eISSN: 1896-9151
ISSN: 1734-1922
Archives of Medical Science
Current issue Archive Manuscripts accepted About the journal Special issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
vol. 14
Basic research

Plumbagin protects against hydrogen peroxide-induced neurotoxicity by modulating NF-κB and Nrf-2

Wang Kuan-hong, Li Bai-zhou

Arch Med Sci 2018; 14, 5: 1112–1118
Online publish date: 2016/12/20
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
Redox signaling initiates pathogenesis of neuronal degeneration. Plumbagin is a potential antioxidant with anti-inflammatory, anti-cancer and radio sensitizing properties. In the present study, we aimed to determine the protective role of plumbagin against H2O2-induced neurotoxicity in PC12 cells by determining nuclear factor B (NF-B) and nuclear factor E2-related factor 2 (Nrf-2) pathways.

Material and methods
We analyzed oxidative stress by determining reactive oxygen species (ROS) and nitrite levels, and antioxidant enzyme activities. Nrf-2 and NF-B p65 nuclear localization was determined through immunofluorescence. Further, nuclear levels of p-Nrf-2 and downstream expression of NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygenase-1 (HO-1) and glutathione-s-transferase (GST) were determined by western blot. Anti-inflammatory activity was analyzed by evaluating NF-B p65, cyclooxygenase-2 (COX-2) and interleukin (IL-6, IL-8, and MCP-1) expression.

The results showed that plumbagin increased (p < 0.01) the cell viability against H2O2-induced cell death in PC12 cells. Plumbagin effectively ameliorated H2O2-induced oxidative stress through reducing oxidative stress (p < 0.01) and activating p-Nrf-2 levels. Further, plumbagin up-regulated antioxidant enzyme activities (p < 0.01) against H2O2-induced oxidative stress. Plumbagin showed anti-inflammatory effect by suppressing NF-B p65 activation and down-regulating NF-B p65 and COX-2 expression. In addition, plumbagin modulated (p < 0.01) inflammatory cytokine expression against H2O2-induced neurotoxic effects.

Together, our results show that plumbagin modulated NF-B and Nrf-2 signaling. Thus, plumbagin might be an effective compound in preventing H2O2-induced neurotoxicity and its associated inflammatory responses.


H2O2, oxidative stress, inflammation, Nrf-2, neurotoxicity

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787-95.
Halliwell, B. Oxidative stress, and neurodegeneration: where are we now? J Neurochem 2006; 97: 1634-58.
Sumathi T, Shobana C, Thangarajeswari M, Usha R. Protective effect of L-theanine against aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of rat brain – histopathological, and biochemical approach. Drug Chem Toxicol 2015; 38: 22-31.
Assaf N, Shalby AB, Khalil WK, Ahmed HH. Biochemical and genetic alterations of oxidant/antioxidant status of the brain in rats treated with dexamethasone: protective roles of melatonin and acetyl-L-carnitine. J Physiol Biochem 2012; 68: 77-90.
Sandur SK, Ichikawa H, Sethi G, Ann KS, Aggarwal BB. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 2006; 281: 17023-33.
Checker R, Sharma D, Sandur SK, Khanam S, Poduval TB. Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. Int Immunopharmacol 2009; 9: 949-58.
Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 2006; 5: 3209-21.
Hsu YL, Cho CY, Kuo PL, Huang YT, Lin CC. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther 2006; 318: 484-94.
Nair S, Nair RR, Srinivas P, Srinivas G, Pillai MR. Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcinog 2008; 47: 22-33.
Checker R, Patwardhan RS, Sharma D, et al. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-kappaB suppression. Inflammation 2014; 37: 542-54.
Checker R, Gambhir L, Sharma D, Kumar M, Sandur SK. Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2). Cancer Lett 2015; 357: 265-78.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63.
Royall JA, Ischiropoulos H. Evaluation of 2,7-dichlorofluorescein and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 1993; 302: 348-55.
Wang JY, Shum AY, Ho YJ, Wang JY. Oxidative neurotoxicity in rat cerebral cortex neurons: synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3.
J Neurosci Res 2003; 72: 508-19.
Wang W, Gao C, Hou XY, Liu Y, Zong YY, Zhang GY. Activation and involvement of JNK1/2 in hydrogen peroxide-induced neurotoxicity in cultured rat cortical neurons. Acta Pharmacol Sin 2004; 25: 630-6.
Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 2013; 27: 2179-91.
Kansanen E, Jyrkkänen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 2012; 52: 973-82.
Son TG, Camandola S, Arumugam TV, et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 2010; 112: 1316-26.
Qin WS, Deng YH, Cui FC. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression. Arch Med Sci 2016; 12: 871-80.
Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129: 154-69.
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140: 918-34.
Wang T, Wu F, Jin Z, et al. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 cells. Food Chem Toxicol 2014; 64: 177-83.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe