Endophthalmitis following cataract surgery in diabetic patients

HANAPI MAYA-SAPIRA1, A.T., YI-NI KOH1, A.T., YAAKUB AZHANY1, A.T., EMBONG ZUNAINA1, A.T., SONNY-TEO KHAIRY-SHAMEL1, D.T., AHMAD TAJUDDIN LIZA-SHARMIN1, D.T., NANI DRAMAN2, D.T., ZAMRI NOORDIN3, B.D.

1 Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
2 Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
3 Department of Ophthalmology, Hospital Raja Perempuan Zainab II, Kota Bharu, Kelantan, Malaysia

Summary

Background. Endophthalmitis post cataract surgery is rare, but the incidence and complications are higher in diabetics.

Objectives. We present 3 diabetic patients who underwent cataract surgery and developed endophthalmitis postoperatively.

Material and methods. This is a retrospective case series of diabetic patients who underwent cataract surgery and developed endophthalmitis postoperatively between September 2015 and August 2016. The medical records were retrieved from the system, and data was collected.

Results. The patients eventually had different visual outcomes depending on the severity of endophthalmitis. Case 1. The patient developed delayed subtle postoperative endophthalmitis at 8 weeks post cataract operation, with underlying foot cellulitis and poor blood sugar control. The patient responded well to topical and systemic antibiotics and stabilization of blood sugar. Case 2. The patient presented with delayed postoperative endophthalmitis secondary to a suture abscess of the cataract wound at 7 months post implantation of an anterior chamber intraocular lens. There was complete resolution of the infection after administration of topical, intravitreal and systemic antibiotics, with a good control of blood sugar. Case 3. The patient presented with acute severe postoperative endophthalmitis with the presence of hypopyon at day 5 following cataract surgery. There were no obvious risk factors besides poor control of blood sugar, but Streptococcus mitis was isolated from the vitreous specimen. The endophthalmitis worsened in spite of topical, intravitreal and systemic antibiotics, as well as vitrectomy. Evisceration was eventually performed for the painful blind eye.

Conclusions. Although endophthalmitis following cataract surgery is rare, the incidence and complications are much higher in diabetic patients.

Key words: endophthalmitis, cataract surgery, diabetes mellitus, Streptococcus mitis.
control. Therefore, persistently poor diabetic control could have a progressively deleterious effect, predisposing affected individuals to an increased incidence and severity of infection [9].

The occurrence, clinical presentation and severity of postoperative endophthalmitis depends on the route of infection, the virulence and number of inoculated pathogens, the patient’s immune state, as well as the timing of initial presentation [10]. However, the outcome of postoperative infectious endophthalmitis has generally improved in recent years, as a result of better understanding of the disease process, pathogenicity of the organisms and host defense mechanisms, coupled with the availability of better drugs, intravitreal drug therapy and vitrectomy.

Objectives

The purpose of our case series is to describe various clinical presentations of postoperative endophthalmitis, specifically post cataract surgery, with underlying diabetes mellitus, in our local hospital setting.

Material and methods

This is a retrospective case series of diabetic patients who underwent cataract surgery and developed endophthalmitis postoperatively between September 2015 and August 2016. The medical records were retrieved from the system, and data was collected.

Results

Case 1

A 65-year-old female who was a known case of diabetes mellitus for 10 years with good control of blood sugar with a latest HbA1c result of 6.8% presented with an immature cataract and moderate non-proliferative diabetic retinopathy in both eyes. Her visual acuity over the right eye was 6/30, and the left eye was 6/120. She had an uneventful phacoemulsification and posterior chamber intraocular lens (IOL) implantation in her left eye. However, her left eye visual acuity was 6/45 postoperatively due to significant postoperative corneal edema. The patient was treated with guttae prednisolone 2 hourly and guttae moxifloxacin 2 hourly, and the medications were tapered down gradually over 6 weeks.

At 6 weeks postoperatively, her left visual acuity was 6/18, with resolution of anterior chamber inflammation and corneal edema. However, at 8 weeks postoperatively, she complained of left eye redness with a duration of 2 days. This was associated with purulent discharge and reduced vision. Her left eye visual acuity deteriorated to 6/24. There was the presence of a ciliary injection and moderate inflammation in the anterior chamber, with an absence of hypopyon and vitritis (Photo 1).

Upon further questioning, the patients claimed she had a left big toe swelling for a week prior to the eye redness. This was associated with low grade fever. Examination of the left foot showed diffuse swelling over the big toe area, extending up to the ankle, with surrounding skin inflammation (Photo 2). There was tenderness at the medial side of the foot, but the swelling did not fluctuate, and there was an absence of pus discharge. A plain radiograph of the left foot showed soft tissue swelling, suggestive of soft tissue inflammation, without evidence of osteomyelitis. Systemically, the patient was afebrile with stable vital signs.

Photo 1. The left eye showed moderate inflammation of the anterior chamber with an absence of hypopyon (case 1)

Photo 2. The left foot showed cellulitis and was swollen and inflamed over the right big toe area at presentation (Case 1)

The patient was treated as delayed subtle postoperative endogenous endophthalmitis in her left eye with left foot cellulitis. She was given intravitreous ciprofloxacin 400 mg 12 hourly and C-penicillin 2.4 mega unit 6 hourly for 1 week. For the left eye, the patient was treated with guttae moxifloxacin 2 hourly and guttae prednisolone 2 hourly. In view of no posterior segment involvement, an intravitreal antibiotic was not administered.

While in the ward, her glucometer was unstable, ranging from 4 to 11 mmol/L. Besides continuing her oral hypoglycemic agents, she also was started on an injection of insulatard (10 unit on a nightly basis). The blood sugar was stable after optimization of treatment.

At 1 week post treatment, her left visual acuity improved to 6/18, with a significant reduction in anterior chamber inflammation. Her left foot cellulitis resolved concurrently. She was discharged after a week with oral cloxacillin 500 mg 6 hourly and oral ciprofloxacin 500 mg 12 hourly for another 1 week. Guttae moxifloxacin and prednisolone were tapered down to 4 hourly for a 1 month duration. Her visual acuity was 6/18 at the subsequent follow-up, and there were no signs or symptoms of endophthalmitis.

Case 2

A 51-year-old Chinese male who was diagnosed to have diabetes mellitus for 10 years with good control of blood sugar underwent an uneventful bilateral cataract operation with IOL implantation 15 years ago and had good vision postoperatively.

He presented with painless blurring of vision in the left eye for a 1 year duration. His visual acuity worsened from 6/9 to 6/60 over the affected period. Ocular assessment revealed an
inferior subluxation of the posterior chamber IOL. He underwent an extraction of the subluxated posterior chamber IOL followed by implantation of an anterior chamber IOL. At 1 month postoperatively, his visual acuity improved to 6/6, with resolution of postoperative inflammation.

Seven months later, he presented with left eye redness for a 1 month duration. It was associated with eye discharge and blurring of vision. His left visual acuity deteriorated from 6/6 to 6/18. An ocular examination revealed an injected conjunctiva with the presence of a suture abscess at the superior part of the corneal limbal wound. There was the presence of moderate anterior chamber inflammation without hypopyon or vitritis. A diagnosis of delayed postoperative endophthalmitis was made. He was started on intravenous ciprofloxacin 400 mg 12 hourly, guttae moxifloxacin 2 hourly and guttae prednisolone 2 hourly. An eye swab of the suture abscess was taken prior instillation of topical antibiotic. A left eye intravitreal tap was immediately done followed by intravitreal antibiotics (vancomycin 2 mg /0.1 ml and ceftazidime 2 mg /0.1 ml). His visual acuity improved to 6/9 after 4 days of treatment. There was resolution of the suture abscess, with reduction of anterior chamber inflammation. An eye swab and vitreous specimen showed no growth of microorganisms.

