eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank

vol. 43
Review paper

The immunological implication of the new vitamin D metabolism

Giulia Bivona, Luisa Agnello, Marcello Ciaccio

(Centr Eur J Immunol 2018; 43 (3): 331-334)
Online publish date: 2018/10/30
View full text
Get citation
JabRef, Mendeley
Papers, Reference Manager, RefWorks, Zotero
Vitamin D is a neuro-hormone regulating calcium-phosphate homeostasis, cell proliferation, and immunomodulation. Exogenous and endogenous vitamin D is inactive, and two hydroxylations are required to produce the active hormone. The first hydroxylation is unique to the liver, while the second step occurs in kidney, brain, lung, prostate, placenta, and immune cells. Kidney-derived calcitriol regulates calcium homeostasis. Active hormone produced by brain and immune cells mediates immune system response; lung calcitriol is involved in fighting respiratory tract infections; finally, prostate and placenta vitamin D regulates cells growth and proliferation within such tissues. Immune modulation by vitamin D includes enhancing innate immune response, attenuating and stimulating Th1 and Th2 cell proliferation, respectively, and promoting self-tolerance. Hypovitaminosis D is a common finding in several autoimmune diseases. It is unclear whether hypovitaminosis D could be a consequence or a cause of autoimmune diseases and whether vitamin D supplementation has an impact on these patients. Moreover, there is no consensus on oral cholecalciferol dosage for supplementation. More interventional studies are required to better define how vitamin D could represent both a causation agent in autoimmunity and a target for therapeutic strategies in autoimmune patients.

