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A b s t r a c t

Innate lymphoid cells (ILCs) are a recently described group of immune cells 
that can regulate homeostasis and protect mammalian organisms, including 
humans, from infections and diseases. Considering this, ILC research is still 
ongoing to better understand the  biology of  these cells and their roles in 
the human body. ILCs are a multifunctional group of immune cells, making it 
important for the medical community to be familiar with the latest research 
about the  ILC families and their functions in selected disease states, such 
as cancer formation, metabolic disorders and inflammation. By discovering 
the  roles of  ILC populations and their participation in many disorders, we 
can improve disease diagnostics and patient healthcare. 
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Families of innate lymphoid cells

Innate lymphoid cells (ILCs) were recently described as an  element 
of natural immunity that can take part in maintaining homeostasis in 
organisms and participate in infections and infectious diseases [1–24]. 
Innate lymphoid cells can appear in digestive, respiratory and urogeni-
tal systems, as well as in skin, adipose tissue, blood and many internal 
organs [24–27]. Adamiak et al. [28] characterized the ILC families as: NK 
(natural killer) cells producing mainly interferon gamma (IFN-γ), lymphoid 
tissue inducer (LTi) cells, ILC22 cells with similar features as NK and LTi 
cells, ILC17 cells producing interleukin 17 (IL-17), ILC2 cells which are nat-
ural T helper 2 (nTH2) cells, nuocytes, innate helper type 2 (IH2) cells and 
MPP type 2 cells (multifocal progenitor type 2). Another known and wide-
ly used classification of ILCs is based on their origin [29] and their ability 
to produce cytokines and key transcription regulators  [30]. This classi-
fication, also presented in Table I, distinguishes three groups of  cells.  
Group 1 (ILC-1) comprises IL-12, IL-15 and IL-18-responsive cells, that can 
activate transcription factor T-bet and can secrete IFN-γ or tumor ne-
crosis factor (TNF) [23, 31]. Group 2 (ILC-2) is formed by IL-25, IL-33 and 
thymic stromal lymphopoietin (TSLP)-sensitive cells, which can activate  
the GATA-3 transcription factor (trans-acting-cell-specific transcription 
factor), and can produce IL-5, IL-13, IL-4 and amphire gulin (Areg) – a pro-
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tein which belongs to the epidermal growth fac-
tors  [23]. Group 3 (ILC-3) is formed by IL-1β and 
IL-23-responsive cells, which activate the  RORγt 
transcription factor and secrete IL-17a, IL-22,  
granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) and IFN-γ [31]. According to available 
data, there are few methods for determination 
ILC cells, partly because of  technical limitations, 
such as flow cytometry [32], mass cytometry [33] 
and confocal microscopy  [34]. Unfortunately, 
most of  the  authors used their own strategies 
for gating ILCs, depending on the  tissue being 
examined, or experimental model (mouse/hu-
man), which means they used a  specific pan-
el of  antibodies for determination of  each or-
gan-specific group of  ILC. For example, the  Bal  
et al.  [35] gating strategy by flow cytometry de-
fined ILCs as negative for lineage markers (Lin–: 
CD1a– CD3– CD14– CD16– CD19– CD34– CD94– CD123–

BDCA2– FcεR1α– TCRαβ– TCRγδ–) and CD45+ CD127+ 
CD161+. Silver et al. [36] identified ILCs in the pe-
ripheral blood with the gating strategy as CD45+ 
Viable CD3– CD19– Lin– IL−7Rα+ CD56–. The  most 
notable and quotable article describing the pop-
ulations of  ILCs and their quantities in various 
human tissues was published in 2017, by Simoni  
et al. [33]. They profile human ILCs using one meth-
od, mass cytometry, and using one gating strategy 
for each ILC group, across tissues. This data give 
valuable and limited information about differenc-
es in the number of ILC cells, depending on tissues 
and normal/abnormal conditions. Human tissues 
can be divided into two categories based on their 
overall ILC subset composition. Under non-patho-
logical conditions, lung and non-mucosal tissues 
such as peripheral blood, cord blood, bone marrow 
and spleen displayed low frequency of  ILC-2 and 
ILC-3 cells (less than 5% of ILC), this questioning 
the importance of these cells in tissue homeosta-
sis and immune surveillance in comparison to NK 
cells (more than 95%). In these tissues, NKp44+ 
ILC-3 cells represented less than 0.5% of all ILCs. 
This observation does not undermine the  role 
of  these cells in infections and pathologies such 
as lung inflammation, where it is clear that rare 

cells can have profound effects  [33]. Important-
ly, the expression of various markers on ILCs can 
be modulated in response to cytokine exposure 
(e.g. CD127, CD94, CRTH2), so the gating strategy 
should be adjusted depending on the tissue and/
or inflammatory conditions.

By characterizing ILC cells within these three 
groups (Table I), it should be noted that the ILC-1 
group is composed of NK and ILC1 cells, which are 
mainly involved in the immunity against intracel-
lular bacteria, viruses and tumor cells [37–40]. NK 
cells exhibit cytotoxic capabilities similar to CD8+ 
T cells, [41] whereas ILC1 cells, by restricted cyto-
toxicity, are more closely related to Th1 (T helper) 
cells, which can activate mononuclear (MN) and 
polymorphonuclear (PMN) cells by increasing their 
capacities for cytotoxicity, phagocytosis, and neu-
trophil extracellular trap (NET) formation [38, 39, 
42]. Group 1 ILCs include NK cells with phenotype 
CD3–CD94+CD56+ cells  [43] and ILC1 cells which 
are Lin–CD127+c-kit–CRTH2– [44]. Simoni et al. [33] 
described the ILC-1 group of NK and ILC1 cells, by 
αCD14, αCD3, αCD19, αCD56, αCD103. NK cells, 
as well as ILC1, after IL-12, IL-15 or IL-18 stimu-
lation, can increase secretion of  TNF – which is 
cytotoxic to multiple tumor cell lines and bacteria- 
and virus-infected cells, but also increases synthe-
sis of  IFN-γ – which activates MN cells, including 
macrophages and also NK cells [37–40]. The rap-
id induction of IFN-γ by innate cytokines, such as  
IL-12 and IL-18, is critical for immunity against in-
fectious pathogens. The combination of IL-12 and 
IL-18 induces IFN-γ expression not only in NK cells 
but also in B, T and dendritic cells (DCs) [45]. Wang 
et al. [46] found that a lymphocyte subpopulation 
of  NK-like B cells existed in spleen and mesen-
teric lymph nodes, had unique features that dif-
fered from T and B cells, and can produce IL-12 
and IL-18 at an  early phase of  infection. These 
NK-like B cells played a critical role in eradication 
of  microbial infection via secretion of  IL-12 and  
IL-18 [46]. Simoni et al. [33] was not able to detect 
ILC1 cells in any of the tissues assessed, but they 
identified intra-epithelial-ILC1-like cells, that do 
not express CD127, but are capable of producing 

Table I. Scheme of innate lymphoid cell division into three groups taking into account the production of cytokines 
and their potential effects [23, 102]

Name Stimulation Secretion Function

Group 1 (ilc-1)

NK IL-12, IL-15, IL-18 IFN-γ, TNF-α, perforins, granzymes Antiviral, antitumor

ILC1 IL-12, IL-15, IL-18 IFN-γ, TNF-α Antibacterial

Group 2 (ilc-2) IL-25, IL-33, TSLP
IL-5, IL-4, IL-6, IL-9, IL-13

amphiregulin
Antiparasitic, antiallergic,  
cell metabolism regulators

Group 3 (ilc-3) IL-1β, IL-23 IL-17a, IL-22, GM-CSF, IFN-γ
Antibacterial, antifungal, lymphoid 

tissue development regulators
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cytotoxic granules. These cells represent a broad-
er category of  NK cells in mucosal and non-mu-
cosal pathological tissues [33]. It is plausible that 
contamination with T cells, DCs, ILC3 cells, HSC 
and NK cells might have resulted in an inaccurate 
definition of  ILC1 cells in their previous studies. 
Compared to NK cells from the same tissue, these 
intra-epithelial-ILC1-like cells expressed CD103, 
the  transcription factor T-bet, as well as surface 
NK cell markers CD56, NKp46, CD94, 2B4, CD161, 
CD160, CD122, CD69 and CD49a, but did not ex-
press CD16 or CD127. According to Simoni et al., 
these intraepithelial-ILC1-like cells were found in 
non-pathological tissues only in tonsils (5%) and 
colon tissue (25%) [33].

