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Abst rac t
Psoriasis is a multifactorial disease in which genetic, environmental and epigenetic factors regulating gene expression 
play a key role. In the “genomic era”, genome-wide association studies together with target genotyping platforms 
performed in different ethnic populations have found more than 50 genetic susceptible markers associated with the 
risk of psoriasis which have been identified so far. Up till now, the strongest association with the risk of the disease 
has been proved for HLA-C*06 gene. The majority of other psoriasis risk SNPs are situated near the genes encoding 
molecules involved in adaptive and innate immunity, and skin barrier function. Many contemporary studies indicate 
that the epigenetic changes: histone modification, promoter methylations, long non-coding and micro-RNA hyper-
expression are considered as factors contributing to psoriasis pathogenesis as they regulate abnormal keratinocyte 
differentiation and proliferation, aberrant keratinocytes – inflammatory cells communication, neoangiogenesis and 
chronic inflammation. The circulating miRNAs detected in the blood may become specific markers in the diagnosis, 
prognosis and response to the treatment of the disease. The inhibition of expression in selected miRNAs may be a new 
promising therapy option for patients with psoriasis. 

Key words: psoriasis genetics, genome-wide association studies, epigenetic changes, miRNA.
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Genetics of psoriasis

Psoriasis is a complex disease with the interaction 
between genes, immune system and environmental fac-
tors implicated in onset and progression of the disease. 
The genetic background of psoriasis is evident by the fa-
milial prevalence of the disease. A study done by Farber 
et al. in 1974 shows that psoriasis is more common in 
first- and second-degree relatives of psoriasis patients 
and the concordance risk of psoriasis in monozygotic 
twins is 2–3 times higher compared to dizygotic twins 
(20–73% vs. 12.30%) [1]. The absence of 100% concor-
dance in monozygotic twins and not characterized in-
heritance pattern in families with multiple cases of the 
disease implies multifactorial background of the disease 
considering the interaction of many genes with environ-
mental factors. The enormous development of molecular 
genotyping technologies, in particular genome-wide as-
sociation studies (GWASs) with large case-control data 
sets typed, have revealed that psoriasis is strongly depen-
dent on genomic variations and enabled the description 
of numerous genetic variants that are associated with 

the disease. This in turn was crucial in understanding the 
pathogenetic pathways and molecular mechanisms that 
lead to psoriatic plaques. Without these discoveries, it 
would not be possible to introduce new, highly specific, 
pathogenesis-based treatments for this chronic, debili-
tating disease. Understanding the genetic determinants 
of psoriasis and putting into practice genomics-based 
susceptibility testing hopefully will allow to achieve the 
goal of personalized therapy for the disease.

The history of genetic research of psoriasis 

The history of genetic research on psoriasis dates 
back to the early 1970s, when Russell et al. and White 
et al. independently observed that tissue class I com-
patibility antigens B37 and B57 encoded by the major 
histocompatibility complex (MHC) genes located on the 
sixth chromosome (6p21.33) may be genetic markers of 
psoriasis susceptibility [2, 3]. The results of the research 
conducted in subsequent years among ethnically and ra-
cially different populations showed that this relationship 
is secondary to correlation with the HLA-Cw6 antigen 
and is associated with the phenomenon of non-random 
allele coupling in haplotypes characteristic of the MHC 
region – linkage disequilibrium (i.e., co-inheritance). Most 
reports that appeared in the following years unanimously 
pointed to the HLA-Cw6 antigen as a genetic marker of 
susceptibility to psoriasis [4–6]. 

Linkage studies

The early studies that shed light on the genetics of 
psoriasis were based on linkage studies, a statistical ap-
proach that enables the localization of disease genes to 
well define chromosomal regions. This method, intro-
duced in the 1990s, uses family studies with numerous 
cases of psoriasis and is based on the analysis of mic-
rosatellite markers (short tandem repeats – STR), con-
sisting of repeated, short motifs of 1–6 pairs rules. It is 
assumed that people with familial psoriasis have an in-
creased probability of having the same marker located in 
the vicinity of the psoriasis susceptibility locus, therefore 
the linkage analysis technique was useful in determin-
ing areas of high risk of developing psoriasis, so-called 
risk intervals, and in the subsequent identification 
phase, genes by mapping or sequencing. Nevertheless, 
the feedback results should be interpreted with some 
caution. The restrictions about some of the conducted 
linkage analyses relate to the small number of studied 
groups of sibling pairs, the lack of phenotypic homoge-
neity of psoriasis in patients covered by the analysis or 
the demographic differences of the analyzed populations. 
Despite these limitations, linkage analysis identified fif-
teen different regions (known as psoriasis susceptibility 
1-15 – PSORS1-15) that were supposed to contribute to 
disease susceptibility [7] (Table 1). Of these, only PSORS1 

Table 1. Psoriasis susceptibility loci and candidate genes

PSORS loci Chromosome 
location 

Candidate 
genes

PSORS1 6p21.33 HLA-C

PSORS2 17q25.3 CARD14

PSORS3 4q NFKB1, CFI, KIAA1109, IL2, IL21, 
IL21-AS1, BBS12

PSORS4 1q21 HFE2, FLG, LCE3C, LCE3B, LCE3A, 
LCE3E, LCE2C, LCE1C, LCE1A, 
SMCP, IVL, SPRR2C, SPRR2G, 
LELP1, PRR9, LOR, PGLYRP3, 

PGLYRP4, S100A9

PSORS5 3q21 SLC12A8

PSORS6 19p13 BSG, SMARCA4, OR7A10

PSORS7 1p TNFRSF9, TNFRSF1B, KAZN, 
IGSF21, PAX7, CAPZB, IFNLR1, 

RUNX3, AZIN2, CSMD2, OMA1, 
IL23R, GNG12-AS1, LRRC7, AK5, 

SPATA1, DDAH1, GBP6, KIAA1107, 
CEPT1, DENND2D, PTPN22

PSORS8 16q CYLD, NOD2, FTO, CDH8, SMPD3, 
CDH3, IL34, MLKL, CMIP, CDH13, 

SLC38A8, MBTPS1, WFDC1, 
KIAA0513

PSORS9 4q31-q34 RNF150, DCHS2, MSMO1, SPATA4

PSORS10 18p11.23

PSORS11 5q31.1-q33.1 RAD50, IL13, IL4, STK32A, TNIP1

PSORS12 20q13 SPATA2, RNF114, CYP24A1

PSORS13 6q21 TRAF3IP2

PSORS14 2q14.1 IL36RN

PSORS15 2q36.1 AP1S3
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was robustly validated in all examined cohorts. This 
led researchers to conclude that the interval harbored 
a major genetic determinant for the disease [8]. Weaker 
linkage signals at the PSORS2 and PSORS4 regions were 
observed in more than one dataset, suggesting that 
these were genuine susceptibility loci [9–13]. Linkage to 
the remaining PSORS regions could not be replicated in 
independent studies [7].

PSORS1 – major susceptibility locus in psoriasis

The strongest correlation with psoriasis maps to the 
PSORS1 locus. This region covers about 300 kb (thousands 
of base pairs) from the corneodesmosin (CDSN) gene 
to HLA-C within the MHC on chromosome 6 (Figure 1). 
The SNPs detected at least nine non-HLA-C genes located 
telomerically to HLA-C locus: HCR, CDSN, POU5F1, TCF19, 
HCG27, PSORS1C3, PSORS1C2 (SPR1), PSORS1C1 (SEEK1) 
and STG. Of these, three: HLA-C, CCHCR1 and CDSN were 
highly polymorphic and harbored coding variants that 
were significantly associated with psoriasis [8]. Ultimate-
ly, the results of extensive multicenter studies published 
by Nair et al. indicated HLA-Cw*06 as the main allele of 
psoriasis susceptibility in PSORS1, accounting for about 
30-50% of the genetic involvement to the disease [8]. 
In most studies of the European populations, the HLA-
Cw*06 allele occurs in 55–80% of patients with early 
onset psoriasis, while in a healthy population it usually 
does not exceed 20% increasing the risk of psoriasis 9 to 
23-fold [14]. Moreover HLA-Cw*06 correlates with earlier 
onset, positive family history and more severe disease 
course. It has also been shown that in patients homo-
zygous for the HLA-Cw*06 allele, the risk of developing 

psoriasis is 2.5 times higher compared to heterozygous 
ones [14]. HLA-Cw*06 positive individuals are more likely 
to have a guttate psoriasis preceded by an upper respira-
tory streptococcal infection. 

Several hypotheses explain the relationship between 
HLA-C as an antigen presentation molecule and the mo-
lecular pathogenesis of psoriasis. HLA-C is a very likely 
candidate gene because it encodes MHC class I molecule 
contributing to the immunological response by participat-
ing in the presentation of short peptide non-self antigens 
to ab TCRs CD8+ T cells and in that way activating natu-
ral killer cells. Presuming the ability of HLA-C to present 
antigens and basing on the hypothesis that the lesional 
CD8+ T cells react against keratinocytes, it was assumed 
that HLA Cw*06 has a high ability to bind suggested 
psoriatic autoantigens: a specific melanocyte auto-an-
tigen ADAMTSL5 (peptide from ADAMTS-like protein 5), 
a disintegrin and metalloprotease domain containing 
thrombospondin type 1 motif-like to CD8+ T cells, which 
activates IL-17 production by CD8 T and LL-37 (a 37 ami-
no acid C-terminal cleavage product of the antimicrobial 
peptide, cathelicidin) produced by keratinocytes, activat-
ing both CD8+ cytotoxic T cells and CD4+ T helper cells 
in psoriasis [15–17]. LL37-specific T cells can be found in 
lesional skin or in the blood of patients with psoriasis, 
where they correlate with disease activity. Both autoan-
tigens are recognized by T cells by being presented by 
HLA-Cw*06 [15–18].

The PSORS2 locus

PSORS2 region within 17q25.3 chromosome was 
identified on the basis of linkage studies in two ethni-

Figure 1. Scheme of the gene map of the MHC and the PSORS1 region on chromosome 6p21.3
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cally different multigenerational families (Caucasian and 
Asian) with numerous cases of psoriasis [19]. This area 
includes the CARD family which encompasses scaffold-
ing proteins that activate nuclear factor-kB (NF-kB) that 
is highly expressed in keratinocytes. People with a gain-
of-function mutation in the gene encoding the protein 
CARD14 (caspase recruitment domain-containing protein 
14, also called CARMA2 or BIMP2) have been shown to 
have increased the risk of psoriasis, psoriatic arthritis, 
and familial pityriasis rubra pilaris. The NF-kB signaling 
pathway plays a role in stimulating the inflammatory 
production of interkeukin (IL) 17 and tumor necrosis fac-
tor α (TNF-α) – pro-inflammatory cytokines [20]. What is 
more, GWAS research has uncovered common alleles in 
case-control studies, which shows that CARD14 contains 
both common variants with low-effect and rare but high-
penetration mutations [21].

The PSORS4 locus

The PSORS4 region maps to chromosome 1q21, where 
it spans the Epidermal Differentiation Complex (EDC) 
with multiple genes responsible for epidermal develop-
ment and maturation. EDC genes are activated in the 
final phases of keratinocyte differentiation and include, 
among others: loricrin, involucrin, filaggrin, late cornified 
envelope proteins (LCE) genes. Within the LCE region, 
three gene families are distinguished: LCE1, LCE2 and 
LCE3. De Cid et al. first demonstrated the association 
with psoriasis of the LCE complex containing a reduced 
number of copies of the LCE3C and LCE3B genes, while – 
what is worth emphasizing – the LCE3C/LCE3B deletion 
was not demonstrated in patients with atopic dermati-
tis [22–24]. This observation, together with the results of 
other reports indicates that there is no mutation in the 
filaggrin gene in psoriasis, which indicates that these two 
chronic inflammatory skin diseases are characterized by 
a different defect of the epidermal barrier.

Genetic variants in different psoriasis 
phenotypes

HLA-Cw*06 is currently considered as a genetic vari-
ant affecting the chronic plaque psoriasis phenotype. 
This allele is more common in patients with psoriasis 
beginning at a young age with a positive family history, 
in guttate psoriasis, in more severe forms of the disease 
[6, 14, 25]. In individuals with the guttate form, psoriasis 
is often initiated with preceding streptococcal sore throat 
that leads to believe that in HLA-Cw*06 risk allele indi-
viduals infectious pathogens are probably the initiating 
triggers. Recent studies have shed light on the genetic 
determinants of rare forms of psoriasis – a group of se-
vere skin disorders, with systemic upset characterized by 
eruptions of neutrophil-filled pustules: pustulosis palmo-
plantaris (PPP) and generalized pustular psoriasis (GPP). 

Pustular eruption may be the only manifestation of the 
disease or may occur concurrently with chronic plaque 
psoriasis. Remarkable clinical and histopathological dif-
ferences as well as a distinct response to therapy indi-
cate that plaque and pustular psoriasis may be entities 
with different etiology. Palmoplantar pustulosis shows 
no relationship with any of the three candidate genes at 
PSORS1 locus (HLA-Cw*6, HCR*WWCC, and CDSN*5), and 
some authors suggest it to be a phenotypically (affects 
females in the perimenopausal period as well as ciga-
rette smokers) and genetically distinct disorder [26, 27]. 
In terms of GPP in 2011, two groups of researchers inde-
pendently described a mutation in the IL36RN gene [28, 
29]. IL36RN belongs to the IL-1 cytokine family, involved 
in innate immunological response. IL36RN encodes for an 
interleukin 36 receptor antagonist molecule that inhibits 
IL-36 proinflammatory activity. The mutation of the IL-36 
loss-of-function gene causes an uncontrolled increase in 
the proinflammatory IL-36 signaling pathway, with sub-
sequent activation of IL-8, and IL-6. Biallelic mutations 
in IL36RN gene have been described in 21-41 % of the 
Caucasian and Asian patients with GPP [30]. Two addi-
tional genetic variants have been also described in GPP 
and PPP – CARD14 and APIS3 (encoding a subunit of the 
adaptor protein 1 complex), although latest studies by 
Mossner et al. suggest that AP1S3 and CARD14 variants 
have a much lower impact in GPP than variants in IL36RN 
[31]. Pustular psoriasis often coexists with chronic plaque 
psoriasis, therefore it is assumed that also in this com-
mon form of the disease, the disturbance of the IL-36 
signaling pathway plays a role. Chronic plaque psoriasis 
has been shown to be correlated with over activation of 
IL-36 and IL-36 blockade has a significant anti-inflamma-
tory activity. Thus, the hypothesis that the IL-36 signaling 
pathway may be a therapeutic target not only in pustular 
psoriasis, but also in chronic plaque psoriasis is justified 
[32–34]. 

Genome-wide association studies in psoriasis 

At the beginning of the century, a huge progress in 
genotyping technologies was observed. It led to the in-
troduction of GWAS, where large case-control datasets 
are typed at hundreds of thousands of single nucleotide 
polymorphisms (SNPs). The success of GWAS resulted 
in developing target genotyping platforms, such as Im-
munoChip referring to the SNPs previously associated 
with immune-mediated disorders and the Exome-wide 
chip enabling analyzing genetic markers within coding 
regions. Up till now, genome-wide association studies 
together with target genotyping platforms performed 
in different ethnic populations, have identified ap-
proximately 50 genetic susceptible markers associated 
with the risk of psoriasis at genome-wide significance 
p < 5 × 10– 8 [35–47]. The summary of non-MHC psoria-
sis genetic risk markers identified by GWAS at genome-
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wide significance p < 5 × 10–8 in European populations 
has been presented in Table 2 [48, 49].

The majority of psoriasis risk SNPs determined by 
GWAS technique is situated near the genes encoding 
molecules involved in adaptive immunity, innate immu-
nity and skin barrier function. Up till now, the region in-
volving MHC class I on chromosome 6p21 is the genetic 
locus associated with the greatest risk of psoriasis, and is 
called PSORS1. Among genes identified in the locus, HLA-
C*06 presents the strongest association with the disease, 
that has been proved in different ethnic populations.

HLA-Cw6 encodes a major histocompatibility com-
plex I (MHCI) allele critical for CD8+ T-cells priming and 
subsequent cytolytic targeting of cells [50–55]. 

Outside the MHC region, numerous SNPs within the 
endoplasmic reticulum aminopeptidase 1 (ERAP1) gene 
have been proven to have an effect on genetic predis-
position to psoriasis [56]. ERAP1 encodes the protein in-
volved in the process of N-terminal trimming of antigens 
allowing their presentation in the context of MHC class I 
that results in the activation of CD8+ lymphocytes. The 
association of ERAP1 with the risk of psoriasis has been 
also confirmed in the population of northern Poland in 
the rs26653 marker [57]. These results show the evidence 
of the primary role of the adaptive immune system in the 
pathogenesis of psoriasis.

Numerous SNPs associated with the risk of psoriasis 
identified by GWAS proved the role of the innate immune 
system in the pathogenesis of the disease. In general, 
these can be divided into genetic markers involved in: 
effector T-cell function and differentiation (ETS1, RUNX3, 
TNFRSF9, MBD2, IRF4), type I interferon and cytokine sig-
naling (ELMO1, TYK2, SOCS1, IFIH1/MDA5, RNF114, IRF4, 
RIG1/DDX58, IFNLR1/IL28RA, IFNGR2), and regulation 
of NF-κB associated inflammatory signaling pathways 
(TNFAIP3, TNIP1, TYK2, REL, NFkBIA, CARD14, CARM1, 
UBE2L3, FBXL19). To continue, the discovery of genetic 
factors implicated in psoriasis involved in IL-23/IL-17 axis 
(IL23R, IL12B, IL12RB, IL23A, IL23R, TYK2, STAT3, STAT5A/B, 
SOCS1, ETS1, TRAF3IP2, KLF4, IF3) provided many insights 
into interactions between innate and adaptive immune 
responses in the spectrum of immunological disturbanc-
es of the disease [58].

