ORIGINAL PAPER
The influence of passive extensibility of the posterior oblique sling’s upper portion on contralateral knee extension
 
 
 
More details
Hide details
1
Department of Physical Therapy, College of Health and Welfare, Woosong University, Daejeon, Republic of Korea
 
2
Woosong Institute of Rehabilitation Science, Woosong University, Daejeon, Republic of Korea
 
 
Submission date: 2020-12-21
 
 
Acceptance date: 2021-03-16
 
 
Publication date: 2023-06-01
 
 
Physiother Quart. 2023;31(2):53-58
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The posterior oblique sling (POS) serves to improve stability by transferring the force and load during an active movement in muscle contraction. The purpose of this study was to investigate the influence of pelvic positions on the knee extension range of motion (KE ROM) and the influence of trunk positions on the mobility of the lower extremity.

Methods:
Sixteen subjects (age 21.0 ± 1.9 years, height 165.3 ± 7.6 cm, weight 59.56 ± 7.9 kg) participated in this study. The therapist measured the active KE ROM of the dominant leg at three different pelvic positions (neutral position, maximal anterior, and posterior pelvic tilt) and at two different trunk positions (trunk flexion and trunk rotation) using a Bluetooth embed inertial measurement unit sensor. A 10-minute rest was taken between positions. During trunk flexion and trunk rotation, the pelvis was maintained in a neutral position to prevent the change in length of the hamstring muscles. Statistical significance was set at p < 0.05.

Results:
In comparison to the neutral position, the anterior and posterior pelvic tilt significantly decreased (p < 0.001) and increased the KE ROM (p < 0.001). In addition, the trunk rotation significantly decreased the KE ROM (p = 0.002). However, the trunk flexion did not significantly change the KE ROM.

Conclusions:
The findings in this study indicate that the changes in the length of the POS significantly influenced the functional mobility in the lower extremity. In clinical practice, the flexibility of POS must be considered during reciprocal movements involving the upper body and contralateral lower extremities.

 
REFERENCES (38)
1.
Sharbafi AM, Rashty AMN, Rode C, Seyfarth A. Reconstruction of human swing leg motion with passive biarticular muscle models. Hum Mov Sci. 2017;52:96–107; doi: 10.1016/j.humov.2017.01.008.
 
2.
Jonkers I, Stewart C, Spaepen A. The complementary role of the plantarflexors, hamstrings and gluteus maximus in the control of stance limb stability during gait. Gait Posture. 2003;17(3):264–272; doi: 10.1016/s0966-6362(02)00102-9.
 
3.
Bruening DA, Cooney KM, Buczek FL. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications. Gait Posture. 2012;35(4):535–540; doi: 10.1016/j.gaitpost.2011.11.012.
 
4.
Maas H. Significance of epimuscular myofascial force transmission under passive muscle conditions. J Appl Physiol. 2019;126(5):1465–1473; doi: 10.1152/japplphysiol.00631.2018.
 
5.
Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Win­gerden JP, Snijders CJ. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine. 1995;20(7):753–758; doi:10.1097/00007632-199504000-00001.
 
6.
Vleeming A, Pool-Goudzwaard AL, Stoeckart R, Wingerden van JP SC. Towards a better understanding of the etiology of low back pain. In: First Interdisciplinary World Congress on Low Back Pain and its Relation to the SI Joint. Rotterdam: ECO. 1993:545–553.
 
7.
Pool-Goudzwaard AL, Vleeming A, Stoeckart R, Snij­ders CJ, Mens JMA. Insufficient lumbopelvic stability: a clinical, anatomical and biomechanical approach to ‘a-specific’ low back pain. Man Ther. 1998;3(1):12–20; doi: 10.1054/math.1998.0311.
 
8.
Kim J-W, Kang M-H, Oh J-S. Patients with low back pain demonstrate increased activity of the posterior oblique sling muscle during prone hip extension. PM R. 2014;6(5):400–405; doi: 10.1016/j.pmrj.2013.12.006.
 
9.
Mooney V. Evaluation and treatment of sacroiliac dysfunction. In: Wiesel SW, Weinstein JN, Herkowitz HN, Dvo­rak J, Bell GR, (eds.) The Lumbar Spine. Philadelphia: WB Saunders; 1996:559–569.
 
10.
Ha S-M, Jeon I-C. Comparison of the electromyographic recruitment of the posterior oblique sling muscles during prone hip extension among three different shoulder positions. Physiother Theory Pract. 2021;37(9):1–8; doi: 10.1080/09593985.2019.1675206.
 
11.
Lee J-K, Hwang J-H, Kim C-M, Lee JK, Park J-W. Influence of muscle activation of posterior oblique sling from changes in activation of gluteus maximus from exercise of prone hip extension of normal adult male and female. J Phys Ther Sci. 2019;31(2):166–169; doi: 10.1589/jpts.31.166.
 
12.
Kang D-K, Hwang Y-I. Comparison of muscle activities of the posterior oblique sling muscles among three prone hip extension exercises with and without contraction of the latissimus dorsi. J Korean Soc Phys Med. 2019;14(3):39–45; doi: 10.13066/kspm.2019.14.3.39.
 
13.
Sullivan MK, Dejulia JJ, Worrell TW. Effect of pelvic position and stretching method on hamstring muscle flexibility. Med Sci Sports Exerc. 1992;24(12):1383–1389.
 
14.
Blackburn JT, Padua DA. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin Biomech. 2008;23(3):313–319; doi: 10.1016/j.clinbiomech.2007.10.003.
 
15.
Johnson EK, Chiarello CM. The slump test: the effects of head and lower extremity position on knee extension. J Orthop Sports Phys Ther. 1997;26(6):310–317; doi: 10.2519/jospt.1997.26.6.310.
 
16.
Leinonen V, Kankaanpää M, Airaksinen O, Hänninen O. Back and hip extensor activities during trunk flexion/extension: effects of low back pain and rehabilitation. Arch Phys Med Rehabil. 2000;81(1):32–37; doi: 10.1016/s0003-9993(00)90218-1.
 
17.
World Health Organization. Physical Status: the Use of and Interpretation of Anthropometry. Report of a WHO Expert Committee. Geneva: WHO; 1995.
 
18.
Oh D, Lim W, Lee N. Concurrent validity and intra-trial reliability of a bluetooth-embedded inertial measurement unit for real-time joint range of motion. Int J Comput Sci Sport. 2019;18(3):1–11; doi: 10.2478/ijcss-2019-0015.
 
19.
Crisco JJ, Panjabi MM, Yamamoto I, Oxland TR. Euler stability of the human ligamentous lumbar spine. Part II: experiment. Clin Biomech. 1992;7(1):27–32; doi: 10.1016/0268-0033(92)90004-N.
 
20.
Willard FH. The muscular, ligamentous, and neural structure of the lumbosacrum and its relationship to low back pain. In: Vleeming A, Mooney V, Stoeckart R (eds.) Movement, Stability and Lumbopelvic Pain. Elsevier; 2007:5–45; doi: 10.1016/B978-044310178-6.50003-7.
 
21.
Adams MA, Dolan P. How to use the spine, pelvis, and legs effectively in lifting. In: Vleeming A, Mooney V, Stoeckart R (eds.) Movement, Stability and Lumbopelvic Pain. Elsevier; 2007:167–183; doi: 10.1016/B978-044310178-6.50013-X.
 
22.
Barker PJ, Briggs CA, Bogeski G. Tensile transmission across the lumbar fasciae in unembalmed cadavers: effects of tension to various muscular attachments. Spine. 2004;29(2):129–138; doi: 10.1097/01.BRS.0000107005.62513.32.
 
23.
Bogduk N, Johnson G, Spalding D. The morphology and biomechanics of latissimus dorsi. Clin Biomech. 1998;13(6):377–385; doi: 10.1016/s0268-0033(98)00102-8.
 
24.
Jeon I, Ha S-M, Hwang U-J, Jung S-H, Kim H-S, Kwon O-Y. Comparison of EMG activity of the posterior oblique sling muscles and pelvic rotation during prone hip extension with and without lower trapezius pre-activation. Phys Ther Korea. 2016;23(1):80–86; doi: 10.12674/ptk.2016.23.1.080.
 
25.
Liebenson C. The relationship of the sacroiliac joint, stabilization musculature, and lumbo-pelvic instability. J Bodyw Mov Ther. 2004;8(1):43–45; doi: 10.1016/S1360-8592(03)00090-1.
 
26.
Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R. The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat. 2012;221(6):507–536; doi: 10.1111/j.1469-7580.2012.01511.x.
 
27.
Schuenke MD, Vleeming A, Van Hoof T, Willard FH. A description of the lumbar interfascial triangle and its relation with the lateral raphe: anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J Anat. 2012;221(6):568–576; doi: 10.1111/j.1469-7580.2012.01517.x.
 
28.
Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–389; discussion 397; doi: 10.1097/00002517-199212000-00001.
 
29.
Smith C. Analytical literature review of the passive straight leg raise test. S Afr J Physiother. 1989;45:104–107.
 
30.
Butler DS. Adverse mechanical tension in the nervous system: a model for assessment and treatment. Aust J Physiother. 1989;35(4):227–238; doi: 10.1016/S0004-9514(14)60511-0.
 
31.
Bohannon R, Gajdosik R, LeVeau BF. Contribution of pelvic and lower limb motion to increases in the angle of passive straight leg raising. Phys Ther. 1985;65(4):474–476; doi: 10.1093/ptj/65.4.474.
 
32.
Gracovetsky S, Farfan HF, Lamy C. The mechanism of the lumbar spine. Spine. 1981;6(3):249–262; doi: 10.1097/00007632-198105000-00007.
 
33.
Neumann DA. Axial skeleton: osteology and arthrology. In: Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Elsevier; 2017:355.
 
34.
Shin S-J, Kim T-Y, Yoo W-G. Effects of various gait speeds on the latissimus dorsi and gluteus maximus muscles associated with the posterior oblique sling system. J Phys Ther Sci. 2013;25(11):1391–1392; doi: 10.1589/jpts.25.1391.
 
35.
Vleeming A, Stoeckart R. The role of the pelvic girdle in coupling the spine and the legs: a clinical–anatomical perspective on pelvic stability. In: Movement, Stability & Lumbopelvic Pain. Elsevier; 2007:113–137.
 
36.
Dorman TA. Storage and release of elastic energy in the pelvis: dysfunction, diagnosis and treatment. J Orthop Med. 1992;14(2):54–62; doi: 10.1080/1355297X.1992.11719686.
 
37.
Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscince. 2011;194:302–308; doi: 10.1016/j.neuroscience.2011.07.066.
 
38.
Bednar DA, Orr FW, Simon GT. Observations on the pathomorphology of the thoracolumbar fascia in chronic mechanical back pain. A microscopic study. Spine. 1995;20(10):1161–1164; doi: 10.1097/00007632-199505150-00010.
 
eISSN:2544-4395
Journals System - logo
Scroll to top