vitamin D, CYPs, VDR, immunomodulation, autoimmunity

Jones G (2013): Extrarenal vitamin D activation and interactions between vitamin D2, vitamin D3, and vitamin D analogs. Annu Rev Nutr 33: 23-44.
Guengerich FP, Waterman MR, Egli M (2016): Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol Sci 37: 625-640.
Caruso A, Bellia C, Pivetti A, et al. (2014): Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med 7: 117-120.
Jones G, Prosser DE, Kaufmann M (2014): Cytochrome P450-mediated metabolism of Vitamin D. J Lipid Res 55: 13-31.
Gil A, Plaza-Diaz J, Mesa AD (2018): Vitamin D: classic and novel action. Ann Nutr Metab 72: 87-95.
Hewison M, Adams JS (2011): Extrarenal 1-hydroxylase. In: Vitamin D (3rd ed.), Feldman D, Pike JW, Adams JS (eds.). Academic Press, San Diego, CA: 777-806.
Gui B, Chen Q, Hu C, et al. (2017): Effects of calcitriol
(1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice. Virol J 14:10.
Giulia B, Luisa A, Concetta S, et al. (2015): Procalcitonin and community-acquired pneumonia (CAP) in children. Clin Chim Acta 451: 215-218.
Rochel N, Molnár F (2017): Structural aspects of Vitamin D endocrinology. Mol Cell Endocrinol: 22-35.
Wang TT, Tavera-Mendoza LE, Laperriere D, et al. (2005): Large-scale in silico and microarray-based identification of direct 1, 25-dihydroxyvitamin D3 target genes. Mol Endocrinol 19: 2685-2695.
Hii CS, Ferrante A (2016): The Non-Genomic Actions of Vitamin D. Nutrients 8: 135.
Mizwicki MT, Norman AW (2009): The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signalling. Sci Signal 2: re4.
Cui X, Gooch H, Petty A, et al. (2017): Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endocrinol 453: 131-143.
Bivona G, Agnello L, Ciaccio M (2017): Vitamin D and Immunomodulation: Is It Time to Change the Reference Values? Ann Clin Lab Sci 47: 508-510.
Vanherwegen AS, Gysemans C, Mathieu C (2017): Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinol Metab Clin North Am 46: 1061-1094.
Yang CY, Leung PS, Adamopoulos IE, et al. (2013): The implication of vitamin D and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol 45: 217-226.
Colotta F, Jansson B, Bonelli F (2017): Modulation of inflammatory and immune responses by vitamin D. J Autoimmun 85: 78-97.
Rosen Y, Daich J, Soliman I, et al. (2016): Vitamin D and autoimmunity. Scand J Rheumatol 45: 439-447.
Lin R (2016): Crosstalk between Vitamin D Metabolism, VDR Signalling, and Innate Immunity. Biomed Res Int 2016: 1375858.
Agnello L, Scazzone C, Lo Sasso B, et al. (2017): VDBP, CYP27B1, and 25-Hydroxyvitamin D Gene Polymorphism Analyses in a Group of Sicilian Multiple Sclerosis Patients. Biochem Genet 55: 183-192.
Bivona G, Agnello L, Pivetti A, et al. (2016): Association between hypovitaminosis D and systemic sclerosis: True or fake? Clin Chim Acta458: 115-119.
Shoenfeld Y, Giacomelli R, Azrielant S, et al. (2018): Vitamin D and systemic lupus erythematosus – The hype and the hope. Autoimmun Rev 17: 19-23.
Kim D (2017): The Role of Vitamin D in Thyroid Diseases. Int J Mol Sci 18: 1949.
Kang SY, Kang JH, Choi JC, et al. (2018): Low serum vitamin D levels in patients with myasthenia gravis. J Clin Neurosci 50: 294-297.
Abdollahzadeh R, Fard MS, Rahmani F, et al. (2016): Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study. J Neurol Sci 367: 148-151.
Agnello L, Scazzone C, Ragonese P, et al. (2016): Vitamin D receptor polymorphisms and 25-hydroxyvitamin D in a group of Sicilian multiple sclerosis patients. Neurol Sci 37: 261-267.
Zhang YJ, Zhang L, Chen SY, et al. (2018): Association between VDR polymorphisms and multiple sclerosis: systematic review and updated meta-analysis of case-control studies. Neurol Sci 39: 225-234.
Kamen DL (2010): Vitamin D in lupus: new kid on the block? Bull Hosp Jt Dis 68: 218.
Borba V, Vieira J, Kasamatsu T, et al. (2009): Vitamin D deficiency in patients with active systemic lupus erythematosus. Osteoporis Int 20: 427-433.
Amital H, Szekanecz Z, Szücs G, et al. (2010): Serum concentrations of 25-OH vitamin D in patients with systemic lupus erythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D? Ann Rheum Dis 69: 1155-1157.
Trombetta AC, Smith V, Gotelli E, et al. (2017): Vitamin D deficiency and clinical correlations in systemic sclerosis patients: A retrospective analysis for possible future developments. PLoS One 12: e0179062.
Kimball SM, Ursell MR, O’Connor P, et al. (2007): Safety of vitamin D3 in adults with multiple sclerosis. Am J Clin Nutr 86: 645-651.
Soilu-Hänninen M, Aivo J, Lindström BM, et al. (2012): A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon -1b in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 83: 565-571.
Stein MS1, Liu Y, Gray OM, et al. (2011): A randomized trial of high-dose vitamin D2 in relapsing-remitting multiple sclerosis. Neurology 77: 1611-1618.
Smolders J, Hupperts RMM, Vieth R, et al. (2016): High dose cholecalciferol (vitamin D3) oil as an add-on therapy in subjects with relapsing-remitting multiple sclerosis (RRMS) receiveing subcoutaneous interferon -1a (scIFN-1a). ECTRIMIS Online Library 147013.
Lima GL, Paupitz J, Aikawa NE, et al. (2016): Vitamin D Supplementation in Adolescents and Young Adults With Juvenile Systemic Lupus Erythematosus for Improvement in Disease Activity and Fatigue Scores: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care Res (Hoboken) 68: 91-98.
Aranow C, Kamen DL, Dall’Era M, et al. (2015): Randomized, Double-Blind, Placebo-Controlled Trial of the Effect of Vitamin D3 on the Interferon Signature in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 67: 1848-1857.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe