Lumbrical-interosseous latency comparison test as a highly sensitive tool in diagnosing mild and severe carpal tunnel syndrome

Marta Banach1, A–F, Antoni Ferens1, B, F, Jakub Antczak1, C, F, Dorota Gribbin2, 3, E, F

1 Department of Neurology Jagiellonian University Medical College in Krakow
2 Columbia University College of Physicians and Surgeons, Department of Rehabilitation and Regenerative Medicine
3 Physical Medicine and Rehabilitation Section, Robert Wood Johnson University Hospital at Hamilton

Background. The diagnosis of the very early and very advanced stages of carpal tunnel syndrome (CTS) is still challenging.

Objectives. We evaluated whether a nerve conduction study measuring the difference in latencies between the second lumbrical and dorsal interosseous muscles (2LI-DML) is useful for diagnosing mild and severe CTS.

Material and methods. The study included 25 patients (25 hands) clinically diagnosed with severe CTS and 42 patients (51 hands) with mild CTS. The control group consisted of 60 healthy volunteers. A total of 172 patients (253 hands) gave their consent to participate in the study. The main outcome measures were the percentage of clinical diagnoses of mild and severe CTS, confirmed using a standard electrophysiological method (the sensory nerve conduction study from at least one median innervated digit and the difference between median and ulnar sensory latencies [D4M-D4U]) and the percentage of clinical diagnoses of mild and severe CTS confirmed with the 2LI-DML test as an alternative electrophysiological method.

Results. In patients with mild CTS, 2LI-DML and D4M-D4U were increased in 90% and 67% of the hands, respectively. An antidromic sensory nerve conduction from the wrist to digits 1, 3, and 4 was abnormal in 57%, 45%, and 47% of the hands, respectively. In patients with severe CTS, 2LI-DML was abnormal in 96% of the patients. In 4% of the patients (1 hand), the response could not be obtained.

Conclusions. Our findings suggest that the 2LI-DML test is a sensitive and useful method for diagnosing CTS, regardless of its severity.

Key words: ulnar nerve, median nerve, carpal tunnel syndrome.

Summary

Background. The diagnosis of the very early and very advanced stages of carpal tunnel syndrome (CTS) is still challenging.

Objectives. We evaluated whether a nerve conduction study measuring the difference in latencies between the second lumbrical and dorsal interosseous muscles (2LI-DML) is useful for diagnosing mild and severe CTS.

Material and methods. The study included 25 patients (25 hands) clinically diagnosed with severe CTS and 42 patients (51 hands) with mild CTS. The control group consisted of 60 healthy volunteers. A total of 172 patients (253 hands) gave their consent to participate in the study. The main outcome measures were the percentage of clinical diagnoses of mild and severe CTS, confirmed using a standard electrophysiological method (the sensory nerve conduction study from at least one median innervated digit and the difference between median and ulnar sensory latencies [D4M-D4U]) and the percentage of clinical diagnoses of mild and severe CTS confirmed with the 2LI-DML test as an alternative electrophysiological method.

Results. In patients with mild CTS, 2LI-DML and D4M-D4U were increased in 90% and 67% of the hands, respectively. An antidromic sensory nerve conduction from the wrist to digits 1, 3, and 4 was abnormal in 57%, 45%, and 47% of the hands, respectively. In patients with severe CTS, 2LI-DML was abnormal in 96% of the patients. In 4% of the patients (1 hand), the response could not be obtained.

Conclusions. Our findings suggest that the 2LI-DML test is a sensitive and useful method for diagnosing CTS, regardless of its severity.

Key words: ulnar nerve, median nerve, carpal tunnel syndrome.

Streszczenie

Wstęp. Największe trudności diagnostyczne sprawiają pacjenci z objawami wczesnego oraz znacznego stopnia uszkodzenia nerwu pośrodkowego w kanale nadgarstka.