ILC-2 cells exhibit a protective effect of innate 
immune response against parasites, but they can 
also control cell metabolism, and participate in 
allergic reactions and wound healing  [47–60]. In 
mice, ILC-2 cells are typically identified by flow 
cytometry and the  expression of  CD25, KLRG1, 
ICOS, or ST2 (subunits of the IL-33 receptor com-
plex), but in humans by CD161, ST2, CRTH2 ex-
pression  [49], or by Lin–CD127+c-kit+CRTH2+NCR– 
phenotype [44]. For ILC subsets, Simoni et al. [33] 
reported that samples were depleted of contami-
nating cells by using αCD3, αCD20, αCD8, αCD4, 
αCD34, αCD16 and anti-Mouse IgG microbeads 
(Miltenyi). Then, cells were stained with an anti-
body cocktail containing αCRTH2-FITC, αCD127-bi-
otinylate and αNKp44-APC. After washing, cells 
were stained with αCD94-PercP-Cy5.5, αc-KIT-
BV421, Streptavidin PE-Cy7, and lineage mark-
ers αCD14-PE, αCD5-PE, αCD11c-PE, αCD19-PE,  
αFcER1α-PE, αCD123-PE  [33]. Cytokines such 
as IL-25, IL-33 and thymic stromal lymphopoi-
etin (TSLP) stimulate ILC-2 to secrete IL-5 and  
IL-13 [47–52, 61], although some of them can also 
produce IL-4, IL-6, IL-9 and amphiregulin  [53–55, 
62–64]. By using mass cytometry, Simoni et al. 
found that ILC-2 cells produced IL-4, IL-5, IL-9, 
IL-13, GM-CSF, IL-6 and IL-8 in response to IL-18 
stimulation  [33]. The  key transcription factor for 
ILC-2 cells and for Th2 lymphocytes is GATA-3 [53, 
65]. The ILC-2 cells appear in the spleen (1%), lung 
(2%), colon (3%), adenoid (7%), tonsil (13%) and 
mucous membranes of the nasal cavity, intestines, 
as well as skin (40%), and are thus involved in 
chronic allergic skin disorders [33, 57, 66, 67] and 
paranasal sinuses [49, 51, 59, 60]. In human skin, 
ILC-2 cells represented the main population of ILCs 
(40%) and the frequency of ILC-2 cells is higher in 
cord blood (2.7% cells) as compared to adult blood 
(0.63% cells) [33]. Their study demonstrates that 
ILC-2 cells in cord blood are functionally similar to 
ILC-2 cells derived from adult blood after stimula-
tion with IL-33. In pathological tissues, ILC-2 and 
ILC-3 cells are recruited in tissues, e.g. in colorec-

tal tumors and lung tumors, but more than 95% 
of  ILCs infiltrating these inflamed tissues were 
composed of NK and ILC1-like cells [33].

The third group from the  ILC family is a  very 
heterogeneous group of  ILC-3 cells that contains 
LTi cells with their expression of CCR6+, cells with 
the  expression of  NKp46+, and double negative 
(DN) NKp46–/CCR6– cells [68, 69]. All cells of this 
group participate in immunological resistance 
against bacterial and fungal infections and par-
ticipate in the  development and repair of  lym-
phoid tissue [68–77]. The flow cytometry analyses 
of the ILC-3 group include Lin-CD127+c-kit+CRTH2–

NKp46+/NKp44+ marker expression  [44]. Hazen-
berg et al.  [32] demonstrated that a clear defini-
tion of ILC-2 and ILC-3 populations in humans by 
multi-color flow cytometry requires at least eight 
fluorescence channels. Consequently, technical 
limitations of  flow cytometry devices such as 
spectral overlap hamper a  further in-depth char-
acterization of  these cells. Activated ILC-3 cells 
can synthesize IL-17A, IL-22, TNF, GM-CSF and 
IFNγ [68–72, 78–80]. By using mass cytometry, Si-
moni et al. [33] found that ILC-3 cells can also pro-
duce IL-8 in response to stimulation with IL-18, as 
well as in combination with IL-23. They did not de-
tect production of IL-22 in response to IL-18 stimu-
lation, but they observed IFN secretion in the pres-
ence of IL-18 and IL-23. This results confirms that 
ILC-3 cells can be plastic in terms of cytokine pro-
duction in vitro [33]. ILC-3 also features the CCR6+ 
cell population – which includes the CD4+ T cells 
and CD4– T cells and the CCR6– cell population – 
which expresses NKp46 in mice, and NKp44 in hu-
mans [13]. The frequency of NKp44–-ILC3 cells is 
higher in human cord blood (3.09% cells) as com-
pared to adult blood (1.05% cells)  [33] and they 
also occur in blood marrow (2%), spleen (3%), skin 
(18%), lung (2%), tonsil (30%), adenoid (17%) 
and colon (15%)  [33], but NKp44+-ILC-3 cells are 
present mostly in mucosal tissues, such as tonsil 
(18%), adenoid (49%), and colon (23%) [33].

Innate lymphoid cells and cancer formation

Interactions between cells of the immune sys-
tem (IS), including ILCs, and tumor-developing cells 
with the cells that make the tumor microenviron-
ment, play a key role in cancer formation and me-
tastasis. The connection between tumor cells and 
IS cells may occur via cytokines, adhesion mole-
cules, which may be secreted either by the host 
cells or by the cells of the developing tumor, or by 
means of the so-called microbubbles and metallo-
proteinases that can help spread the cancer [81]. 
The first response to tumor formation is the mobi-
lization of IS cells, which activates cytotoxic mecha-
nisms via the  production of  cytokines (including 
antitumor ones) to induce apoptosis, resulting in 
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the death of cancer cells [82]. When proliferating 
cancer cells gain an  edge over immune system 
cells, cancer cells take over the control of all micro-
environment cells and begin to produce pro-tumor 
growth factors  [81–83]. Among tumor-forming 
microenvironment cells we can distinguished  
T lymphocytes, including Th1, Th2, Treg and Th17,  
B lymphocytes, NK cells, natural killer T (NKT) cells, 
DCs, macrophages (M1 and M2), and myeloid de-
rived suppressor cells (MDSC), as well as the fam-
ilies of  ILCs – groups 1, 2 and 3  [84, 85]. Innate 
lymphoid cells, which are a  source of  cytokines, 
can be involved in the progression of early stages 
of the disease as well as tissue repair during dam-
age. Therefore, ILC families play an important role 
in immune activation and the restoration of tissue 
continuity  [86]. This particular ability of  ILC cells 
suggests that they may be involved in the forma-
tion and development of  tumors and may influ-
ence the microenvironment around developing tu-
mor cells. In order to initiate an immune response 
in a damaged, but non-infected tissue, a number 
of  elements need to cooperate, including dam-
age-associated molecular pattern (DAMP), DCs 
and macrophages, as well as epithelial cells with 
active inflammasomes. Inflammasomes are intra-
cellular proteinaceous complexes, whose function 
is to activate a  proinflammatory cascade that 
leads to pro-caspase-1 synthesis, and activate 
the family of ILC cells, by IL-18 (ILC-1), IL-33 (ILC-2),  
and by IL-1β (ILC-3) [87]. High activity of ILC cells 
can also induce tumor growth [88]. 

ILC-1 cells have the  ability to reduce tumor 
development by cytotoxic activity and secretion 
of  IL-2, IL-12, IL-18 and IL-21  [89]. In contrast, 
during tumor development, NK cells belonging 
to the ILC-1 group can lose the expression of re-
ceptors responsible for antitumor activity, such 
as CD16, CD69, and CD161, and enhance the ex-
pression of receptors, e.g. CD158, which can inhibit 
antitumor receptors  [89]. This condition leads to 
the  imbalance of  homeostasis and induces im-
munosuppression, which is also accompanied by 
a decreased number of NK cells in the blood and, 
as a result, further development of the cancer [89]. 
However, DCs present in the tumor microenviron-
ment affect NK cells resulting in positive feedback, 
as DCs specializing in antigen presentation and 
activation of  the  immune response can support 
cytokine production by NK cells and enhance their 
cytotoxicity to tumor cells. Also, NK cells “help” in 
the activation of DCs by increasing their ability to 
produce pro-inflammatory cytokines and to stim-
ulate lymphocyte T-helper (Th1) and T-cytotoxic 
(Tc) cells against the tumor cells [31]. Barbarin et 
al. [90] provide new insights into the potential role 
of innate-CD8+ T cells (NK-like CD8+ cells) in phys-
iopathological cancer progression. Based on data 

