The effect of hypoxia on exercise tolerance in individuals after acute coronary syndrome treated with angioplasty combined with coronary stent implantation – pilot studies

AGATA NOWAK1, A, B, D–F, CEZARY KUCIO1, 2, A, D, ZBIGNIEW NOWAK1, A, B, D, E, THOMAS KÜPPER3, D, E

1 Department of Physiotherapy at the Jerzy Kukuczka’s Academy of Physical Education in Katowice, Poland
2 Multispecialty Hospital in Jaworzno, Poland
3 RTWH Aachen University, Aachen, Deutschland

Background. Currently, there is little documented research evaluating the effect of a high-mountain environment on patients with ischemic heart disease.

Objectives. The main aim of the study was to assess the effect of normobaric hypoxia on exercise tolerance in patients diagnosed with stable coronary disease.

Material and methods. 22 men aged 37 to 72 (55.68 ± 9.86 years of age) with coronary disease were qualified. In the pre-study, in a normobaric normoxia environment, each patient underwent: resting ECG, spiroergometric test using a treadmill, laboratory tests (gasometry, lactic acid concentration). The patients stayed in the cabinet for 3 hours at the: 1) normoxia, 2) hypoxia (2000 m a.s.l.), 3) hypoxia (3000 m a.s.l.) levels. After the 3-hour period, patients underwent a spiroergometric exercise tolerance test combined with a blood lactic acid concentration test. Venous blood and capillary blood were drawn for gasometry testing purposes.

Results. Under 2000 and 3000 m hypoxia noted a significantly shorter duration of the exercise test, distance travelled and MET values. An increase in resting blood pH and a decrease of resting and peak pCO2 were observed.

Conclusions. As a result of a 3-hour exposure to normobaric hypoxia, the exercise tolerance of patients after acute coronary syndrome treated with angioplasty combined with coronary stent implantation decreases. There is no clear information for patients as to whether high mountain conditions are safe for them. The presented research was a form of introduction to wider and more thorough experiments that can result in practical information for patients.

Key words: coronary artery disease, hypoxia, angioplasty.

exercise at a level of a healthy individual without major con-
traindications. Recommendations regarding physical exercise,
including the type of exercise, its intensity, frequency and work-
load for optimal safety of the patient, can be found in PTK and
ESC guidelines [14]. However, in the aforementioned guidelines,
no indications can be found regarding staying in higher-tem-
perature and humid environments or in environments where
changes in temperature and air pressure occur, such as the
mountains. Information regarding this topic is of high priority
and is more useful than indications regarding physical exercise
alone. Physical training has already been widely discussed, and
its benefits on the cardiovascular system have been well proven
[15–17].

Is it therefore advisable for patients with ischemic heart
disease to visit the mountainside? Can patients after full revas-
cularization safely engage in skiing or trekking? Most recom-
mandations regarding staying at high altitudes for this group of
patients remain experimental and are not based on scient-
ific evidence. There is a minor amount of reports, mainly from
the late 1990s, including results of studies conducted directly
at high altitudes on a very limited number of cardiac patients
[18–22]. So far, the most comprehensive survey and recom-
mandations have been given by the Medical Commission of the
Union Internationale des Associations d’Alpinisme – UIAA (In-
ternational Mountaineering and Climbing Federation) [4]. These
recommendations are as evidence-based as possible.

Despite the fact that the above-mentioned studies were
at a significant risk of complications, promising results were
obtained. Considering the fact that conducting this type of
research requires adequate preparation and medical backup,
such as using proper diagnostic equipment, selecting a suitable
group of patients, as well as significant financial means due to
travelling to mountainsides or constructing a hypoxic cabinet in
order to conduct the study in a laboratory environment, amount
of reports on the topic is exiguous.

Objectives

Accordingly, the aim of the following study was to evalu-
ate the effect of normobaric hypoxia on exercise tolerance in
patients with coronary artery disease after acute coronary syn-
drome treated with coronary stent implantation.

