 
The bile duct was identified, doubly ligated, and cut 
[15, 28-30]. The sham operation involved laparotomy 
and bile duct localization without ligation. Animals  
(n = 40) were equally allotted to five groups containing 
12 rats in each. Rats were treated as follows: 1) Control 
(sham-operated, vehicle-treated), 2) Bile duct ligated 
(BDL), 3) BDL + PTX (10 mg/kg/day, oral, for 14 con-
secutive days), 4) BDL + PTX (50 mg/kg/day, oral, for 
14 consecutive days), 5) BDL + PTX (100 mg/kg/day, 
oral, for 14 consecutive days) [26, 31]. Cholestasis- 
induced renal injury was evaluated 14 days after the 
BDL operation.

Urinalysis and serum biochemistry

Urine samples were collected (200 µl) during ani-
mal handling and diluted with ice-cold normal saline 
(200 µl, 4°C) [32, 33]. Afterward, samples were centri-
fuged (1000 g, 5 min, 4°C), and the clear supernatant 
was collected. Enzymes such as alkaline phosphatase 
and γ-glutamyl transferase (γ-GT) are usually released 
from damaged renal tubular cells and indicate the loss of 
microvilli during kidney injury [34]. These enzymes are 
usually used in the urine sample to enhance our under-
standing of renal damage, monitor the extent of renal 
injury, and evaluate the response to therapeutic options 
[34]. Then, animals were deeply anesthetized (thiopen-
tal 80 mg/kg, i.p.). Next, blood samples were collected 
from the abdominal aorta, centrifuged (3000 g, 15 min, 
4°C), and the serum was collected. Serum markers of 
renal injury, including blood urea nitrogen (BUN) and 
creatinine, were assessed in the investigated animals.

Renal histopathological assessments  
and organ weight index

Kidney samples were fixed in a buffered 10% v : v 
formalin solution (formaldehyde in phosphate buffer, 
pH = 7.4). Then, tissue sections (5 µm) were prepared 
and stained (hematoxylin and eosin – H&E). Kidney 
fibrosis was monitored by Masson’s trichrome stain-
ing [35, 36]. Periodic acid-Schiff (PAS) stain was used 
to monitor renal casts [37]. The organ weight indices 
were measured as organ weight index = [wet organ 
weight (g)/whole body weight (g)] × 100.

Reactive oxygen species formation 

2’, 7’-dichlorofluorescein diacetate (DCF-DA) was 
used to estimate reactive oxygen species (ROS) forma-
tion in the kidney tissue [15, 38-40]. Briefly, 200 mg of 
kidney tissue was homogenized in 5 ml of ice-cooled 
40  mM Tris-HCl buffer (pH = 7.4). Then, 100 µl of 
the resulted homogenate was mixed with 1 ml of Tris-
HCl buffer (40 mM) and DCF-DA (10 µl, final con-
centration 10 µM). The mixture was incubated at 37°C  
(15 min, in the dark). Finally, the fluorescence intensi-
ty was measured using a FLUOstar Omega fluorimeter 
(λ = 485 nm excitation and λ = 525 nm emission wave-
lengths) [15, 41-45].

Lipid peroxidation in the renal tissue

The lipid peroxidation in cholestatic rats’ renal tis-
sue was assessed using the thiobarbituric acid reactive 
substances (TBARS) test [15, 46, 47]. Briefly, 500 µl 
of 10% w : v tissue homogenate (in 1.15% w : v KCl) 
was mixed with thiobarbituric acid (1 ml of 0.375%, 
w : v solution), trichloroacetic acid (50% w : v), and 
1 ml of 6N HCl (pH = 2). Samples were mixed well 
and heated at 100°C (45 min in a water bath) [15, 46, 
48-50]. Afterward, the mixture was cooled, and then  
2 ml of n-butanol was added. Samples were mixed well 
and centrifuged (10,000 g, 10 min, 4°C). Finally, the 
absorbance of developed color in the upper phase was 
measured at λ = 532 nm using the EPOCH Plate reader 
(BioTek, USA) [15, 33, 51].

Renal oxidized and reduced glutathione 
content

Renal glutathione (GSH and GSSG) content was 
measured using HPLC [32, 52, 53]. Briefly, tissue ho-
mogenate (1 ml) was treated with 100 µl of ice-cooled 
perchloric acid (10%), mixed well, incubated on ice 
(15 min), and then centrifuged (17,000 g, 30 min, 
4°C) [52, 54]. The supernatant was collected in 5 ml 
tubes and treated with 300 µl of NaOH : NaHCO3  
(2 M : 2 M) and 100 µl of iodoacetic acid (1.5% w : v in 
HPLC grade water) respectively. Then, samples were 
incubated at 4°C (one hour, in the dark). Afterward, 
0.5 ml of 2,4-dinitrofluorobenzene (DNFB; 1.5% v : v 
in absolute ethanol; HPLC grade) was added and in-
cubated in the dark (25ºC, 24 h). The HPLC system  
was composed of an amine column (NH2; 25 cm, Bi-
schoff chromatography, Germany) as the stationary 
phase. The mobile phase consisted of buffer A (acetate 
buffer : water; 1 : 4 v : v) and buffer B (buffer A : metha- 
nol; 1 : 4 v : v). A gradient method with a continual  
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increase of buffer B to 95% in 30 minutes was used. 
The flow rate was 1 ml/min, and the UV detector was 
set up at λ = 254 nm [52, 55, 56].

Kidney tissue ferric reducing antioxidant power 

The ferric reducing antioxidant power (FRAP) test 
was applied to measure renal total antioxidant capacity 
in cholestatic rats [15, 57]. Briefly, the FRAP working re-
agent was freshly prepared by mixing 25 ml of 300 mM  
acetate buffer (pH = 3.6) with 2.5 ml of 10 mM TPTZ 
(dissolved in HCl 1N) and 2.5 ml of ferric chloride  
(FeCl3.6H2O, 20 mM). Then, 200 mg of the kidney tis-
sue was homogenized in an ice-cooled 250 mM Tris-
HCl buffer (pH = 7.4) [15, 38, 58]. Then, 100 µl of tis-
sue homogenate was added to 900 µl of the working 
FRAP reagent [15, 58]. The mixture was incubated in 
the dark (5 min, 37°C). Finally, the absorbance was 
measured at λ = 595 nm using an EPOCH Plate reader 
(BioTek, USA) [15, 59].

Kidney hydroxyproline level

Renal hydroxyproline content was measured using 
Ehrlich’s reagent (p-dimethyl amino benzaldehyde,  
15 g in n-propanol/perchloric acid; 2 : 1 v : v) [60]. Brief-
ly, kidney homogenate (1 ml of 10% w : v in KCl) was 
digested in 1 ml of 6 N HCl (at 120°C for 24 h). Then, an 
aliquot (25 μl) of digested tissue was added to a Petri dish 
and treated with citrate-acetate buffer (25 μl, pH = 6)  
and dried at room temperature (25°C). Then, 0.5 ml  
of chloramines-t-solution (56 mM) was added and 
incubated at 25°C for 20 minutes. Afterward, 0.5 ml  
of Ehrlich’s reagent was added, and the mixture 

was incubated in a 65°C water bath for 15 minutes.  
The absorbance was assessed at λ = 550 nm (EPOCH 
plate reader, USA) [60, 61].

Statistical methods

Data are given as mean ±SD. The data sets were com-
pared by the one-way analysis of variance (ANOVA)  
with Tukey’s multiple comparisons as the post hoc 
test. Histopathological scores are represented as me-
dian and quartiles for five random pictures per group. 
Renal tissue histopathological changes analysis was 
performed by the Kruskal-Wallis followed by the 
Mann-Whitney U test. Values of p < 0.05 were consid-
ered as statistically significant.

Results

Signs of hepatomegaly and splenomegaly were ev-
ident in cholestatic rats as assessed 14 days after the 
BDL surgery. No significant changes in the renal weight 
index were detected in BDL animals. It was found that 
the PTX (10, 50, and 100 mg/kg, 14 consecutive days) 
significantly mitigated signs of hepatomegaly and sple-
nomegaly in BDL rats. The effect of PTX on spleen and 
liver weight indices was not dose-dependent in the 
current model (Fig. 1).