Independent groups of researchers showed the as-
sociation of late cornified envelope genes involved in the 
skin barrier functioning with psoriasis. Numerous obser-
vations in both European and Chinese populations have 
proven a common 30-kb deletion in LCE3B and LCE3C 
genes (LCE3C_LCE3B-del) to predispose to psoriasis [21, 
47, 59]. The loss of this fragment is considered to be re-
sponsible for the dysfunction of reparative mechanisms 
of the skin barrier after mechanic trauma [60].

Although the GWAS findings provided many insights 
into specific genetic predisposition, immunological mech-
anisms and skin barrier function that may play role in the 
pathogenesis of psoriasis, they still explain less than one Ch
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third of the disease genetic heritability in the European 
populations [21, 61]. This phenomenon is known as miss-
ing heritability [52]. In the context of complex disorders, 
it may be explained by existence of gene-gene, gene-en-
vironmental interactions or regulation of gene expression 
by epigenetic mechanisms [49, 62]. To continue, GWAS 
analyzes the independent effect of each SNP that can be 
insufficient to account for missing heritability. What is 
more, based on the GWAS results, the minority of known 
genetic psoriasis risk loci span a single gene, whereas 
the majority associates with multiple transcripts or non-
coding regions. This results in limitations in explaining 
certain biological pathways as well as determination of 
specific cells mediating pathways involved in the patho-
genesis of psoriasis. Finally, within an increasing role of 
next-generation sequencing (NGS) techniques as well as 
the development of new statistical methods it is likely 
that more genetic signals will be discovered. 

Epigenetic changes in psoriasis 

Epigenome is a set of chemical modifications of DNA 
and histone proteins which cause the changes to the 
chromatin structure and influence the activation of tran-
scription process of certain genes, and then the process 
of translating new mRNA on the polypeptide chain. Epi-
genetic changes do not change the genetic code, i.e. DNA 
sequence, but rather the expression of certain genes.

Epigenetic processes can regulate the gene expres-
sion at three different levels:
1. �The methylation or demethylation of cytosine in gene 

promoter sequences. Methylation/hydroxymethylation 
of a promoter causes the gene to become inactive and 
not susceptible to transcription. In contrast, demethyl-
ation of a promoter causes the gene to be susceptible 
to transcription so that the protein which the gene 
codes can be produced.

2. �The modification of histones chemically (methylation, 
acetylation, phosphorylation, sumoylation, ubiquity-
lation) which leads to changing the structure of cell 
nucleus chromatin. As a result, the density and avail-
ability for enzyme complexes taking part in the tran-
scription process may change. Histone acetylation and 
H3 lysine 4 trimethylation are associated with active 
genes transcription and open chromatin structure, 
while trimethylation of H3K9 and H3K27 are associ-
ated with transcriptional repression and closed chro-
matin structure. 

3. �By the non-coding proteins of RNA particles: long non-
coding RNAs (lnRNA), micro-RNAs (miRNAs), small 
interfering RNAs (siRNAs) and Pivi-interacting RNAs 
(piRNAs). Recent studies have demonstrated that 
these RNAs are capable to regulate gene expression at 
the transcriptional, post transcriptional and epigenetic 
level. For example micro-RNAs which join specifically to 
the complementary mRNA particles, influence its sta-

bility and miRNA/mRNA complex cannot join the ribo-
some, in consequence is degraded in cytoplasm, which 
leads to inhibition of gene expression by blocking the 
process of translation [63–75]. 

Epigenetic changes in psoriasis

Epigenetic modifications are considered essential 
in the pathogenesis of psoriasis as they account for 
keratinocyte differentiation and proliferation, resulting 
in aberrant increases in epidermal thickness, abnormal 
keratinocytes inflammatory cells communication, neoan-
giogenesis and chronic inflammation [63–68].

Epigenetic changes also play a fundamental role in 
the processes of differentiation of the CD 4 (+) T lympho-
cyte subpopulations that are so important for the patho-
genesis of psoriasis [70]. Figure 2 illustrates epigenetic 
changes in the promoter regions of selected genes and in 
histones observed in the time of differentiation of CD4(+) 
T cell subpopulations. 

Histone modification in psoriasis

Zhang et al. are the first authors who have found 
that global histone H4 hypoacetylation was observed 
in PBMCs (peripheral monoclonal blood cells) from pso-
riasis vulgaris patients [72]. There was a negative cor-
relation between the degree of histone H4 acetylation 
and disease activity in patients as measured by PASI. 
Global levels of histone H3 acetylation, H3K4/H3K27 
lysine methylation did not significantly differ between 
psoriatic patients and controls. mRNA levels of P300, 
CBP and SIRT1 were significantly reduced in PBMCs from 
patients with psoriasis vulgaris compared with healthy 
controls, while mRNA expression levels of protein in-
volved in histone modifications: histone deacetylase 1 
(HDAC1), histone-lysine N-methyltransferase (SUV39H1) 
and histone-lLysine N-methyltransferase EZH2 (enhancer 
of zeste homolog 2) were significantly increased in pso-
riatic patients, which allowed the authors to conclude 
that histone modifications are aberrant in the PBMCs of 
psoriasis vulgaris patients.

Ovejero-Benito et al. [71] studied epigenetic changes 
in responders and non-responders to biological drugs 
(ustekinumab, secukinumab, adalimumab, ixekizumab). 
Significant changes in methylated lysine 27 in histone 
27 (H3K27) and methylated lysine in histone 3 (H3K4) 
in patients with psoriatic arthritis were found between 
responders and non-responders. Authors suggest that 
H3K27 and H3K4 methylation may contribute to patients’ 
response to biological treatment in psoriasis [71].