Cel pracy. Ocena przystępności testu oceniającego różnicę końcowej latencji ruchowej między drugim mięściem glistowatym a drugim mięściem międzykostnym (2LI-DML) w diagnostyce zespołu cieśni nadgarstka o niewielkim i znacznym stopniu zaawansowania.

Materiał i metody. Badania przeprowadzono w grupie 25 pacjentów (25 rąk) o znacznym stopniu zaawansowania oraz w grupie 42 pacjentów (51 rąk) o minimalnym stopniu zaawansowania. Grupę kontrolną stanowiło 60 zdrowych ochotników. U 172 pacjentów (253 rąk) włączonych do badania z objawami klinicznymi zespołu cieśni nadgarstka oraz w wyodrębnionej grupie o niewielkim oraz znacznym stopniu zaawansowania przeprowadzono ocenę czułości testu oceniającego latencję czuciową kolejno na czterech palcach unerwionych przez nerw pośrodkowy oraz wykonano dodatkowo test oceniający różnicę latencji czuciowej między nerwem pośrodkowym a łokciowym na odcinku nadgarstek–4. palec (test D4M-D4U). Standardowy protokół badania został poszerzony o dodatkowy test 2LI-DML.

Wyniki. W grupie pacjentów z niewielkiego stopnia uszkodzenia nerwu pośrodkowego najwyższą czułość uzyskał test 2LI-DML (90%) oraz test D4M-D4U (67%). Mniejszą, ale porównywalną czułość uzyskały testy oceniające latencję czuciową na odcinku nadgarstek–1., 3. i 4. palec (57%, 45% i 47%). W grupie pacjentów o znacznym stopniu zaawansowania ZCN, czułość testu 2LI-DML była wysoka i wynosiła 96%. Brak odpowiedzi ruchowej wykazywano tylko w 1 przypadku (4%).

Wnioski. Test 2LI-DML jest bardzo czuły i przydatną metodą do oceny niewielkiego oraz znacznego stopnia uszkodzenia nerwu pośrodkowego w kanale nadgarstka.

Słowa kluczowe: zespół cieśni nadgarstka, nerw pośrodkowy, nerw łokciowy.
Background

Median nerve entrapment neuropathy (carpal tunnel syndrome or CTS) is one of the most common entrapment neuropathies [1–4]; typical signs and symptoms include paresthesia, numbness, pain, weakness, positive Tinel’s sign, positive Phalen’s test, and, in extreme cases, thenar muscle atrophy [2, 4, 5]. The current gold standard for diagnosing CTS requires the confirmation of clinical signs and symptoms by an electrophysiological examination [6]. The guidelines for an electrophysiological diagnosis of CTS were established in 1993 by the American Academy of Neurology (AAN), the American Association of Electrodiagnostic Medicine (AAEM), and the American Academy of Physical Medicine and Rehabilitation (AAPM&R); these guidelines were updated in 2002 [7–10]. Prolonged sensory latency (SL) from the wrist to the digits that are innervated by the median nerve is a standard diagnostic criterion for CTS [7, 8, 10]. If this criterion is not met, the AAN/AAEM/AAPM&R guidelines recommend two more sensitive techniques: the first one based on comparing median and unilateral ulnar or radial nerves, and the other—on the short segmental nerve conduction study [7–10]. Despite these established diagnostic guidelines and many different methods for testing nerve conduction, the most problematic challenge is the diagnosis of the very early and very advanced stages of CTS. Therefore, more sensitive, easier-to-perform, and quicker methods have been developed for the past few years. One of the most popular methods is to measure the difference between the median motor latency to the second lumbrical muscle and the ulnar motor latency to the second interosseous muscle (2LI-DML). Although initially controversial [11, 12], the 2LI-DML test is now generally accepted as being reliable for diagnosing CTS at very early and very advanced stages [13–19]. The aim of this study was to evaluate the usefulness of the 2LI-DML test in the diagnosis of mild and severe CTS in a large Polish population and to propose this electrophysiological test as a standard diagnostic tool in patients in very advanced stages of CTS.