Serum biochemical analysis revealed a significant 
increase in markers of cholestatic liver injury (high 
serum ALP and γ-GT) and increased lactate dehy-
drogenase (LDH), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), and bilirubin levels 
in BDL rats (Fig. 2). Moreover, serum creatinine was 

Fig. 1. Organ weight index in bile duct ligated (BDL) rats. Data are given as mean ±SD (n = 8)
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significantly higher than the control levels, as assessed 
14 days after the BDL operation (Fig. 2). No signifi-
cant changes in serum BUN levels were detected in the 
current study (Fig. 3). It was found that the PTX sig-
nificantly ameliorated serum markers of organ injury 

in cholestatic rats (Fig. 2). The effect of PTX on serum 
biomarkers of organ injury was not dose-dependent in 
the current study (Fig. 2).

Urinalysis revealed significant urine ALP, glucose, 
creatinine, protein, and γ-GT changes as markers of re-

Fig. 2. Serum biochemical measurements in bile duct ligated (BDL) rats treated with pentoxifylline (PTX). Data are given as mean ±SD (n = 8)
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Fig. 3. Urine biochemistry of cholestatic rats. Data are given as mean ±SD (n = 8)
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nal injury in BDL rats (Fig. 3). On the other hand, it was 
found that PTX significantly ameliorated urine biomark-
ers of renal damage in BDL rats (Fig. 3). Urinary cytokine 
levels, including interleukin (IL)-1, IL-9, IL-18, tumor 
necrosis factor α (TNF-α), and interferon γ (INF-γ), were 
significantly higher in the BDL group (Fig. 4). On the oth-
er hand, PTX dose-dependently significantly decreased 
urinary cytokines in the cholestatic animals (Fig. 4).  
The effect of PTX on urine biomarkers was not dose- 
dependent in the current model (Figs. 3 and 4).

Markers of oxidative stress were evaluated in BDL 
animals treated with PTX (Fig. 5). The ROS level, GSSG, 
and lipid peroxidation were significantly increased in 
BDL rats (Fig. 5). Moreover, renal GSH levels, GSH/
GSSG ratio, and total tissue antioxidant capacity were 
significantly decreased in the BDL group (Fig. 5). 
It was found that PTX significantly blunted mark-

ers of oxidative stress in cholestatic animals (Fig. 5).  
The effects of PTX on renal biomarkers of oxidative 
stress were not dose-dependent in the current inves-
tigation (Fig. 5).

Kidney histopathological changes in BDL rats in-
cluded tubular atrophy and interstitial inflammation, 
as assessed 14 days after BDL induction (Fig. 6; H&E 
stain and Table 1). In addition, it was found that PTX 
ameliorated renal histopathological alterations in BDL 
animals (Fig. 6; H&E stain and Table 1).

A significant amount of hydroxyproline level was 
detected in the kidney tissue 14 days after the BDL op-
eration (Fig. 7, Trichrome stain). On the other hand, 
tissue histopathological evaluation by Trichrome-Mas-
son stain revealed a significant amount of collagen 
deposition in the renal tissue of BDL animals (Fig. 7;  
Trichrome stain). It was found that PTX dose- 

BDL – bile duct ligated, PTX – pentoxifylline 
# Indicates significantly different as compared with the BDL group (p < 0.001)



Clinical and Experimental Hepatology 4/2021 383

Pentoxifylline and cholemic nephropathy

dependently decreased markers of kidney fibrosis in 
cholestatic rats (Fig. 7). The effect of PTX on renal hy-
droxyproline levels and collagen deposition was not 
dose-dependent (Fig. 7; Trichrome stain).

A significant increase in renal cast formation was ev-
ident in the BDL group (Fig. 8; PAS stain and Table 1). 
In addition, it was found that PTX treatment dose-de-
pendently decreased bile cast formation in the kidney of 
cholestatic animals (Fig. 8; PAS stain and Table 1).

It should be noted that the serum level of several 
biomarkers such as ALP, bilirubin, and γ-GT was per-
sistently high in cholestatic animals and showed no re-
sponse to PTX treatment. This could be due to the per-
sistent obstruction of the bile duct in the current model.