Material and methods

The enrolment for the study took place at the AMED (no
explanation for the abbreviation, as it is a proper name) facility
in Katowice, in which the second (ambulatory) stage of cardiac
rehabilitation of patients with coronary disease after acute cor-
onary syndrome treated with angioplasty combined with coro-
nary stent implantation was performed (Table 1).

To keep the potential risk for the volunteers as low as pos-
sible, only patients with stable coronary disease treated with
model A cardiac rehab (Table 2) were qualified for the exper-
iment in accordance with the Cardiac Rehabilitation and Exercise
Physiology Section of the Polish Cardiac Society guidelines [23].
Cardiac rehabilitation of the participants was applied at least 3
months after acute coronary syndrome (OZW) episode.

<table>
<thead>
<tr>
<th>Artery</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>5 (22.73%)</td>
</tr>
<tr>
<td>RCA</td>
<td>2 (9.1%)</td>
</tr>
<tr>
<td>LAD</td>
<td>8 (36.38%)</td>
</tr>
<tr>
<td>LAD + RCA</td>
<td>1 (4.54%)</td>
</tr>
<tr>
<td>OM1</td>
<td>1 (4.54%)</td>
</tr>
<tr>
<td>LAD + CX</td>
<td>1 (4.54%)</td>
</tr>
<tr>
<td>OM1 + CX</td>
<td>1 (4.54%)</td>
</tr>
</tbody>
</table>

Inclusion criteria were:
- patients after acute coronary syndrome and angioplasty with stent implantation,
- patients with stable coronary disease,
- men aged 35–75 years,
- patients who underwent model A cardiac rehabilitation at least 3 months after the occurrence of acute coronary syndrome,
- patients who gave their consent to partake in the study.

Exclusion criteria were:
- unstable coronary disease,
- chronic heart failure during periods of exacerbation,
- resistant hypertension,
- abnormal exercise test results,
- peripheral arterial occlusive disease,
- venous thromboembolism,
- COPD,
- anemia,
- disorders of locomotor system disabling the patient to
take the exercise test,
- lack of consent to partake in the study.

As a result of the above described method of enrolment,
22 patients with diagnosed and clinically documented coronary
disease aged 37–72 (55.68 ± 9.86 years of age) were qualified
for the study. In the pre-study, in a normoxia environment, each
patient underwent the following tests:
1) resting ECG,
2) exercise test combined with spiroergometric test using
a treadmill in accordance with the traditional seven-
grade Bruce Protocol,
3) gasometric test.

Each participant entered the hypoxia cabinet 3 times for
a period of 3 hours. The testing took place at the Jerzy Kukucz-
ka’s Academy of Physical Education Cardiovascular Performance
Testing Laboratory. The experiment was conducted in varying
oxygen pressure environments:
- normoxia (resembling the air pressure of 350 m a.s.l., as in Katowice),
- hypoxia (resembling the air pressure of 2,000 m a.s.l., as on Kasprov Wierch),
- hypoxia resembling the air pressure of 3,000 m a.s.l.,
(as in selected tourist resorts in the Alps). In accordance with the study protocol, the patients staying in the hypoxic cabinet were not informed about the air pressure
they were exposed to (single blind design). During the experiment, the participants were provided with an unlimited supply of still mineral water.

After the 3-hour cabinet experiment, each of the participants underwent a spiroergometric exercise test (under hypoxia conditions) with the use of a treadmill, combined with a blood serum lactate concentration test. Moreover, arterialized capillary samples (finger puncture) were drawn in order to perform gasometric lactic acid concentration tests. In order to ensure the safety of the participants during the experiment, a medical rescue team partook in the study.

Exercise tolerance was evaluated with the use of an electrocardiographic submaximal stress test, during which the traditional seven-grade Bruce Protocol was applied.

As established in the study protocol, the pharmacological treatment of patients qualified for the study was optimized and accordant with the guidelines for coronary disease management (Table 3).