Material and methods

Examinations were conducted in 172 patients (253 hands) with clinical symptoms of CTS, including 131 women and 41 men, aged from 19 to 84 years (mean age, 51.8 ± 17 years). All patients were Caucasians. The control group consisted of 60 healthy volunteers including 40 women and 20 men, aged from 23 to 53 years (mean age, 38.5 ± 17 years). Written informed consent was obtained from all patients and volunteers. Clinical and electrophysiological diagnoses of CTS were made according to the AAN criteria [7].

The electrophysiological test required to meet these criteria includes:

I. Measurement of antidromic sensory onset latency (SL) from the wrist to digit 2 (D2), using a distance of 13 cm (SL-D2).

In each case, additional latency measurements were made for the remaining digits that are innervated by the median nerve as follows:

1) antidromic SL between the wrist and D1, using a distance of 10 cm (SL-D1),
2) antidromic SL between the wrist and D3, using a distance of 13 cm (SL-D3),
3) antidromic SL between the wrist and D4, using a distance of 14 cm (SL-D4).

II. Measurement of distal motor latency (DML) from the wrist to the abductor pollicis brevis (APB) muscle, using a distance of 6.5 cm (DML-APB).

III. Measurement of the difference in median-ulnar antidromic SL between the wrist and D4, using the same distance of 14 cm that was used during stimulation of the median and ulnar nerves (D4M-D4U).

This standard examination protocol was extended to include the following additional electrophysiological test:

IV. The 2LI-DML test comparing the median DML recorded from the second lumbrical muscle (2L) with the ulnar motor latency recorded from the second dorsal interosseous muscle (2I).

The nerves were stimulated at the wrist using identical distances of 10 cm, and compound muscle action potentials from both muscles (2L and 2I) were recorded in the midpoint between the second and third metacarpal bones [13].

Severe CTS was diagnosed when neither sensory response from digits 1 to 4 nor motor response from the thenar muscles was obtained. Mild CTS was diagnosed when DML to the APB muscle and antidromic SL to digit 2 were normal, but the results of the other tests described above were abnormal (and there were no other causes of these abnormalities than CTS).

To exclude polyneuropathy, routine conduction velocity in the sensory and motor fibers of the ipsilateral ulnar nerve was measured in all patients. The electrophysiological examinations were performed with a Medelec Synergy electromyograph (Medelec, England) using surface stimulating and recording electrodes. For consistency, the nerve conduction studies were all performed by the same neurologist. The filters were set at 2 Hz and 10 kHz for the motor studies and 20 Hz and 2 kHz for the sensory studies, and sweep speed was set at 1 ms/division. The sensory conduction data were captured using surface ring recording electrodes, and the motor conduction data were captured with surface disk electrodes of 1 cm in diameter. The median and ulnar nerves were stimulated supramaximally with stimuli of 0.2 ms in duration, delivered by a hand-held bipolar stimulator. The sensory responses used to measure the onset latency were the average of 16 trials, and a gain setting of 10 µ/division was used. The latencies were rounded to the nearest 0.05 ms. Hand skin temperature (32–34°C) was monitored throughout the study.

Data were analyzed using StatSoft, Inc. (2008) STATISTICA version 8.0 (data analysis software system; www.statsoft.com). The parameters of the control and patient groups were quantified using descriptive statistics. Mean values, standard deviation (SD), and ranges (minimum and maximum) were calculated. The values between the groups were compared using the Mann-Whitney test. The sensitivity of each test in diagnosing CTS was calculated with the following formula: sensitivity = |[the number of patients with a positive test for CTS]/(the number of hands with a clinical diagnosis of CTS according to the AAN)| x 100.