Discussion

Cholestasis could occur in response to different xe-
nobiotics or diseases [62]. The liver is the main organ 

influenced by cholestasis [62]. On the other hand, re-
nal injury is a prevalent complication during cholesta-
sis [63]. No specific therapeutic intervention has been 
identified for the management of cholestasis-associ-
ated renal injury. The current study found that PTX  
(10, 50, and 100 mg/kg) significantly protected renal 
tissue in cholestatic animals. The effects of PTX on ox-
idative stress biomarkers seem to play a central role in 
its renoprotective properties in the current model.

Effect of PTX on oxidative stress markers

The precise renal injury mechanisms of CN are far 
from clear. However, oxidative stress and its associated 
complications seem to play a fundamental role in CN 
[12-15, 64, 65]. Interestingly, some studies also men-
tioned the occurrence of oxidative stress in human CN 
cases [19]. In the current study, a significant amount of 
ROS was detected in the kidney of cholestatic animals. 
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Fig. 5. Kidney oxidative stress markers in bile duct ligated rats. Data are given as mean ±SD (n = 8) 

Fig. 6. Effect of pentoxifylline (PTX) treatment on kidney histopathological alterations in cholestatic rats. H&E stain, scale bar = 100 µm. Tubular atrophy  
and interstitial inflammation were detected in the kidney of cholestatic rats
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Table 1. Scores of renal tissue histopathological alterations in cholestatic rats

Groups Histopathological alterations

Inflammation Necrosis Tubular atrophy Bile cast

Sham-operated 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

14 days after BDL 2 (2, 2) # 0 (0, 0) 2 (1, 2) # 2 (1, 1) #

BDL + PTX 10 mg/kg 1 (1, 1) a 0 (0, 0) 2 (1, 2) 1 (0, 1) a

BDL + PTX 50 mg/kg 1 (1, 1) a 0 (0, 0) 1 (1, 1) a 1 (0, 1) a

BDL + PTX 100 mg/kg 1 (0, 1) # 0 (0, 0) 1 (0, 1) a 1 (1, 1) a

 0 – absent, 1 – mild, 2 – moderate histopathological changes, PTX – pentoxifylline
Data are represented as median and quartiles for five random pictures per group
# Indicates significantly different as compared with the sham-operated group (p < 0.05)
a Indicates significantly different as compared with the BDL group (p < 0.05)
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Fig. 7. Kidney tissue histopathological changes, fibrosis, and hydroxyproline content in bile duct ligated (BDL) rats. Trichrome stain, scale bar = 100 µm.  
Data for hydroxyproline content and tissue collagen deposition are represented as mean ±SD (n = 8)
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Other indices, such as decreased tissue antioxidant 
capacity and GSH levels, indicated oxidative stress in 
the kidney tissue (Fig. 4). Our data are in agreement 
with investigations that identified the occurrence of 
oxidative stress in the kidney of cholestatic animals  
[12-15]. On the other hand, we found that PTX 
dose-dependently diminished oxidative stress in 
cholestatic animals’ renal tissue. The effects of PTX on 
cellular antioxidant systems or its direct interaction 
with reactive species have been proposed as the un-
derlying mechanisms for this drug’s antioxidative ef-
fects [66, 67]. Based on these data, the role of PTX in 
mitigating oxidative stress could play a basic role in its 
nephroprotective properties in cholestatic rats.

PTX mitigates the inflammatory response in CN

The anti-inflammatory properties of PTX are anoth-
er potential mechanism that might be involved in its ne-
phroprotective properties during CN. Previous studies 
mentioned that PTX could significantly suppress renal 
inflammation [68]. It has been found that PTX robust-
ly suppressed cytokine levels (e.g., TNF-α) in diabetes- 
associated nephropathy [68]. It has also been reported 

that PTX modulates the expression of inflammatory cy-
tokines such as IL-1, IL-6, and INF-γ in different exper-
imental models [69, 70]. On the other hand, interstitial 
inflammation is a common histopathologic finding in 
CN (Fig. 6; H&E stain). The current study found that 
PTX treatment significantly decreased urinary cyto-
kines in BDL rats (Fig. 4). Therefore, an essential part 
of the nephroprotective role of PTX in cholestatic ani-
mals could be mediated through the effects of this drug 
on the inflammatory response. On the other hand, the 
inflammatory response and oxidative stress are mecha-
nistically interrelated [71]. The infiltration of inflamma-
tory cells could enhance ROS formation in tissues such 
as the kidney [71]. Hence, the anti-inflammatory effect 
of PTX could mitigate oxidative stress in the kidney of 
cholestatic animals. More investigations on the anti-in-
flammatory properties of PTX in CN might help clarify 
the mechanism of its renoprotective effects.