Data acquisition

During the spiroergometric exercise test, the following exercise tolerance values were assessed:

- duration of trial [min],
- distance travelled [m],
- metabolic equivalent [MET],
- peak oxygen consumption [VO$_{2peak}$],
- peak oxygen consumption [VO$_{2peak}$/kg] per kilogram of bodyweight,
Resting and peak physical effort values of pO_2 and pH values during the spiroergometric test were noted (Table 5). Of 2,000 and 3,000 meters a.s.l. on peak physical effort blood pH values increased at a statistically significant manner in the hypoxic environment resembling a height of 2,000 meters a.s.l. However, no similar differences were observed as far as exercise tolerance test duration and distance travelled during the spiroergometric test are concerned.

No statistically significant changes in ventilation, resting and intra-workout lactate concentration, as well as resting and intra-workout heart rate, were observed (Table 4).

Gasometry

Blood pH values increased at a statistically significant manner in the hypoxic environment responding to altitudes of 2,000 and 3,000 meters a.s.l. No statistically significant changes were observed in blood pH values between hypoxic environments of 2,000 meters a.s.l. in comparison to those of 3,000 meters a.s.l. No statistically significant effects of hypoxic environments of 2,000 and 3,000 meters a.s.l. on peak physical effort blood pH values during the spiroergometric test were noted (Table 5).

No statistically significant effects of a hypoxic environment of 2,000 meters a.s.l. on both resting and intra-workout pCO_2 values were observed. However, in the hypoxic environment of 3,000 meters a.s.l., a statistically significant decrease in both resting and peak pCO_2 values in comparison to normoxic and hypoxic environments of 2,000 meters a.s.l. were observed. Resting and peak physical effort values of pO_2 decreased significantly in hypoxic environments of 2,000 and 3,000 meters a.s.l. Moreover, significantly lower resting and peak pO_2 values were noted in the hypoxic environment of 3,000 meters a.s.l. as compared to the environment responding to altitude of 2,000 meters a.s.l. (Table 5).

Discussion

The evaluation of an organism’s reaction to progressively increased physical effort is one of the most important elements of cardiac rehabilitation diagnostics. Stimuli in the form of increasingly demanding physical exercise may incur various disease symptoms, such as early symptoms of heart failure, heart ischemia indicators or cardiac arrhythmia [23].

The comparison of exercise tolerance test results performed in a normoxic environment of 350 meters a.s.l. (Katowice) and those performed in a hypoxic environment of 2,000 and 3,000 meters a.s.l. resulted in various reactions of the participants’ organism, adequate to the given circumstances. Resting heart rate values, regardless of the air pressure in the cabinet, were similar. The above may have been a result of the applied pharmacological therapy. As the altitude increases, the oxygen partial pressure – and therefore in the tissues of the body – is reduced, which may cause decreased exercise tolerance, especially in patients with cardio-vascular disease [24]. Beyond the altitude of 1,500 meters a.s.l., peak exercise tolerance is reduced by 1% with each 100 meters travelled [25–30]. The above thesis has also been proven by proprietary research. During the exercise test, with each new altitude reached, the duration of the test, as well as distance travelled, MET and peak oxygen uptake, dropped significantly in comparison to the normoxic environment. An increase in heart rate related to altitude is one of the organism’s reactions to reduced oxygen supply [31]. This phenomenon was also noted in proprietary studies – the patients reached the destined (submaximal) heart rate quicker with each new height above sea level. Although the differences were not statistically significant, the general tendency of the alterations was consistent with the observations of other researchers [22, 31, 32].

Another observed parameter depicting the exercise tolerance level of a participant is peak oxygen uptake (VO$_2$) during submaximal physical effort. At high altitudes, a gradual decrease in the human organisms’ oxygen uptake capability occurs. In some individuals, this phenomenon can be observed.
even at low altitudes (circa 1,400–1,600 meters a.s.l.). Beyond the aforementioned heights, this effect occurs in a linear manner: circa 11% with each 1,000 meters a.s.l., while at 8,000, peak oxygen uptake amounts only to 20% of the value occurring at sea level [33], beginning above the “threshold altitude” of 1,500 m [26–30].