DNA methylation changes observed in psoriatic skin

The methylation of cytosine residues is the most 
frequently observed post-replication change in DNA. 
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It is estimated that in mammals, 60–70% of cytosines 
are constantly methylated. Particularly rich in cytosine 
residues, referred to as CpG sites, are the promoter re-
gions of genes, i.e. their regulatory sites that precede the 
initiation sites of transcription. Specific proteins, tran-
scription factors that regulate the transcriptional process 
are added to the promoter regions. Methylation of cyto-
sine in the gene promoter prevents the incorporation of 
transcription factors and transcriptases and, as a result, 
blocks the process of its expression. Demethylation ac-
tivates the promoter and allows the gene transcription 
process to begin. DNA methylation occurs with the par-
ticipation of specific DNA methyltransferases (DNMTs) 
whereas DNA demethylation is catalyzed by tet methyl-
cytosine dioxygenases 1-3 (TET – ten-eleven transloca-
tion gene protein) enzymes. Cells with a similar function 
show similar gene methylation patterns [63–67, 75–78]. 

Zhang et al. observed that the peripheral blood cells 
of psoriasis patients have an increased expression of DNA 
methyltransferases (DNMTs) as compared to healthy con-
trols [77]. In the skin and epidermis, the hypermethylation 
of the promoter gene involved in cell cycle regulation, 
p16INK4a (cyclin-dependent kinase 4 inhibitor A) was ob-
served and as a result, there has been a reduction in the 
following genes: P53, p14ARF, and ID4 (inhibitor of differ-
entiation 4). The consequence of this is the inhibition of 
cellular differentiation and parakeratosis [77–81]. 

The pioneer study of global epigenetic of psoriasis 
was published in 2012. Authors analyzed the methylation 
status of more than 27,000 CpG sites in skin samples 
from lesional and non-lesional skin of patients with pso-
riasis and skin of healthy controls. 1,100 differentially 
methylated CpG sites were detected between psori-
atic and control skin. Twelve CpG sites mapped to the 
epidermal differentiation complex (S100 Calcium Bind-
ing Proteins: S100A3, S100A5, S100A7, S100A12, sperm 
mitochondria associated cysteine rich protein – SMCP, 
small proline rich proteins: SPRR2A, SPRR2D, SPRR2E, 
late cornified envelope protein 3A – LCE3A). The most 
extreme change was found in cg16139316, which lies 
upstream from S100A9. There was a decrease in meth-
ylation at these sites, and they mapped close to genes 
that are highly upregulated in psoriasis. The investigators 
analyzed 50 of the top differentially methylated sites to 
separate/differentiate skin from patients with psoriasis 
from that of controls. Interestingly, with anti-tumor ne-
crosis factor treatment, these methylation changes in 
patients reverted back to baseline [76]. 

Chandra et al. [75] used the genome-wide DNA meth-
ylation profiling and have found that differentially meth-
ylated genes in psoriatic skin regions were associated 
with psoriasis. Top differentially methylated genes over-
lapped with PSORS regions including S100A9, SELENBP1, 
CARD14, KAZN and PTPN22 showed an inverse correla-

Figure 2. Epigenetic modifications of DNA and histones in the development of different set of CD4 (+) T cells (from 
Potaczek et al. 2017 modified [70])
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tion between methylation and gene expression. The au-
thors made an interesting observation that in psoriatic 
skin with Munro microabscess, there is an increased ex-
pression of differentially methylated genes, responsible 
for the chemotaxis of neutrophils forming abscesses [75]. 

Non-coding RNA and their role in psoriasis

Genome-wide association studies have identified 
many psoriasis-associated genetic loci in the Caucasian 
population [82, 83]. However, most genome-wide asso-
ciation study signals lie within non-coding regions of the 
human genome [63–66, 84, 85]. The thesis is well docu-
mented today that non-protein coding DNA regions plays 
the role in genetic and epigenetic of many diseases and 
included account “missing heritability”.

Two main classes of non-coding RNA, plays the role in 
pathogenesis of psoriasis: long non-coding RNA (lncRNA) 
and micro RNA (miRNAs) [64–66, 68, 85–94].

Long non-coding RNA in psoriasis

Long non-coding RNA (lncRNA), defined as non-pro-
tein coding RNA transcripts longer than 200 nucleotides, 
are acting as key regulators of diverse cellular processes. 
Three different groups of lncRNA can be categorized, 
namely, natural antisense transcripts (NATS), intronic 
RNA (IncRNAs), and long intergenic (intervening) non-
coding RNA (lincRNAs). lncRNA are involved in epigenetic 
silencing, splicing process regulation, translation control, 
regulating the apoptosis and cell cycle control. Moreover, 
the expression levels of various lncRNA are closely relat-
ed to epidermal differentiation and immunoregulation  
[85–93]. There are many examples illustrating that ln-
cRNAs are also involved in regulation of a variety of skin 
pathological conditions including skin cancer, wound 
healing and psoriasis [85–88]. 

Tsoi et al. analyzed the expression of lncRNA in in-
volved and uninvolved psoriatic skin and detected 2942 
previously annotated and 1080 novel lncRNAs, which 
were expected to be skin-specific. Their results indi-
cated that many lncRNAs, in particular those that were 
differentially expressed, were co-expressed with genes 
involved in immune-related functions. Additionally, novel 
lncRNAs were enriched in the epidermal differentiation 
complex. They also identified distinct tissue-specific 
expression patterns and epigenetic profiles for novel ln-
cRNAs. Altogether, these results indicate that great deals 
of lncRNAs are involved in the immune pathogenesis of 
psoriasis [87, 91]. 

Two important lncRNAs are involved in the control of 
epidermal differentiation: ANCR and TINCR. ANCR (Anti-
differentiation non-coding RNA) acts as a negative regu-
lator of epidermal differentiation. Loss of ANCR in pro-
genitor cells rapidly induces the differentiation program; 
therefore, it is needed to suppress premature differen-

tiation in the basal layer of the epidermis. In contrast, 
TINCR (terminal differentiation-induced non-coding RNA) 
is highly expressed in the differentiated epidermal layer 
and promotes keratinocyte differentiation [88]. 

A study of Sonkoly et al. indicated that long non-
coding RNA – PRINS (psoriasis-associated RNA induced 
by stress), is elevated in non-lesional skin areas in pa-
tients with psoriasis while it is decreased in the psoriatic 
plaques. PRINS contributes to psoriasis via the downreg-
ulation of G1P3, a gene coding protein with anti-apoptot-
ic effects in keratinocytes [89]. 

Recently, Qiao et al. [93] have suggested that the oth-
er cytoplasmic lncRNA – Msh homeobox 2 pseudogene 1 
(MSX2P1) was upregulated in psoriatic lesions compared 
with normal healthy skin tissues, human immortalized 
keratinocyte cells and normal human epidermal keratino-
cyte cells. LncRNA MSX2P1 facilitated the progression and 
growth of IL-22-stimulated keratinocytes by serving as an 
endogenous sponge directly binding to miR-6731-5p and 
activating S100A7. Authors speculate that the biological 
network of MSX2P1-miR-6731-5p-S100A7 might be a po-
tential novel therapeutic target for the future treatment 
of psoriasis [93]. 

The role of micro-RNAs in psoriasis

Micro-RNAs (miR) are small biological molecules that 
regulate the expression of over 30% of human genes at 
a post-transcriptional level. These are non-coding RNA 
molecules with a length of 22–25 base pairs, capable of 
negatively modulating gene expression by binding to the 
3’ untranslated region (UTR) of target messenger RNAs 
(mRNAs). The resulting complex undergoes degradation 
in the cytoplasm and, as a result, the translation process 
is blocked and the gene product is not produced in the 
cell. It is estimated that miRNA codes 1–3% of genes in 
the human genome [64–69]. 

The study of the miRNA expression profile was fo-
cused after evidence suggested that epigenetic mech-
anisms may have an influence on DNA outside of pro-
moter and structural DNA genetic regions. About 60% of 
human mRNAs involved in the coding of cell proteins are 
regulated by miRNAs and more than 1800 miRNAs were 
identified, which indicates that miRNAs are capable of 
regulating almost all living processes. In this way, epi-
genetic factors can affect the transcriptional regulation 
of mRNAs involved in cell proliferation, migration, differ-
entiation or inflammation [64–69, 93–95]. 

miRNAs play the role in the processes of apoptosis, 
cell proliferation, morphogenesis and differentiation of 
cells, metabolism regulation, and signal transduction in 
the cell. One type of miRNAs can block the functions of 
many different genes, also one gene can be blocked by 
different types of miRNAs. These molecules act in the in-
terior of the cells in which they are produced, but they 
can also be secreted into body fluids such as plasma, tis-
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sue fluid, milk and urine. They are protected by the frag-
ments of cell membranes (exosomes) or by combination 
with high-density lipoproteins from enzymatic degrada-
tion in the plasma. The miRNAs contained in exosomes 
secreted by the cell can be used in a cell-to-cell communi-
cation. They can penetrate into the interior of neighbor-
ing cells and modify the expression of genes in them. It 
has been shown that the miRNAs contained in milk may 
modulate the functions of the newborn’s immune sys-
tem, favoring the formation of regulatory lymphocytes 
Treg [68, 69, 85, 93–95]. 

Most of the studies of miRNAs in association with 
psoriasis address the plaque-type variant and so far, 
more than 250 miRNAs are aberrantly expressed in pso-
riatic skin. Majority of miRNAs are upregulated in the 
psoriatic skin, only a small number of them are down-
regulated [69, 96–105]. 

Some miRNAs deregulated in psoriatic skin and their 
function are listed in Table 3 [106–138].

Through the regulation of their multiple target genes, 
miRNAs in psoriasis regulate the development of inflam-
matory cell subsets and have a significant impact on the 
magnitude of inflammatory responses. miRNAs can regu-
late differentiation, proliferation and cytokine response 
of keratinocytes, activation and survival of T cells and 
the crosstalk between immunocytes and keratinocytes 
through the regulation of chemokine and cytokine pro-
duction [63–69, 93–96].

Figure 3 illustrates the role of selected miRNAs in the 
pathogenesis of psoriasis. 

The most upregulated miRNAs in the psoriatic skin 
are skin-specific (miR)-203, hematopoietic-specific 
miRNAs: miR-142-3p and miR-223/223, angiogenic miRNAs: 
miR-21, miR-378, miR-100, miR-31, miR-21, miR-210, and pro-
inflammatory miR-155 [64, 69, 93–101, 107]. 

miR-203 is a skin-specific miRNA, which is exclu-
sively overexpressed in psoriatic keratinocytes and is in-
volved in angiogenesis and keratinocyte differentiation. 
Their target genes are: SOCS-3, SOCS-6, p63, TNF-α, IL-8 
and IL-24. SOCS3 (suppressor of cytokine signalling3) is 
a negative regulator of STAT3 pathways. Increased ex-
pression of miR203 leads to decreased SOCS3 levels in 
psoriatic skin, which may consequently result in sus-
tained activation of the STAT3 signaling pathways. STAT3-
activated transcription of EGFR, IL-6, TGF-β genes, blocks 
apoptosis, favors cell proliferation and survival and pro-
mote angiogenesis [69]. 

Additionally, in normal human keratinocytes, the in-
creased miR-203 is reported to be induced by combina-
tions of proinflammatory cytokines, such as IL-1α, IL-17A, 
IL-6, and TNF-α, which coupled with a critical role of miR-
203 in epithelial differentiation, suggesting that miR-203 
is crucially implicated in the hyperproliferative phenotype 
of psoriatic lesions [69, 110, 111, 125, 138, 139].

miR-155 plays an important role in many processes 
including cell growth and proliferation. By decreasing 

Table 3. Changes in the microRNA expression observed in psoriatic skin and peripheral blood cells

miRNA Target genes Tissue/cell Process References

↑ mR-31 Ppp6c, FIH-1, STK40 Skin/PBMC G1/S phase regulator, regulation 
NF-κB activity, ↑ Kc differentiation 
and proliferation, T cell activation, 

angiogenesis, and leukocyte migration 
to the skin ↑ inflammation

69, 102, 103, 105, 118, 
119, 136

↑ miR-203 SOCS-3, SOCS-6, p63, 
TNFα, IL8, IL24

Skin STAT3 signaling, ↑ Kc differentiation 
and proliferation, ↑ inflammation

69, 110, 111, 125, 137, 138

↓ miR-99a IGF-1R Skin ↑ Kc differentiation and ↓ proliferation 104, 119, 125

↓ miR125b FGFR-2, TNFα, P63, 
NOTCH1

Skin ↑ Kc differentiation and ↓ proliferation 69, 103, 120, 128

↑ miR-21 TIMP3, TM1, ODCD4, PTEN, 
IL12A, RECK, RTN4, NF1B

Skin, PBMC ↑ Kc differentiation and proliferation,  
T cell activation, ↑ TNF-α, ↑ inflammation

69, 103–105, 118, 119, 
122, 138

↑ miR-135b COL4A3 Skin Kc differentiation and proliferation 1103, 119, 126 

↑ miR146a IRAK, TRAF6, EGFR Skin/PBMC Hematopoiesis, inflammation, 
keratinocyte proliferation 

69, 103–105, 119, 136

↑ miR-155 ↓ CTLA-4 Skin Inflammation, ↓ Treg function 104, 114, 119

↑miR-210 ↓ FOXP3 PBMCs ↓ Treg activation, ↑ differentiation of Th1 
and Th17, ↓ Th2 differentiation

115 

↑ miR-184 AGO2 Skin Regulation of posttranscriptional 
modification of mRNA and miRNA 
biogenesis via the miRISC complex

124 

↑ miR221/222 ↓ TIMP3, c-KIT, P53 Skin Kc and immune cells proliferation 118, 136

↑ miR-424 MEK1, cyclin E1 Skin Kc differentiation and proliferation 104, 125
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the expression of IL-4, a cytokine that characterizes the 
T helper (Th)2 phenotype, miR-155 promotes expression 
of interferon g (IFN-g) and differentiation of Th0 cells to-
wards a Th1 phenotype. Their target genes are SOCS1 
(suppressor of cytokine signaling 1) and CTLA4 (cytotoxic 
T-lymphocyte associated protein 4). SOCS1 is a negative 
regulator of JAK/STAT and NFKB pathways playing the 
role in regulation of Treg and Th1 and Th17 differentia-
tion, cytokines and TNF-α production. CTLA4 is the pro-
tein of Treg cells which inhibit T effectors cells. A study 
done by Xu et al. indicated that MiR-155 promotes ke-
ratinocyte proliferation and inhibits apoptosis by PTEN 
11 signaling pathway in psoriasis [113]. In keratinocytes, 
miR-155 is induced by TNF-α and IFN-γ. As a proinflam-
matory miRNA, via positive feedback, miR-155 increases 
the production of TNF-α [69, 99, 104, 114, 119]. 

miR-210 induces Th17 and Th1 differentiation and 
inhibits Th2 differentiation through STAT6 and LYN re-
pression [106]. FOXP3 playing the major role in Treg dif-
ferentiation is a miR-210 target gene. miR-155 impairs the 
immunosuppressive functions of Tregs in CD4(+) from 
healthy controls, while inhibition of miR-210 reverses 
the immune dysfunction in T cells from psoriasis patients 
[115]. Overexpression of miR-210 leads to an increased 
proinflammatory cytokine (IFN-γ and IL-17) expression 
and decreased regulatory cytokine (IL-10 and TGF-β) ex-
pression in CD4+ T cells [115]. 

miR-31 enhances NF-κB signaling; modulates inflam-
matory cytokine and chemokine production in keratino-

cytes and regulates keratinocyte proliferation [102, 103]. 
The target of miR-31 is the gene of protein phosphata- 
se 6 (ppp6c), acting as a negative regulator that restricts 
the G1 to S phase progression. The rise of miR31 directly 
inhibits ppp6c expression, thus enhancing keratinocyte 
proliferation. Moreover, miR-31 regulates the production 
of inflammatory mediators (TNF-α, IL-1, IL-6, IL-17 and  
IL-22) and stimulates leukocyte chemotaxis, thus inhibit-
ing miR-31, which may be a potential therapeutic option 
in psoriasis [69, 102, 103, 105, 118, 119, 136].

miR-21 is overexpressed in psoriatic skin lesions, pso-
riatic epidermal cells, dermal T cells and in blood samples, 
and plays a major role in psoriasis and correlates with an 
elevated TNF-α mRNA expression. miR-21 is involved in 
TGF-β1 signaling pathway regulation and downregulates 
metalloproteinase inhibitor-3 (TIMP-3) in keratinocytes. 
TIMP-3 inhibits the TNF-converting enzyme, a disinte-
grin and metalloprotease 17 (ADAM17), which converts 
the inactive form of TNF into its soluble, activated TNF 
configuration [69, 103–105, 118, 119, 122, 138].

miR-99a as well as mi-125b are specifically down-
regulated in psoriasis. Both are presented in dermal 
inflammatory infiltrates of psoriatic skin; they are also 
expressed in T helper type-17 (Th17) cells [127]. 

miR-99 is downregulated particularly in keratino-
cytes and the upper layer of the epidermis [104, 119, 125].  
It targets IGF-1R, which enhances the proliferation of 
basal layer cells in patients with psoriasis, stimulating 
hyperplasia and hyperkeratosis [99]. 

Figure 3. The role of selected mi-RNAs in regulation CD4(+) Th cells differentiation and cytokines synthesis
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miR-125b targets are FGFR-2, TNF-α, P63 and NOTCH1 
genes. The diminished expression of such miRNAs conse-
quently leads to an increased keratinocyte proliferation 
rate, together with altered differentiation and an upregu-
lated inflammatory cascade by de-repressed mRNA for 
TNF-α (Table 3).