obtained in chronic myeloid leukemia, a  myelo-
proliferative syndrome controlled by the immune 
system, and in solid tumors, they observe both 
the possible contribution of innate-CD8+ T cells to  
cancer disease control and their susceptibility  
to tumor immune subversion. During tumor pro-
gression, innate-CD8+ T lymphocytes are controlled 
by “immune checkpoints”  [90]. It has also been 
shown that NK cells activated by DCs are up to 
100 times more capable of producing the cytokine  
IL-12p70, which is resistant to inhibitory agents 
and can induce a  Th1 and Tc cell response  [31]. 
These data have also been confirmed in clinical 
trials demonstrating the  high efficacy of  com-
bination therapy with NK and DCs in skin mela-
noma [31]. Furthermore, it has been shown that 
TNF-α and IFN-γ secreted by NK cells can activate 
Tc and NK cells [91] and inhibit tumor cell prolif-
eration and angiogenesis  [92–94]. However, it 
should be noted that IFN-γ can also have adverse 
effects, because IFN-γ released by ILC-1 cells at 
the early stage of the immune response may lead 
to tumor progression  [95]. It has been reported 
that the presence of IFN-γ adversely affects the in 
vitro culture of human melanoma cells, resulting in 
an aggressive phenotype and tumor growth [96]. 
Carrega et al.  [43] describe the difference of NK 
cell distribution in cancer tissues. Neoplastic and 
corresponding healthy tissues from an array of hu-
man organs such as colorectal, lung, stomach, 
breast, adrenal gland and kidney were compara-
tively analyzed for the presence of NK cells. Sta-
tistically significant differences were detectable 
only in the breast and lung cancer group, where 
cancer tissues were enriched in CD56brightperforin-
low noncytotoxic NK cells, compared to the healthy 
tissues sample [43]. Data presented by Simoni et 
al.  [33] showed that the frequency of NK cells is 
higher in human colorectal tumor (73% of  cells) 
as compared to non-pathological colon tissues 
(34% of cells), but there were no significant differ-
ences in the frequency of intra-epithelial-ILC1-like 
cells [33]. In lung cancer diseases, they noted that 
the number of NK cells is lower in human lung tu-
mor (80% cells) as compared to non-pathological 
lung tissues (95% cells), but there was a  higher 
number of intra-epithelial-ILC1-like cells in human 
lung tumor (8% cells) than in non-pathological 
lung tissues (1% cells) [33].

The role of ILC-2 cells in antitumor protection is 
provided by the secretion of IL-13 and amphireg-
ulin, which can inhibit type 1 responses correlated 
with Th1 lymphocytes. ILC-2 cells can also release 
a large amount of IL-5 which is necessary for the se-
lective expansion of eosinophils [78]. The presence 
of eosinophilic granulocytes in the developing tu-
mor area, i.e. colon cancer, esophagus, nasal cav-
ity, larynx, pulmonary adenocarcinoma, bladder 
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and prostate, indicates a better prognosis of pa-
tients [97–99]. In addition, IL-5 produced by mice 
ILC-2 cells inhibited the metastasis of lung cancer 
and reduced tumor progression as a result of eosi-
nophilia  [98]. In addition, IL-5 produced by mice 
ILC-2 cells inhibited the metastasis of lung cancer 
and reduced tumor progression as a result of eosi-
nophilia [98]. It has also been demonstrated that 
IL-13, produced by IL-2 cells, is required to activate 
MDSC cells and can block the anti-tumor activity 
by transforming growth factor-beta (TGF-β) that is 
produced by MDSC cells, which controls the proli-
feration and differentiation of most cell types. Both 
TGF-β and IL-13 can activate M2 macrophages to 
produce proangiogenic factors, such as vascular 
endothelial growth factor (VEGF), matrix metallo-
peptidase (MMP-9), and the  growth factors epi-
dermal growth factor (EGF) and fibroblast growth 
factor 2 (FGF-2), promoting the  progression and 
metastasis of cancer cells [100–102]. It can there-
fore be stated that the role of ILC-2 cells in tumor 
growth is not only positive, because these cells 
can act in a pro-tumorigenic fashion by producing 
type 2 cytokines, including IL-13, which stimulates 
the microenvironment of the growing tumor and 
promotes metastasis. According to Simoni et al., 
the number of ILC-2 cells is similar in human col-
orectal tumor (1% cells) and in non-pathological 
colon tissues (3% cells), as well as in human lung 
tumor (3% cells) and non-pathological lung tis-
sues (2% cells) [33].

The role of ILC-3 cells in cancer formation was 
found because these cells can cause chronic in-
flammation, i.e. inflammatory bowel disease (IBD) 
through IL-17, IL-22 or IL-23 secretion [103], and 
IBD increases the  risk of  colorectal cancer  [104]. 
IL-22 produced by ILC-3 cells may be responsible 
for promoting colorectal cancer [11, 12]. IL-23 also 
activates ILC-3 cells to induce tumor growth in 
the intestines, ovaries, lung, breast, stomach, skin, 
liver and other organs [105–108]. High expression 
of IL-23 and release of IL-17 are unfavorable prog-
nostic factors in cancer, because IL-17, by the acti-
vation of proangiogenic factor (VEGF), stimulates 
the  formation of  new blood vessels that supply 
the  tumor  [107]. In addition, IL-22 produced by  
ILC-3 cells increases the proliferation of intestinal 
cancer cells by activating STAT2 pathways, and 
may cause long-term and recurrent inflammato-
ry conditions that can predispose to cancer [109]. 
It has been reported that ILC-3 cells may possess 
natural cytotoxic receptors (NCR), such as NKp46, 
NKp30, and NKp44, which are characteristic for 
NK cells, and thus are capable of recognizing tu-
mor cells or cells infected with virus  [110–112]. 
It has been shown that ILC-3 cells, by activation 
of  the  NKp44 receptor and cytokine production, 
can penetrate the growing tumor, thereby affect-