In a study conducted on a group of skiers, a negative correlation was noted between muscle oxidative metabolism indicators (mitochondrial density, intracellular lipid content) and VO2max and maximum effort power indicators evaluated with the use of a progressive exercise test in a hypoxic environment [34]. Other research aimed at explaining the causes of the decrease of VO2max in hypoxic environment is of interest [35]. In purposefully induced conditions in a hypobaric-hypoxic cabinet, the effect of various factors likely to impact exercise tolerance with rising hypoxemia were studied. The performed analysis showed that parameters such as sea level VO2max value cause a significant decrease of VO2max in a hypoxic environment. It was stated that the greater the initial VO2max level, the greater its decline afterwards. The lactate threshold reached at sea level shows an inverted relation – the greater the initial value, the smaller the decline. This finding is somehow difficult to explain. The so-called “lactate paradox” can be excluded, since this effect has been observed at extreme altitudes far beyond 7,000 m only [36]. The indicator causing its decrease during exercise until failure is hemoglobin oxygen saturation (SaO2) in hypoxemia; as far as this indicator is concerned, the greater its reduction, the greater the decrease of VO2max [30].

In proprietary studies, VO2peak given as l/min and ml/min/kg showed statistically significant changes between all levels at which the studies were conducted. The achieved results confirm the thesis that VO2max declines as oxygen pressure decreases. Similar results were reached in other studies showing a 7–9% decrease in VO2max with every 1,000 meters a.s.l. [37]. A 19% drop in peak VO2max was noted in comparison to the initial value at 540 meters a.s.l. It is to be accentuated that the methodology was similar in these studies in comparison to the proprietary studies: the experiments were conducted once, and the patients’ exposure to a hypoxic environment was constant. In turn, different results were reached in cases of exposing the participant to a hypoxic environment in intervals [38].

It also needs to be noted that there are reports in which no significant changes in oxygen uptake in comparison to initial circumstances (normoxia) were noted [39–41]. Moreover, some authors achieved results where peak oxygen uptake increased [38, 42]. Such disparities in study results were caused by the choice of methodology, time of the patients’ exposure to a hypoxic environment and physical effort intensity applied in a hypoxic environment.

During the patients’ stay in the hypoxic cabinet, lactate concentration at rest, before the stress test and 4 minutes after the stress test was assessed. During intense physical exercise, significant amounts of lactates are produced (except at extreme altitudes far above of 3,000 m, where our actual study was performed; “lactate paradox”, see above). Maintaining a productive exercise metabolism relies on efficient transportation of the produced lactate and H+ ions [36]. A lower lactate concentration in working muscles reduces the feeling of fatigue and facilitates longer periods of physical effort.

According to reports, the ability to regulate pH levels (H+ ion concentration) in muscle tissue depends on the amount of buffering alkali [43]. A higher level of buffering alkali may be a part of a fundamental exercise tolerance enhancing mechanism as a result of high-altitude training. A study aiming at evaluating the effect of normobaric hypoxia on the Finnish national sprint team was conducted. It was observed that a 16– to 17-hour stay in an environment of 2,200 meters a.s.l. causes raised blood pH levels. After leaving the cabinet, the members of the group, as well as members of the control group, underwent exercise tolerance tests, which showed significant differences in blood lactate concentration. The athletes presented lower blood lactate concentration levels in comparison to the control group (7.0 mmol/L and 5 mmol/L, respectively) [44]. The achieved results remain fundamentally in accordance with the results obtained by other authors conducting studies involving athletes [45, 46]. At moderate and high altitudes, anaerobic metabolism is activated during relatively less intensive activity.

In proprietary studies, the only statistically significant differences in blood lactate levels were noted during experiments at altitudes of 2,000 and 3,000 meters above sea level. Participants of the study simultaneously took part in a cardiac rehab program. Most of the patients also engaged in relatively intense physical activity on their own (Nordic walking, cycling, vivid marching, one of the participants was even a parachute jumper) and remained professionally active. It is therefore suggested that a higher blood lactate concentration may have been the result of physical activity undertaken a few hours before the testing.