Serum miRNA level as a biomarker of disease 
prognosis and treatment

Serum levels of miR-33, miR-126, miR-223, and miR-
143, among others, have been proposed as potential bio-
markers of disease [114, 127]. miR-223 and miR-143 are 
found to be significantly correlated with the PASI (Psoria-
sis Area and Severity Index), suggesting their usefulness 
as biomarkers for disease severity in psoriasis [127]. 

Treatment of patients with methotrexate signifi-
cantly decrease miR-223, and miR-143 in patients’ blood 
[127]. In another study, anti-TNF therapy significantly 
downregulates expression, in the blood of psoriatic pa-
tients, of miR0106, miR-26b, miR-142-3p, miR-223, and  
miR-126 [137]. 

These observations suggest that some serum  
miRNAs may serve as potential biomarkers for disease 
severity and therapy response in psoriasis. Some new 
data indicate usefulness of anti-miRNAs strategy in 
therapy of psoriasis.

miRNAs as the new therapeutic option  
in psoriasis

Many studies showed that modulating specific  
miRNAs had a therapeutic effect on keratinocytes [139]. Xu 
et al. reported that overexpression of miR-125b inhibited 
keratinocyte proliferation and promoted differentiation 
via inhibiting its direct target, FGFR2, in primary human 
keratinocytes [104]. Guinea-Viniegra et al., in an animal 
model has shown that anti-miR-21 has been to be effec-
tive in treating psoriasis. By contrast, it was identified 
that TGF-β1 could upregulate miR-31, while inhibition of 
miR-31 resulted in suppression of IL-1β and IL-8 in human 
primary keratinocytes [103]. Overexpression of miR-210 
led to an increased proinflammatory cytokine (IFN-γ and 
IL-17) expression and decreased regulatory cytokine (IL-10 
and TGF-β) expression in CD4+ T cells [115]. These experi-
mental data provide important clues to help elucidate the 
pathogenesis of psoriasis and implicate that promotion of 
miR-125b while inhibition of miR-31 or miR-210 may also 
be potential therapeutic options to psoriasis [139, 140].

Genetic polymorphisms that affect miRNA 
activity might be relevant in the pathogenesis 
of psoriasis

Pivarcsi et al. in an excellent review summarize new 
information about the genetic polymorphisms which af-

fect miRNA activity and have functional consequences to 
psoriasis pathogenesis. Authors suggested that altera-
tions in miRNA-mediated gene regulation can contribute 
to psoriasis in the following ways:
1. �Single nucleotide polymorphisms (SNPs) in psoriasis-

associated miRNA genes can affect the activity of 
a miRNA, altering the set of targets regulated by it, or, 
interfering with its biogenesis.

2. �Single nucleotide polymorphisms in the 3′UTR of pso-
riasis-associated miRNAs can alter recognition by miR-
NAs (destruction or creation of miRNA binding sites).

3. �RNA-editing resulting in miRNA isoforms (isomiRs) 
with an altered set of targets regulated by it.

4. �Up- or downregulation of miRNAs due to epigenetic, 
transcriptional regulation or regulation of miRNA pro-
cessing/stability may lead to disturbed gene regula-
tion in psoriasis.

5. �MiRNAs may serve as a new ‘language’ of intercellular 
communication in psoriasis [96].

SNPs in the primary transcripts of miRNAs – often 
long, up to 10 kb – are more likely to occur [117, 130]. 
Such miR-SNPs have been described to alter the efficien-
cy by which the primary miRNA transcript is processed 
and thereby affects the level of the mature, biologically 
active miRNA. 

IsomiRs, natural variations in miRNA ends due to RNA 
editing, is observed and recent sequencing studies re-
vealed that a number of miRNAs, which are deregulated 
in psoriasis, such as miR-203, miR-21, miR-31, miR-142, 
miR-223 and miR-146 express also an altered variant in 
psoriasis as compared with healthy skin [131].

Many of the already identified SNPs in 3′UTRs of 
genes associated with psoriasis in GWAS, such as  
HLA-C, IL-23A, LCE3D, TRAF3IP2, SOCS1 and others, po-
tentially affect miRNA targeting by destroying, creating 
or altering miRNA binding to these genes. 

To date, only one SNP within a miRNA binding site 
has been linked to psoriasis: a polymorphism abolish-
ing a miR-492 binding site in the basigin gene has been 
shown to confer a psoriasis risk [135].

In conclusion, altered miRNA expression profiles are 
displayed in psoriasis. Although the exact roles of miRNAs 
in psoriasis have not been fully elucidated, a new layer of 
regulatory mechanisms mediated by miRNAs is revealed 
in the pathogenesis of psoriasis. miRNAs can regulate dif-
ferentiation, proliferation and cytokine response of kera-
tinocytes, activation and survival of T cells and the cross-
talk between immunocytes and keratinocytes through 
the regulation of chemokine and cytokine production. 
Genetic polymorphisms in miRNAs or their target genes, 
affect miRNA activity and have functional consequences to 
psoriasis pathogenesis. Circulating miRNAs detected in the 
blood may become disease markers of diagnosis, progno-
sis and treatment of disease. The inhibition of expression 
by some miRNAs may be a new promising therapy option 
in psoriasis.
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Conclusions

A huge progress in genotyping technologies in the 
“genomic era” confirms the polygenic character of pso-
riasis. More than 50 genetic susceptible markers are as-
sociated with the risk of psoriasis. The strongest asso-
ciation of disease with HLA-C*06 locus has been proved 
in different populations. The majority of psoriasis risk 
SNPs are situated near the genes encoding molecules 
involved in adaptive immunity, innate immunity and skin 
barrier function. Many contemporary studies indicate 
that epigenetic changes: histone modification, promoter 
methylations, long non-coding and micro-RNA hyperex-
pression are considered to be important in the pathogen-
esis of psoriasis as they regulate abnormal keratinocyte 
differentiation and proliferation, aberrant keratinocytes 
inflammatory cells communication, neoangiogenesis and 
chronic inflammation.
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