Additionally, we analyzed the combined sensitivity of SL-D1, SL-D2, SL-D3, and SL-D4 (all digits innervated by the median nerve) in diagnosing mild and severe CTS.

Results

The latency or latency difference values (including mean ± SD and minimum and maximum values, with assumed standards) in control subjects are presented in Table 1.

The mean motor and sensory latencies (SL-D1, SL-D2, SL-D3, SL-D4, and DML-APB) were longer and motor–sensory distal latency differences (2LI-DML and D4M-D4U) were greater in the CTS group than in the control group (Tab. 2).

The abnormal results, allowing the electrophysiological diagnosis of CTS, were found in 246 cases (97%) using the 2LI-DML test; in 235 cases (93%) using the D4M-D4U test; in 194 cases (77%) using the SL-D2 test; and in 170 cases (67%) using the with DML-APB test. In 170 cases (67%), all
The sensitivity of the 2LI-DML test in the whole CTS group was 97%, which was higher than the sensitivity of the standard DML-APB (93%; p = 0.01 and 0.000001). The combined sensitivity of SL-D1, SL-D2, SL-D3, and SL-D4 was 93%, which was comparable to the sensitivities of the second lumbrical and second interosseous muscles. The sensitivity of 2LI-DML in severe CTS was 96%. In one case, no response was obtained.

Sensitivity of 2LI-DML in mild CTS

The mild-CTS group consisted of 42 patients (51 hands) including 30 women and 12 men, aged from 19 to 42 years (mean age, 31.85 ± 13.26 years). The sensitivity of the 2LI-DML test in mCTS was 90%.

The sensitivities of particular tests for all patients and for both subgroups are presented in Table 3.

Discussion

The main finding of the present study is that 2LI-DML is the most sensitive electrophysiological test, regardless of the degree of CTS. The exceptionally high sensitivity of the 2LI-DML test in our study confirms that a large percentage of patients received an accurate clinical and electrophysiological evaluation of carpal tunnel syndrome (CTS). Specifically, the clinical diagnosis of CTS was confirmed in 93% of all patients by at least one of the six electrodagnostic tests used in the study. The sensory SL-D2 and motor DML-APB tests, which are historically the earliest and most frequently applied tests, actually had the lowest sensitivity, which is in line with the findings published in other reports [2, 7, 8, 10, 20–26].
Consistent with the studies by Trojaborg et al. [15], MacDonald et al. [24], Kothari et al. [25], and Banach et al. [27], we obtained the highest sensitivity when measuring SL between the wrist and D1. However, in some studies, the sensitivities of the SLs between the wrist and D3/D4 were comparable [16, 24, 25, 28]. In the entire CTS group as well as in the mCTS subgroup, the sensitivity of the D4M-D4u test was slightly higher than in previous studies, which reported a sensitivity of 77% to 82% in CTS and of 44% to 52% in mCTS [11, 23, 29, 30].

Based on our experience, the upper limit of a normal 2LI-DML test similar to that used by Preston and Logigian [13]. Based on previous and electrophysiological findings, 25 of our CTS patients (10%) had a severe median nerve lesion. Our results are similar to those of Lüscher et al. [16] (36 patients [11.3%]), but are much higher than those of Preston and Logigian [13], Sheean et al. [14], and Boonyapisit et al. [18] (2%, 3%, and 2.4%, respectively).