Researches report mean resting values of 1.3 mmol/l (± 0.74), a.s.l., while at 3,000 m, a tendency to higher concentrations was measured (1.5 mmol/l (± 0.36, p = 0.0758)), and the increase was highly significant at 4,560 m (2.2 mmol/l (± 0.74, p = 0.0015)) [29]. It is suggested that individuals inhabiting low or plain regions and planning to visit high-altitude terrains should develop at least some degree of adaptation through pre-exposure to a hypoxic environment corresponding to 1,500 meters a.s.l. This pre-exposure may be performed in a constant manner, as well as by using the IHE method (Intermittent Hypoxic Exposure) [47]. The IHE method was first introduced in the studies on Finnish athletes as a means of utilizing the ability of the human organism to adapt to hypoxia without the need of burdensome and costly travelling. According to these authors, the degree of acclimatization incurred by this method is directly dependent on the altitude a.s.l., as well as the duration of the stay. As much as 1 to 2 days spent at an altitude of 2,200 meters a.s.l. or 1.5 to 4 hours exposure to a hypoxic environment (cabinet) equivalent to an altitude of 4,000 meters a.s.l. using the IHE method causes the human respiratory system to adapt. During the IHE procedure, patients remain in hypoxic rooms with reduced oxygen. The air is attenuated with nitrogen, filtered or turned into a hypoxic gas mixture, which in turn resembles the circumstances equivalent to 2,500 to 3,500 meters a.s.l. An increase in total mitochondrial density as result of consistent cycloergometric training in a hypoxic environment corresponding to the height of 3,850 meters a.s.l. is observed [33]. The training was performed for a total of 30 minutes a day, 5 days a week for 6 weeks. Moreover, increases in maximal power and VO2max were also noted. However, the latter might be the result of any type of exercise in a sedentary collective.

Peripheral blood gasometry was another studied parameter. Blood was drawn twice: at rest and at peak physical effort. Significant changes were noted between resting blood pH in a normoxic environment of 2,000 and 3,000 meters a.s.l. Proprietary research showed that resting and peak effort pO2 values decreased significantly in a hypoxic environment of 2,000 and 3,000 meters a.s.l. Moreover, a significant decrease in resting and peak effort pO2 values at an altitude of 3,000 meters a.s.l. was noted in comparison to the measurements taken at an altitude of 2,000 meters a.s.l. These results remain in accordance with the aforementioned reports [49]. A significant decrease in partial oxygen pressure was noted starting with an altitude of 1,500–2,000 meters a.s.l. and did not affect the health of the studied group. Similar results were achieved in both the control group and in the group of patients diagnosed with coronary disease [48].

Results can be found in literature on the topic pointing to a minor decrease of partial oxygen pressure in our study group. The reason for such a result was the short duration of the stay in a hypoxic environment (lasting only 2.5 hours). The analogous results pertained to the partial pressure of carbon diox-
ide (pCO2). The values decreased as the altitude a.s.l. increased [49].

Limitations of the study

The presented research is only pilot studies. There is no assessment of the effect on patients in other high-altitude conditions, such as temperature or pressure. It is important to expand the research group in the future.

Source of funding: This work was developed under the research grant “Young Scientists”, financed by the Ministry of Science and Higher Education in the year of 2015.

Conflicts of interest: The authors declare no conflicts of interest.

References

Conclusions

As a result of a 3-hour exposure to normobaric hypoxia, the exercise tolerance of patients after acute coronary syndrome treated with angioplasty combined with coronary stent implantation decreases. There is no clear information for patients as to whether high mountain conditions are safe for them. The presented research was a form of introduction to wider and more thorough experiments that can result in practical information for patients.

Tables: 5

Figures: 0

References: 49

Received: 10.08.2018
Reviewed: 19.08.2018
Accepted: 9.10.2018

Address for correspondence:
Agata Nowak, PhD
Akademia Wychowania Fizycznego
im. Jerzego Kukuczki
ul. Mikolowska 72A
40-065 Katowice
Polska
Tel.: +48 501 773-925
E-mail: a.nowak88@gmail.com