Effect of PTX on renal fibrosis

The effect of PTX in mitigating renal tissue fibrosis 
was another interesting finding in the current study. 
It was found that PTX significantly decreased collagen 

Fig. 8. Effect of pentoxifylline (PTX) administration on cast formation (yellow arrow) in the kidney of cholestatic animals (periodic acid-Schiff; PAS, stain, scale bar 
= 200 µm). Data are given as mean ±SD (n = 10)
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deposition in cholestatic animals (Fig. 7). Previous 
studies also mentioned the anti-fibrotic effects of this 
drug in different experimental models [72, 73]. Tissue 
fibrosis is a complex process that finally leads to organ 
failure [74]. On the other hand, it has been well doc-
umented that oxidative stress and the inflammatory 
response play a pivotal role in tissue fibrosis [75-78]. 
As mentioned, PTX significantly decreased oxidative 
stress biomarkers and the level of pro-inflammatory 
cytokines in the current study (Fig. 5). Moreover, the 
anti-inflammatory effects of this drug have also been 
mentioned in previous studies [69]. Based on these 
data, the anti-inflammatory and antioxidative effects 
of PTX could be involved in its anti-fibrotic effects. 
Furthermore, the effects of PTX on specific signaling 
molecules involved in tissue fibrosis (e.g., transform-
ing growth factor β – TGF-β) could give a better in-
sight into its anti-fibrotic mechanisms in CN.

Role of PTX in renal blood flow and its 
potential renoprotective effects

Renal blood circulation disturbance is another 
critical factor that could affect kidney damage during 
CN. As mentioned, PTX acts as a modulator of blood 
rheology [20, 68]. On the other hand, several investi-
gations indicated the effects of PTX on renal hemo-
dynamic factors as an essential mechanism for its ne-
phroprotective properties [68]. Therefore, the effects of 
PTX on homodynamic changes in the kidney during 
cholestasis could be an exciting field of investigation.

Effects of PTX on renal casts in cholestasis

Bile cast formation is a common feature of CN [7]. 
It has been reported that bile casts in the kidney sig-
nificantly correlated with the degree of cholestasis. 
Bile casts in cholestasis can consist of exfoliated epi-
thelial cells, bile acids, and bilirubin, levels of which 
dramatically increase during cholestasis. Casts can be 
easily confirmed by histochemical Hall (or Fouchet) 
staining or periodic-acid Schiff (PAS) stains of kidney 
sections [7]. Cast formation could induce tubular cel-
lular injury through different mechanisms [7]. First, it 
has been reported that casts contribute to kidney in-
jury by direct toxicity of their bilirubin and bile acid 
constituents [7]. Second, cast formation could physi-
cally damage tubular cells and lead to a leaky tubule. 
Thus, the accumulation of toxic urine components 
could damage the kidney. The dose-dependent effect 
of PTX in decreasing renal casts was an exciting find-
ing in the current study. Interestingly, previous studies 
indicated that renal hypoperfusion could enhance cast 

formation and acute kidney injury [79]. As previous-
ly mentioned, PTX could act as a modulator of blood 
rheology, increase renal blood flow, and enhance glo-
merular filtration rate [20, 68, 80]. Based on these data, 
a potential mechanism for the effects of PTX on renal 
casts during cholestasis could be mediated through its 
impact on renal hemodynamic parameters. However, 
further studies in this field could shed more light on 
this subject.

Conclusions

Several clinical trials mentioned the positive ef-
fects of PTX on nephropathy with different etiologies. 
Therefore, PTX administration in CN might also find  
a clinical application in the future. Furthermore, the 
anti-inflammatory, antioxidative, and anti-fibrotic 
properties of PTX, along with its effects on hemody-
namic changes, make this drug an excellent renopro-
tective candidate. Indeed, further investigations are 
warranted to identify other mechanisms for the ne-
phroprotective effects of PTX and finally establish the 
current data’s clinical relevance.
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