ing both tumor cells and fibroblasts presented 
in the tumor microenvironment. It was observed 
in patients with lung cancer that only a  group 
of  ILC-3 cells located in the  immediate vicinity 
of the tumor has an active NKp44 receptor which 
was inactive in healthy lung tissue [113]. Recon-
struction of ILC-3 cell populations in patients with 
acute myeloid leukemia (AML) have already been 
observed after 12 weeks of  hematopoietic stem 
cell transplantation (HSCT) [114]. In the case of al-
logeneic HSCT transplants, patients may experi-
ence tissue damage and graft-versus-host disease 
(GvHD), which can cause life-threatening clinical 
symptoms such as inflammation of the skin and 
intestinal mucosa. It has also been demonstrated 
that IL-22, which is synthesized by ILC-3 cells, is 
a key regulator of tissue sensitivity to GvHD and 
protects intestinal stem cells from damage [114]. 
To confirm this, AML patients were examined and 
a correlation was observed between the presence 
of  a  large circulating population of NKp44+ ILC-3 
cells and the  absence of  GvHD disease symp-
toms  [114]. According to Simoni et al., the frequen-
cy of NKp44–-ILC3 cells is lower in human colorec-
tal tumor (3% cells) compared to non-pathological 
colon tissues (15% cells), as well as NKp44+ILC3 
cells (1% and 23%, respectively) [33]. In lung cancer 
diseases, the number of NKp44-ILC3 cells is higher 
in human lung tumor (8% cells) as compared to 
non-pathological lung tissues (2% cells), but there 
were no significant differences in the  number  
of  NKp44+ILC3 cells, which are highly represent-
ed (more than 14% of  total ILCs) in barrier tis-
sues, such as tonsil, adenoid, colon and skin [33].  
According to Huber et al.  [115], ILC-3 cells pro-
ducing IL-22 may also act protectively by limiting 
tissue damage in chronic colitis [115]. In turn, ac-
cording to Kryczek et al.  [116], IL-17 synthesized 
by ILC-3 can block the  growth of  tumor cells by 
the  activation of  T cell-dependent mechanisms, 
which limits the process of colon cancer metasta-
sis and colon carcinogenesis in mice. These data, 
as suggested by Carrega et al.  [117], show that 
a better understanding of ILC cell biology, includ-
ing cancer development, may provide new ther-
apeutic pathways based on the  activation and/
or blocking of  receptors and intracellular ILC cell 
signaling, blocking the progression of cancer [117].

Innate lymphoid cells and metabolic 
disorders

It has been shown that ILC families 1, 2 and 3 are 
involved in the formation of adipose tissue [118], 
are important components for the  maintenance 
of metabolic homeostasis [2, 5–9], and are abun-
dant in the liver of adults and in the fetal liver [38]. 
Different ILC subpopulations might exhibit differ-
ent roles in some liver diseases. These seemingly 
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paradoxical effects might depend on the  inflam-
mation state, as well as the tissue microenviron-
ment. The protective or pathogenic roles of ILCs in 
liver diseases were summarized by Liu et al. [119]. 
The hepatic ILCs are involved in the immune reg-
ulation of  viral hepatitis, mechanical liver injury 
and fibrosis. In obese people, adipocytes produce 
more IL-12 that can stimulate ILC-1 proliferation 
and accumulation in adipose tissue, and all proin-
flammatory cytokines produced by ILC-1 interfere 
with the immune response [120]. Moreover, ILC-1 
cells can synthesize IFN-γ and interact to polarize 
macrophages and promote insulin resistance in 
obesity  [120]. It has been shown that both IFN-γ 
and TNF-α synthesized by ILC-1 are key factors in 
maintaining homeostasis in the body as they affect 
macrophages in adipose tissue [121] – tissue which 
is rich in NK cells, eosinophils, alternatively activat-
ed macrophages (AAMs) and ILC-2 cells [8, 122, 123].

ILC-2 cells are responsible for regulating the 
amount of adipose tissue and influence the con-
version of brown tissue into white fat tissue [6, 7, 
122, 124, 125]. In addition, ILC-2 cells, by synthesiz-
ing IL-25 and IL-33, increase the number of AAM 
cells and eosinophilia in the fat tissue [7, 8] where 
IL-5 is synthesized [124, 125]. Importantly, IL-5 de-
ficiency may result in obesity and disrupt glucose 
metabolism [122]. It should be added that, in re-
sponse to cold stress, adipocyte precursor cells 
of bone marrow origin can differentiate into brown 
adipose tissue cells with the help of  eosinophils, 
AAM cells and catecholamine [6]. Additionally, cold 
stress can activate ILC-2 cells by mobilizing eosin-
ophils to produce IL-5  [6], and ILC-2 can directly 
induce the  emergence of  brown fat via the  pro-
duction of  protein methionine/enkephalin, which 
increases the expression of thermogenin – a pro-
tein present in the mitochondria of brown adipose 
tissue [2]. 

Regarding the role of ILC-3 cells in metabolism, 
it has been shown that they respond to certain 
substances such as vitamin A  and D  [126–129]. 
It has been shown that retinoic acid, a  biolog-
ically active metabolite of  vitamin A, increases 
the  production of  IL-22 in ILC-3 cells by binding 
the retinoic acid receptor at locus Il22 [126]. This 
proves that vitamin A  influences the  function, 
distribution, and development of  ILC-3 cells in 
the body. A deficiency of vitamin A can result in 
an  increased number and survival time of  ILC-2 
cells, also by increasing the  expression of  IL-7a 
receptors [127]. It has also been shown that vita-
min A  deficiency decreases the  number of  ILC-3  
in the  intestines of  adult mice  [129], but vita-
min D receptor-knockout mice infected with Cit-
robacter rodentium have an  increased number 
of  ILC-3 cells in the  intestine. This indicates that 
vitamin D may have an inhibitory effect on these 

cells [128]. ILC-3 also regulates metabolic homeo-
stasis via lymphotoxin β (LTβ) and IL-22, which 
alleviates metabolic disorders and controls liver 
metabolism [9]. Studies have shown that diet- or 
genetic mutation-induced obese mice (micedb/db), 
when supplied with exogenous IL-22, exhibit de-
creased levels of  triglycerides and cholesterol in 
serum, which lowers blood glucose and increas-
es insulin sensitivity [9]. In addition, mice lacking 
lymphotoxin β receptors (LTβR–/–) were character-
ized by a lower weight compared to control mice 
with an active LTβ receptor, even after consuming 
a high fat diet [77]. It has been reported that re-
duced expression of  IL-22 causes a  decrease in 
the expression of the antibacterial peptide RegIIIc, 
which may lead to the expansion of Candidatus 
savagella bacterium [130]. ILC-3 cells, as a valuable 
source of  the  IL-22 cytokine required for weight 
gain, are important regulators of  metabolic ho-
meostasis, play a role in maintaining the integrity 
of the body’s barriers, and are involved in the pro-
duction of anti-microbial proteins [77].

Innate lymphoid cells and inflammation

Under inflammatory conditions, according to 
the  results of Simoni et al.  [33], more than 95% 
of  ILCs recruited were composed of NK or intra- 
epithelial-ILC1-like cells in all nine different healthy 
tissues and three pathological tissues analyzed by 
them. In contrast to non-mucosal and lung tissues, 
oral and gastrointestinal mucosal and skin tissues 
contained a  high frequency of  helper-type ILCs, 
which is consistent with the  role of  these cells 
in human barrier surface immunity and which 
has already been partially confirmed in mice [13]. 
The role and contribution of ILC cells in inflamma-
tory and allergic reactions, i.e. asthma, atopic der-
matitis and chronic sinusitis, has been confirmed 
in principle for the ILC-2 and ILC-3 cells [131–133]. 
It has been documented that genes of atopic dis-
eases, e.g. genes encoding IL-33 and its receptor, 
as well as genes encoding TSLP, IL-4, IL-5 and IL-13,  
are key factors for ILC-2 cell activation  [134]. It 
has been reported that papain, which induces 
asthma in Rag–/– mice, does not induce asthma in 
Rag–/– Il2rg–/– double knockout mice or Rag–/– mice 
with a  low number of  ILC-2 cells  [135]. Resende 
et al.  [136] identified a novel population of non-
conventional IFN-γ-producing cells characterized 
by expression of Thy1.2 and a  lack of  lymphoid, 
myeloid and NK lineage markers. Their results 
demonstrate that a population of Thy1.2+ non-NK 
innate-like cells present in the liver expresses IFN-γ 
and can confer protection against Mycobacterium 
avium infection in immunocompromised mice 
lacking both the  Rag2 and the  common γ-chain 
(γc) genes (Rag2–/–γc–/–), indicating their innate 
nature and their γc cytokine independence [136]. 
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The role of ILC-2 cells has also been demonstrated 
in lung [135] and skin [137] inflammation, which 
depends on IL-25, IL-33, and the IL-4 cytokine de-
rived from basophils. It has been shown that ILC-2  
cells cause excessive respiratory tract reactivity 
and can predispose to allergic alveolitis, which in 
turn may lead to the development of  interstitial 
lung disease [135]. In addition, by secreting the cy-
tokines IL-5 and IL-13, these cells can activate eo-
sinophils, which are extremely important cells in 
allergies [125, 138]. By producing IL-9, ILC-2 cells 
can cause allergic inflammation of the respiratory 
tracts [139]. In asthmatic patients, a large amount 
of  circulating ILC-2 was found, but mouse stud-
ies  [140] showed that corticosteroid treatment 
resulted in a decreased number of ILC-2 cells after 
IL-33 activation, and this cytokine is intensively 
produced during viral infections and the  allergic 
state by epithelial cells and/or lung follicular mac-
rophages  [141]. The  role of  ILC-2 has also been 
demonstrated in mice during skin inflammation, 
during supplementation with calcipotriol (ana-
logue of vitamin D), during supplementation with 
cytokine IL-2, and in response to the over-expres-
sion of IL-33 [141]. 

The role of  ILC-3 cells in inflammatory pro-
cesses has been demonstrated in a mouse mod-
el of  dermatitis which found increased numbers 
of  ILC-3 cells as a  result of  IL-33 overexpres-
sion [142]. A high level of ILC-3 cells has also been 
reported in human gastrointestinal allergies, e.g. 
enteritis  [143–145], and induced inflammation 
of  the small and large intestine, caused by Heli-
cobacter hepaticus, H. typhlonus, and Salmonella 
typhimurium  [146]. In Crohn’s disease (CD), we 
can observe a decreased population of ILC-3 and, 
surprisingly, an  increased population of  ILC-1, 
which seems to come from the population of ILC-
3 cells [147]. Crohn’s disease is also characterized 
by the  increased production of  IL-17 cytokines 
by ILC-3 cells  [144]. It is believed that the  role 
of  ILC-3 is associated with allergic diseases and 
depends on the diet, the influence of the external 
environment, and the functioning of the immune 
system [148]. ILC-3 cells were found during inflam-
matory responses in GvHD transplant recipients, 
and it has also been reported that ILC-3 cells cir-
culating in the  blood, pre- and post- transplant, 
can reduce the risk of GvHD [10, 75]. Hanash et al.  
documented that in the  bone marrow of  trans-
planted mice, ILC-3 cells can produce IL-22, which 
is a cytokine that protects bone marrow stem cells 
from damage [10].

Conclusions

Innate lymphoid cells are a multifunctional group 
of  immune cells. Their ability to rapidly secrete 
immunoregulatory cytokines allows them to con-

tribute to early immune responses after infection. 
Taking a closer look at the role of ILC cells, mainly 
in the field of immunity, will create conditions for 
the development of new procedures that may lead 
to improved health care. The  contribution of  ILC 
cells as the  “guardians” in the  homeostasis and 
immunity of mammals, including humans, is con-
stantly examined. A study published by the agency 
Immunological Genome Consortium [37] described 
the  transcriptional expression profiles of  the  ILC 
family in various tissues and defined the  code 
of ILC. They also gave a suggestion about the new 
potential functions of ILCs for protecting health, i.e. 
as a source of diagnostic markers and cells, whose 
presence can be used in diagnostics, as well as in 
basic research. Studies analyzing all known ILC sub-
sets for individual tissues in parallel are lacking and 
the differences in murine and human immunology 
pose a challenge. Simoni et al. [33] were the first 
group to extensively analyze the phenotypic char-
acteristics of human ILCs. By using mass cytometry 
(CyTOF), they simultaneously analyzed 29 parame-
ters in multiple primary, healthy and pathological 
human samples. These results provide a  global, 
comprehensive and detailed description of ILC pop-
ulations and their heterogeneity across individuals 
and tissues. All presented data give a hope for fur-
ther study of the ILC population in normal and ab-
normal conditions.
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