The sensitivity of 2LI-DML

In the mCTS group, the sensitivity of the 2LI-DML test was comparable to the results of Preston and Logigian [13] (84%), and higher than those of Uncini et al. [11] (40%). We have no explanation for the lower value reported by Uncini et al. [11] Several studies of the 2LI-DML test revealed a sensitivity in the range of 78% to 98%, regardless of CTS progression [12–19, 31, 32]. The widely varying sensitivity of electrophysiological tests in the diagnosis of CTS depends on both the severity of median nerve entrapment neuropathy in the study population and differences in electrophysiological techniques and statistical methodologies [33]. The different references of the control groups and cut-off values also play a role in test performance [30]. The 2LI-DML technique used in our study is similar to that used by Preston and Logigian [13]. Based on our experience, the upper limit of a normal 2LI-DML test (0.4 ms) is identical to that established by Preston and Logigian [13] and Sheean et al. [14]. However, Uncini et al. [11], Trojaborg et al. [13], and Lüscher et al. [16] established the upper limit of a normal 2LI-DML test at 0.5 ms. A direct comparison of the sensory test results obtained from various electromyography laboratory facilities is difficult owing to the lack of test standardization. The sensory nerve conduction technique used in our study is similar to that used by Lüscher et al. [16], except that they stimulated the median and ulnar nerves 2 cm proximal from the anatomical landmark at the wrist, whereas we used the same distance as with antidromic stimulation. Uncini et al. [11], Sheean et al. [14], and Trojaborg et al. [15] calculated sensory nerve conduction velocity (instead of distal latency) using orthodromic stimulation. Regardless of the examination technique used and the selection of patient and control groups, the results obtained by all authors consistently indicate that 2LI-DML is the most sensitive test, especially in patients with severe CTS. The 2LI-DML test is also a very sensitive method for early CTS, being comparable to the most sensitive median–ulnar palmar mixed test based on comparative techniques [13, 34].

We have no adequate explanation for the higher sensitivity of the 2LI-DML test that we obtained in our patients with mild CTS as compared with the findings of most authors. In 1945, Sunderland et al. [35] described a very precise funicular topography of the median nerve in the distal portion of the carpal tunnel and showed that two groups of motor fibers (predominate deep and mild superficial) innervate the lumbrical muscles. The superficial motor fibers lie close to sensory fibers that innervate the first (D1), third (D3), and fourth (D4) digits, and this may explain the abnormal values found in mild focal demyelination [15, 36]. The sensory fibers that innervate the second digit (D2) are more centrally located, being close to the motor nerves that innervate the thenar muscles (DML-APB).

The deep location of the motor fibers that innervate the lumbrical muscles (2LI) explains the preservation of motor action potentials from 2LI in severe cases of CTS, in which we were unable to obtain motor responses from atrophic thenar muscles [35]. Subsequently, Logigian et al. [36] and Yates et al. [37] confirmed that the deep position of the motor fibers protects against the compression effect. Additional advantages of this comparative study are that the nerves being tested have axons of similar size and the muscles are located next to each other; therefore, the temperature needs not be closely monitored [13]. Moreover, the electrodes remain in fixed positions, and only the stimulation site changes. We therefore confirm that the 2LI-DML test is accurate, fast, and easy to perform.

Conclusions

2LI-DML is the most sensitive comparative test, regardless of the degree of entrapment neuropathy (whether minimal or severe).

The 2LI-DML test is a useful test in the diagnosis of CTS since it is accurate, time-efficient, easy to perform, and it can be used as a screen test.

In extreme CTS, the response was only obtainable at the second lumbrical muscle which allows to confirm CTS.

Acknowledgements

The study was conducted in the Electromyography Laboratory of the Neurological Department, Jagiellonian University Medical College in Kraków, Poland.

This work was presented in part at the 56th American Academy of Neurology Annual Meeting, April 24 – May 1, 2004, in San Francisco, California. Part of the findings has already been published in the studies covering other issues. I would like to thank Lewis P. Rowland, Dale J. Lange and Werner Trojaborg for teaching me this new electrophysiological method during the internship at Neurological Institute Columbia University, Medical Center New York and for encouraging us to test its sensitivity and specificity in Polish population.

We are grateful to Justyna Znój and Elżbieta Guziak for their excellent technical support.

Source of funding: The research was performed as a part of the study: No. DNWZ-WŁ-501/KL/230/L in the Department of Neurology, Jagiellonian University Medical College.

Conflict of interest: The authors declare no conflict of interests.

References