Systemic ciprofloxacin was continued with oral administration for another 1 week 7 days after completion of intravenous ciprofloxacin. Guttae moxifloxacin and prednisolone were tapered down gradually over a period of 1 month. His blood glucose was well controlled with Hba1c of 6%. At the 1 month follow-up, his visual acuity improved to 6/7.5 and remained stable during subsequent reviews. There were no signs or symptoms of endophthalmitis observed during the last 5 month follow-up.

Case 3

A 67-year-old male with underlying diabetes mellitus and ischemic heart disease underwent cataract surgery on his right eye. The operation was complicated, with a posterior capsule rupture, but an anterior chamber IOL was successfully implanted. Day 1 postoperatively, the right eye visual acuity was 6/36. He was discharged with guttae prednisolone 2 hourly, guttae moxifloxacin 2 hourly and guttae nepafenac 8 hourly over the right eye and was given a follow-up date of 1 week postoperatively. The blood sugar was well controlled during the admission period and also on the day of discharge.

However, on day 5 postoperatively, he presented with painful loss of vision in the right eye for a 1-day duration. This was associated with eye redness, but no eye discharge. He denied a history of recent ocular trauma or possible risk of systemic infection. His right eye vision subsequently deteriorated to perception to light. An ocular examination revealed swollen eyelids, chemoses and an injected conjunctiva. The cornea was hazy with a 4 mm level of hypopyon in the anterior chamber (Photo 3A). Seidel sign was negative over the surgical wound, with no corneal epithelial defect, eye discharge, suture abscess or vitreous incarceration seen at the surgical site. He was hemodynamically stable and afibrile. The capillary blood sugar was 12.7 mmol/L with Hba1c of 9.9%. A further ocular examination revealed good lid hygiene with no signs of possible infection, such as nasolacrimal blockage or surrounding skin infection. He had no evidence of diabetic complications, and other systemic co-morbidities were well controlled.

A diagnosis of acute postoperative endophthalmitis was made, and intravitreal antibiotics (vancomycin 2 mg /0.1 ml and ceftazidime 2 mg /0.1 ml) were given immediately to the right eye after performing an intravitreal tap. However, the vitreous sample was clear, and the culture did not yield any growth. He was also started on intravenous ciprofloxacin 400 mg 12 hourly, intravenous ceftazidime 2 g 8 hourly, guttae moxifloxacin hourly and guttae ceftazidime hourly. A urine and blood culture for bacteria and fungus showed no growth.

Despite intensive topical and systemic treatment, the patient’s right eye condition worsened rapidly with total hypopyon noted two days later (Photo 3B). He was then referred to the vitreoretinal team for vitrectomy. The patient underwent right eye limited anterior vitrectomy, explantation of anterior chamber IOL and intravitreal antibiotic (vancomycin 2 mg /0.1 ml and ceftazidime 2 mg /0.1 ml). Intraoperative findings showed a very dense hypopyon adhered to the corneal endothelium, dense vitreous opacity and extrusion of necrotic tissue upon explantation of the anterior chamber IOL. A vitreous specimen from vitrectomy, as well as eye swab, revealed *Streptococcus mitis*. There was a poor response despite intensive treatment, and his right eye condition deteriorated to no perception to light. At 1 month post vitrectomy, there was reaccumulation of hypopyon in the right eye, and it progressively became phthisical. He unfortunately underwent evisceration for a painful blind eye at 2 months post vitrectomy.

The summary of the onset of endophthalmitis post cataract surgery, status of diabetes mellitus, risk factors, vision at presentation and final vision, treatment and the outcome of the 3 cases are shown in Table 1.

Photo 3. The right eye showed chemotic and injected conjunctiva, cloudy cornea with 4 mm level of hypopyon in the anterior chamber (A) and worsened rapidly with total hypopyon (B) (Case 3)
Postoperative infectious endophthalmitis is a rare but devastating condition which can lead to blindness. Postoperative infectious endophthalmitis may present as two distinct entities: early or acute endophthalmitis, which occur within a few days of the procedure; and chronic or delayed endophthalmitis, which can present several weeks to months after surgery with more subtle symptoms. In Case 1 and 2, the patients presented with a subtle anterior chamber reaction with no vitritis seen and relatively good initial visual acuity clinically. On the other hand, Case 3 presented early, within a few days after surgery, with very severe infection and poor initial visual acuity. Studies showed that an initial visual acuity level has a good correlation with very severe infection and poor initial visual acuity. Studies by Combey de Lambert et al. [14] and EVS [7] both identified bacterial virulence as one of the main independent factors of visual outcome, which shows the influence of bacterial virulence on final visual prognosis, by taking into account baseline clinical factors. A report by Combey de Lambert et al. showed that culture-negative cases are usually associated with a better final visual outcome [14]. This is probably due to culture negative cases having a relatively lower level of inoculum, which were undetected by conventional cultures or PCR techniques despite infection. Similarly, in our case series, only Case 3, with the most severe initial presentation, showed positive culture results with a *Streptococcus mitis* yield from the eye swab and vitreous sampling culture. This patient had the worst final visual outcome, which was no perception to light, as compared to Case 1 and 2, with a final visual acuity of 6/18 and 6/7.5, respectively.

A review of literature showed that approx. 14 to 21% of all patients who develop postoperative endophthalmitis after cataract operations are diabetic patients [11, 15]. Diabetic patients who developed endophthalmitis after cataract surgery tend to have poorer visual outcome, especially if diabetic retinopathy is present pre-operatively [15]. However, other studies stated that pre-existing diabetes mellitus has not yet been confirmed as an isolated risk factor for postoperative infectious endophthalmitis after cataract surgery [7, 16].

In EVS, endophthalmitis patients with diabetes mellitus particularly benefited from vitrectomy, even when their initial visual acuity was better than light perception [7]. EVS also stated that visual acuity at initial presentation was the most powerful predictor of visual outcome and of whether or not patients were likely to benefit from vitrectomy. This is probably because the vision at initial presentation reflected the virulence of the infecting microorganism, as well as the duration of the infection and the host’s response to the infection. Thus, relative to microbiological results, presenting visual acuity appears to provide a more accurate basis for judging the value of immediate vitrectomy in acute bacterial endophthalmitis after cataract surgery or secondary IOL implantation [17]. In our case series, only Case 3, with

| Table 1. Summary of the endophthalmitis cases following cataract surgery in diabetic patients |
|-----------------|---------|---------|---------|
| **Age (year)** | 65 | 51 | 67 |
| **Gender** | Female | Male | Male |
| **Postoperative endophthalmitis status** | Delayed subtle postoperative endogenous endophthalmitis | Delayed postoperative endophthalmitis | Acute postoperative endophthalmitis |
| **Onset of endophthalmitis post cataract surgery** | 8 weeks | 7 months | 5 days |
| **Status of diabetes mellitus** | HbA1c: 6.8% Blood sugar: 4-11 mmol/L | HbA1c: 6.0% Blood sugar: good control | HbA1c: 9.9% Blood sugar: 12.7 mmol/L |
| **Risk factor** | Left foot cellulitis | Suture abscess of the cataract wound | Poor diabetic control |
| **Presenting vision** | 6/24 | 6/18 | Perception of light |
| **Final vision** | 6/18 | 6/7.5 | No perception of light |
| **Treatment** | Eye drop antibiotic (moxifloxacin) | Eye drop antibiotic (moxifloxacin) | Eye drop antibiotic (moxifloxacin, ceftazidine) |
| | Systemic antibiotic (ciprofloxacin, C-penicillin) | Intravitreal antibiotic (vancomycin, ceftazidine) | Intravitreal antibiotic (vancomycin, ceftazidine) |
| | Eye drop antibiotic (moxifloxacin) | Systemic antibiotic (ciprofloxacin) | Systemic antibiotic (ciprofloxacin, ceftazidine) |
| | | Vitrectomy and explantation of intraocular lens | Vitrectomy and explantation of intraocular lens |
| | | Evisceration | Evisceration |

Discussion

Studies by Combey de Lambert et al. [14] and EVS [7] both identified bacterial virulence as one of the main independent factors of visual outcome, which shows the influence of bacterial virulence on final visual prognosis, by taking into account baseline clinical factors. A report by Combey de Lambert et al. showed that culture-negative cases are usually associated with a better final visual outcome [14]. This is probably due to culture negative cases having a relatively lower level of inoculum, which were undetected by conventional cultures or PCR techniques despite infection. Similarly, in our case series, only Case 3, with the most severe initial presentation, showed positive culture results with a *Streptococcus mitis* yield from the eye swab and vitreous sampling culture. This patient had the worst final visual outcome, which was no perception to light, as compared to Case 1 and 2, with a final visual acuity of 6/18 and 6/7.5, respectively.

A review of literature showed that approx. 14 to 21% of all patients who develop postoperative endophthalmitis after cataract operations are diabetic patients [11, 15]. Diabetic patients who developed endophthalmitis after cataract surgery tend to have poorer visual outcome, especially if diabetic retinopathy is present pre-operatively [15]. However, other studies stated that pre-existing diabetes mellitus has not yet been confirmed as an isolated risk factor for postoperative infectious endophthalmitis after cataract surgery [7, 16].
initial visual acuity of only light perception, proceeded with vitrectomy. However, in this case, vitrectomy did not improve the final visual outcome.

To the best of our knowledge, there is no review of literature suggesting the correlation between diabetic control and the incidence of postoperative infectious endophthalmitis. The association between glycemic control and the type of endophthalmitis was unclear and is yet to be determined. Most, but not all, literature suggested that diabetic patients are at increased risk of developing endophthalmitis after intraocular surgery [6, 8]. Nevertheless, there are many other potential pre-operative, intra-operative and postoperative risk factors which may contribute to the occurrence of postoperative infectious endophthalmitis [1].

As the ocular surface is a common source of pathogens, various measures have been used to prepare the ocular surface before surgery to reduce normal ocular surface flora. Antiseptic measures, such as instillation of a topical 5% povidone iodine solution into the conjunctival sac just before surgery, significantly reduced the incidence of culture positive endophthalmitis. On top of this, an intracameral injection of 1 mg cefuroxime in 0.1 ml of 0.9% sterile sodium chloride solution at the end of phacoemulsification surgery has been shown to significantly reduce the risk of postoperative endophthalmitis up to five-fold in a multicenter European study [1, 16]. Thus, improvement in surgical techniques, equipment sterilization, antiseptic measures and antibiotic prophylaxis will definitely reduce the risk of developing postoperative endophthalmitis in both diabetic and non-diabetic patients.

However, perioperative blood glucose control is still necessary in diabetic patients. Education on the importance of perioperative blood sugar optimization is crucial. Rapid correction of blood glucose should be avoided in patients with moderate to severe non-proliferative diabetic retinopathy, as it may increase the risk of postoperative progression of retinopathy and maculopathy, thus influence the postoperative visual prognosis [18]. Hence, better education and co-management with physicians and family doctors is necessary.

Conclusions

Although endophthalmitis following cataract surgery is rare, the incidence and complications are much higher in diabetic patients. Visual acuity at presentation is the predictor of the visual outcome. Awareness of early detection and public health education of this disease are very crucial, as these will prevent subsequent complications of blindness or death.

Source of funding: This work was funded by the authors’ own resources.
Conflict of interest: The authors declare no conflict of interests.

References

Tables: 1
Photographs: 3
References: 18
Received: 10.04.2017
Revised: 22.06.2017
Accepted: 24.06.2017

Address for correspondence:
Embong Zunaina, MD
Department of Ophthalmology
School of Medical Sciences
Universiti Sains Malaysia
16150 Kubang Kerian, Kelantan
Malaysia
Tel.: + 6 09 767 6362
E-mail: zunaina@usm.my