eISSN: 1896-9151
ISSN: 1734-1922
Archives of Medical Science
Current issue Archive Manuscripts accepted About the journal Special issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
6/2018
vol. 14
 
Share:
Share:
more
 
 
abstract:
Clinical research

Urinary neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, N-acetyl-β-D-glucosaminidase levels and mortality risk in septic patients with acute kidney injury

Heng Fan, Yu Zhao, Min Sun, Jian-Hua Zhu

Arch Med Sci 2018; 14, 6: 1381–1386
Online publish date: 2018/10/23
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Introduction
The aim of the study was to confirm whether higher levels of urinary neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and N-acetyl--D-glucosaminidase (NAG) are associated with mortality risk scores in severe septic patients with acute kidney injury (AKI).

Material and methods
A prospective observational study was performed in an adult critical care unit. A total of 135 patients were included. The levels of urinary NGAL, KIM-1 and NAG were compared between patients with acute physiology and chronic health evaluation (APACHE II) score > 25 (group A, n = 31) and APACHE II score ≤ 25 (group B, n = 104).

Results
Median level of NGAL was 105.1 ng/ml (77.6–132.5) in group A versus 40.0 ng/ml (18.6–60.5) in group B (p < 0.001), KIM-1 was 16.2 ng/ml (10.2–22.3) versus 3.3 ng/ml (1.8–4.6) (p < 0.001), and NAG was 32.0 U/l (17.5–46.4) versus 15.0 U/l (7.7–22.3) (p < 0.001). The area under the receiver operating characteristic curve for NGAL was 0.70 (95% CI: 0.60–0.79), KIM-1 was 0.75 (95% CI: 0.66–0.83), and NAG was 0.69 (95% CI: 0.60–0.79). A NGAL level > 102.5 ng/ml had 95% sensitivity and 76% specificity, KIM-1 > 7.3 ng/ml had 96% sensitivity and 61% specificity, and NAG > 15.4 U/l had 86% sensitivity and 74% specificity.

Conclusions
In severe septic AKI patients, high levels of NGAL, KIM-1 and NAG are associated with mortality risk scores. Urinary NGAL, KIM-1 and NAG concentrations higher than 102.5 ng/ml, 7.3 ng/ml and 15.4 U/l respectively may be used to predict increased of death risk scores.

keywords:

sepsis, acute kidney injury, neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, N-acetyl--D-glucosaminidase

references:
Koyner JL, Garg AX, Coca SG, et al. Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol 2012; 23: 905-14.
Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005; 294: 813-8.
Wald R, Quinn RR, Luo J, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009; 302: 1179-85.
Haase M, Bellomo R, Devarajan P, et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 2009; 54: 1012-24.
Fan H, Zhao Y, Zhu JH, Song FC. Urine neutrophil gelatinase-associated lipocalin in septic patients with and without acute kidney injury. Ren Fail 2014; 36: 1399-403.
Fadel FI, Abdel Rahman AM, Mohamed MF, et al. Plasma neutrophil gelatinase-associated lipocalin as an early biomarker for prediction of acute kidney injury after cardio-pulmonary bypass in pediatric cardiac surgery. Arch Med Sci 2012; 8: 250-5.
Devarajan P. Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. Biomark Med 2010; 4: 265-80.
Wasilewska A, Taranta-Janusz K, Dębek W, et al. KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 2011; 26: 579-86.
Guo Q, Li HY, Li YM, et al. Compliance with severe sepsis bundles and its effect on patient outcomes of severe community-acquired pneumonia in a limited resources country. Arch Med Sci 2014; 10: 970-8.
Tucker SM, Pierce RJ, Price RG. Characterisation of human N-acetyl-beta-D-glucosaminidase isoenzymes as an indicator of tissue damage in disease. Clin Chim Acta 1980; 102: 29-40.
Fujita H, Narita T, Morii T, et al. Increased urinary excretion of N-acetylglucosaminidase in subjects with impaired glucose tolerance. Ren Fail 2002; 24: 69-75.
Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 2007; 18: 904-12.
Lipińska-Gediga M, Mierzchała-Pasierb M, Durek G, et al. Procalcitonin kinetics – prognostic and diagnostic significance in septic patients. Arch Med Sci 2016; 12: 112-9.
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204-12.
Khanagavi J, Gupta T, Aronow WS, et al. Hyperkalemia among hospitalized patients and association between duration of hyperkalemia and outcomes. Arch Med Sci 2014; 10: 251-7.
Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6: 2-8.
Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 2004; 286: F552-63.
Vaidya VS, Ramirez V, Ichimura T, et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006; 290: F517-29.
Van Timmeren MM, van den Heuvel MC, Bailly V, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 2007; 212: 209-17.
Torregrosa I, Montoliu C, Urios A, et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels 2015; 30: 703-11.
Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci 2008; 101: 159-70.
Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinaseassociated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 2003; 14: 2534-43.
Sinha V, Vence LM, Salahudeen AK. Urinary tubular proteinbased biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary Kim-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med 2013; 61: 564-8.
Park HC, Hwang JH, Kang AY, et al. Urinary N-acetyl- -D glucosaminidase as a surrogate marker for renal function in autosomal dominant polycystic kidney disease: 1 year prospective cohort study. BMC Nephrology 2012; 13: 93.
FEATURED PRODUCTS
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe