%0 Journal Article %J Polish Journal of Pathology %@ 1233-9687 %V 68 %N 2 %D 2017 %F Myciński2017 %T Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits %X The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits). The following study groups were formed: – group A (study group, 9 animals) – in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide; – group B (study group, 9 animals) – in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39; – group K (control, 18 animals) – the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing. The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment. The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better regeneration of the bone tissue. A statistical analysis of the study results revealed the increased resorptive activity of the composite in group B, which may have been due to its higher polylactide content. Simultaneously, we observed that healing of osseous defects filled with ceramic-polylactide composites in 80/20 and 61/39 ratios was comparable. %A Myciński, Paweł %A Zarzecka, Joanna %A Skórska-Stania, Agnieszka %A Jelonek, Agnieszka %A Okoń, Krzysztof %A Wróbel, Maria %P 153-161 %9 journal article %R 10.5114/pjp.2017.69692 %U http://dx.doi.org/10.5114/pjp.2017.69692