Differences in motivation during the bench press movement with progressive loads using EEG analysis

AUTHORS: Adam Maszczyk1, Paweł Dobrakowski2, Marcin Żak1, Paweł Gozdowski1, Magdalena Krawczyk1, Andrzej Malecki1, Petr Stastný5, Tomasz Zając5

1 Department of Methodology, Statistics and Informatics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
2 Psychology Institute, Humanitas University in Sosnowiec, Poland
3 Department of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
4 Department of Sport Games, Faculty of Physical Education and Sport, Charles University in Prague
5 Laboratory of Human Functional Research, The Jerzy Kukuczka Academy of Physical Education in Katowice, Poland

ABSTRACT: Considering our preliminary research with EEG analysis of the bench press in experienced powerlifters, we hypothesized that there would be significant differences in motivation between novice and elite powerlifters. Therefore the main objective of this study was to identify patterns of frontal alpha asymmetry (FAA) of the prime movers by alpha frequency band analysis (named as alpha motivation values) for each 35–100% one-repetition maximum (1RM) during the flat bench press. Ten novice powerlifters with no more than 2.5 years of resistance training experience and ten elite powerlifters with at least 7.5 years of training experience participated in the study. All participants were required to squat, bench press, and deadlift 100, 125, and 150% of their body mass, respectively. The athletes constituted a homogeneous group with respect to age (mean 22.3 ± 0.5 years). The EEG recordings were conducted using automatic headcups with 19 electrodes that were placed according to the International 10-20 Electrode Placement System. Signals from 8–12 Hz considering points F3 and F4 were analyzed. Furthermore, electromyographic (EMG) signals from the trapezius muscle were recorded. Before testing, moods and emotions of subjects were assessed to eliminate subjects with intense emotions. The results showed brain activity before, during and after cognitive and motor performance using electroencephalography (EEG). However, considering the still existing problems of movement artefacts during EEG measurements, eligible sports and exercises are limited to those that are relatively motionless during execution. Further studies are needed to confirm these preliminary results.

Received: 2019-06-03; Reviewed: 2019-08-08; Re-submitted: 2019-08-28; Accepted: 2019-09-24; Published: 2019-10-31.

INTRODUCTION

According to the approach/withdrawal model of frontal EEG alpha asymmetry, motivation, and emotion, patterns of frontal brain activity correspond to motivational propensities to approach versus withdraw [1,2]. Greater left frontal activity corresponds to an increased tendency to approach or respond more intensely to affective positive stimuli, whereas greater right frontal activity corresponds to an increased tendency to withdraw or respond more intensely to affective negative stimuli [3,4,5,6]. These trait-like relationships are mirrored by a correspondence between changes in frontal EEG asymmetry and state changes in emotion and motivational tendency [1,7,8,9].

Neurophysiological aspects of skilled performance in sports and exercise sciences have become more important during the past years. Especially the brain as the centre of movement planning and control is currently a research subject with increasing interest to bridge the gap between behaviour-related models in sports science and neuroscientific models of basic mechanisms that support sports performance [2,9,10]. Electroencephalography (EEG) represents a methodological tool to display brain activity before, during and after cognitive and motor performance, with excellent temporal resolution and the advantages of wireless hardware as well as equipment portability [2,3,6,9].

At present, FAA registered with EEG seems the only objective means of assessing motivation at specific moments. Other available methods present several weaknesses that should be considered. Firstly, they are subjective as they are based on self-report questionnaires.
we decided to focus on frontal alpha asymmetry (FAA), which is in
The applied methodology is described in the previous paragraph.

MATERIALS AND METHODS

The applied methodology is described in the previous paragraph.

The aspect of motivation is particularly important for powerlifters’
performance when attempting loads near personal records. The bench
press (BP) is a complex upper body exercise in which substantial
external loads can be lifted, demanding high neuromuscular activity.
The potential of the BP for strength development and the popularity
of BP competitions have made it a unique phenomenon as a popu-
lar exercise for training, testing or research purposes [11]. Previous
studies have examined the kinematics of the bench press move-
ment [12], the effect of different chest press exercises [13,14], un-
stable surfaces [15], the impact of fatigue [16], as well as motiva-
tion [6,17] and different approaches in the bench press. These have
included comparisons of concentric-only bench press to those per-
formed with a counter movement [4], as well as the motivation
analysis of the BP and chest press exercises with maximal and
submaximal loads [17,18,19].

The central nervous system (CNS) is responsible for processing
information received from the environment (through the sensory
cortex) and commanding a response from the rest of the body. Neu-
ral pathways that are well used and developed are retained and
promoted, whereas those that are less needed in the present situation
will be pruned or shut down to enable the release of brain capacity.
The neuromuscular system uses two strategies to regulate the amount
of force generated while performing a certain task. One of them is
motor unit recruitment (i.e., calling into play more motor units and
muscle fibres), and the other one is rate coding motivation for rapid
electrical impulses, or action potentials, that are fired down the mo-
tor neuron to the muscle fibre it innervates [20,21,22].

In strength athletes at the elite level, excessive training loads
cause numerous injuries which require changes in neuromuscular
patterns during resistance exercises. In symmetrical exercises such
as the bench press or the barbell squat, these changes may occur
between the left and right limb, making evaluation from one side of
the body incomplete, leading to erroneous conclusions.

Considering our preliminary research with EEG analysis of the
bench press in experienced powerlifters, we hypothesized that there
would be significant differences in motivation between novice and
elite powerlifters. Therefore the main objective of this study was to
identify the patterns of motivation activity of the prime movers by
alpha frequency band analysis (named as alpha motivation values)
for each 35-100% 1RM during the flat bench press. The study aimed
to identify differences in brain activity between novice and expert
weightlifters with different workloads.

Participants

Ten novice powerlifters with no more than 2.5 years of resistance
training experience and ten elite powerlifters with at least 7.5 years
of training experience participated in the study (Table 1). All par-
ticipants were required to squat, bench press, and deadlift 100, 125,
and 150% of their body mass, respectively. The athletes constituted
a homogeneous group with regard to age (average age of
22.3 ± 0.5 years), somatic characteristics, and anaerobic perfor-
ance. All participants were right-handed and scored over 35 on the
39-point scale [23]. Due to missing data in resting EEG files,
4 participants were excluded from further analyses, resulting in a fi-
nal sample of 16 participants. The subjects (n=16) were divided
into two groups: the novice group (NG; n=8), and the elite group
(EG; n=8). All subjects had valid medical examinations and showed
no contraindications to participate in the study. The participants were
informed verbally and in writing of the experimental protocol and the
possibility to withdraw at any stage of the experiment, and gave their
written consent for participation. The measurements were carried
out at the Strength and Power Laboratory of the Academy of Physi-
cal Education in Katowice, using a wireless EEG. The study was
approved by the Research Ethics Committee of the Academy of
Physical Education in Katowice, Poland (7/2016 for NRSA 4 040 54).

Procedures

The influence of other known factors on the asymmetry of the lead-
ing alpha was excluded. The laterality test was performed for all
subjects. Handedness was determined using Chapman’s scale [23].
All were right-handed. In parallel with the EEG recording, muscular
activity was monitored to exclude moments that could contain arte-
facts. The measure for moods and emotions was made using the
Russkam set of emotions expressing 29 moods and emotions on
three levels of intensity [24]. The results of the Russkam set allowed
the exclusion of 4 competitors from further studies (2 with novice
group and 2 with elite group).

EEG measurements procedure

The EEG recordings of frequency power over left and right frontal
regions were conducted according to the International Federation of
Electrophysiological Societies [25] and American EEG Society [26].
EEGs were recorded with Ag/AgCl scalp electrodes, placed according
to the International 10–20 system [27]. Impedance was maintained
<5 kΩ to avoid polarization effects. Signals were recorded from
24 active channels (Deymed Truscan 24 ch. system, soft. version
6.34.1761, Czech Republic). The sampling frequency was 1024 Hz.
A 50 Hz main filter, as well as high and low pass filters (1 and 40 Hz
respectively), were used. The reference electrode was placed on the
ear. To limit the muscle artefacts on the bench the roller was placed
under the neck of the subjects.

Before every bench press, the subject had 15 seconds during
which his task was to motivate himself and prepare to lift the weight.
Then, these 15-second fragments from F3 and F4 locations were
Motivation during the bench press & EEG analysis

The determination of 1RM was performed according to the protocol by van den Tillaar and Saeterbakken [16]. The percentage of the 1RM load was calculated based on the values self-reported by the participants. The self-reported 1RM was set according to the information given by the participant on maximal lifts performed in the previous three months. When the self-reported 1RM was successful, a trial with an additional load of 2.5-5 kg was performed. When the initial trial was unsuccessful, the weight was decreased by 2.5-5 kg. A total of 2-3 trials were performed by the study participant. Two experienced spotters assisted the athlete in the preload phases.

RESULTS

All participants completed the described testing protocol. The procedures were completed in identical environmental conditions with an air temperature of 19.2 °C and humidity of 58% (Carl Roth hydrometer, Germany).

The one-way ANOVA between the NG and EG for alpha motivation values before increasing loads of 35%-100% 1RM, revealed statistically significant results for thirteen variables (Table 2). Figure 1 presents graphical trends of mean alpha values of motivation in each phases of sessions.

Post-hoc tests revealed a statistically significant differences between groups for:
- 35% 1RM (0.22 Hz in NG to -0.13 Hz in EG with \(p = 0.0016 \)),
- 40% 1RM (0.04 Hz in NG to -0.098 Hz in EG with \(p = 0.0044 \)),
- 50% 1RM (0.16 Hz in NG to -0.051 Hz in EG with \(p = 0.0018 \)),
- 60% 1RM (-0.13 Hz in NG to 0.02 Hz in EG with \(p = 0.0039 \)),
- 65% 1RM (-0.10 Hz in NG to 0.15 Hz in EG with \(p = 0.0013 \)),
- 70% 1RM (-0.09 Hz in NG to 0.36 Hz in EG with \(p = 0.0004 \)),
- 75% 1RM (-0.20 Hz in NG to 0.09 Hz in EG with \(p = 0.0011 \)),
- 80% 1RM (-0.42 Hz in NG to 0.07 Hz in EG with \(p = 0.0003 \)),
- 85% 1RM (-0.61 Hz in NG to 0.09 Hz in EG with \(p = 0.0001 \)),
- 90% 1RM (0.14 Hz in NG to -0.12 Hz in EG with \(p = 0.0011 \)),
- 95% 1RM and 100% 1RM (0.06 Hz in NG to 0.19 Hz in EG with \(p = 0.0044 \)) variables for alpha values.

Post-hoc tests revealed a significant motivation increase in the NG for 35% 1RM, as well as in the EG for 40% 1RM. For the 50% 1RM variable an increase of motivation value was observed for both groups, but there was a statistically significant difference between the groups.

There was no statistically significant difference between the groups for the 55% 1RM variable.

Post-hoc tests revealed a statistically significant motivation decrease in the NG for 60% 1RM, 65% 1RM, 70% 1RM, 75% 1RM,
related motor task. However, all the studies have been conducted under laboratory conditions; thus they were well controlled and reproducible [35]. On the other hand, several sports and exercise studies indicate that laboratory based findings do not automatically hold under training and competition situations [35,36,37]. Considering these methodological conditions, our experiment was conducted in a professional strength training gym. To the best of our knowledge, there is only one study that has examined changes of EEG power spectra in the bench press [42]. Engchuan et al. [42] observed increases in beta and gamma frequency bands during the bench press exercise. However, caution is needed when interpreting their results. It should be noted that Engchuan et al. [42] used equipment that allowed for recordings from only one point (Fp1) that is sensible to muscular and ocular artefacts. Furthermore, gamma bands of 30.5–60 Hz may be influenced by the electrical activity of muscles (10-200 Hz).

The results clearly indicate that all participants from the NG applied significantly more motivation at initial loads to ensure success than participants from the EG. At minimum loads the NG (35-55% 1RM) used more motivation than necessary for such a task. This can be directly related to relaxation and satisfaction after successive attempts. However, before each successive approach to overcoming greater loads (55-85% 1RM), the motivation decreased significantly. The motivation increased again at submaximal and maximal loads (90-100% 1RM). It can be concluded that the most effective motivation for the NG was observed for 35% 1RM, 50% 1RM and 90% 1RM with significant differences between groups. For 95% 1RM and 100% 1RM a significant decrease of alpha values was recorded for novice powerlifters (decreased motivation).

The EG varied their motivation to a much higher degree to optimize their performance in the final attempts with maximum loads. The athletes of this group started with a significantly lower level of motivation for lighter loads (35-55% 1RM). The level of motivation for EG gradually increased up to 70% 1RM. Then the temporary relaxation became visible. However, strong motivation was recorded again at 80-85% 1RM and 90% 1RM with significant differences between the groups.

Similarly, post-hoc tests revealed a statistically significant motivation decrease in the EG for 75% 1RM, 80% 1RM, 85% 1RM and 90% 1RM with significant differences between the groups.

DISCUSSION

The main objective of this study was to identify the patterns of motivation evaluated by the alpha values during the flat bench press with progressive loads from 35 to 100% 1RM.

There have been many attempts to assess the bioelectric activity of the brain in sport. However, only in sports disciplines where the athlete remains relatively motionless during their execution are recordings without artefacts possible [30-34]. Such research provides reliable data on cortical activation patterns during a complex sports-related motor task. However, all the studies have been conducted under laboratory conditions; thus they were well controlled and reproducible [35]. On the other hand, several sports and exercise studies indicate that laboratory based findings do not automatically hold under training and competition situations [35,36,37]. Considering these methodological conditions, our experiment was conducted in a professional strength training gym. To the best of our knowledge, there is only one study that has examined changes of EEG power spectra in the bench press [42]. Engchuan et al. [42] observed increases in beta and gamma frequency bands during the bench press exercise. However, caution is needed when interpreting their results. It should be noted that Engchuan et al. [42] used equipment that allowed for recordings from only one point (Fp1) that is sensible to muscular and ocular artefacts. Furthermore, gamma bands of 30.5–60 Hz may be influenced by the electrical activity of muscles (10-200 Hz).

The results clearly indicate that all participants from the NG applied significantly more motivation at initial loads to ensure success than participants from the EG. At minimum loads the NG (35-55% 1RM) used more motivation than necessary for such a task. This can be directly related to relaxation and satisfaction after successive attempts. However, before each successive approach to overcoming greater loads (55-85% 1RM), the motivation decreased significantly. The motivation increased again at submaximal and maximal loads (90-100% 1RM). It can be concluded that the most effective motivation for the NG was observed for 35% 1RM, 50% 1RM and 90% 1RM with significant differences between groups. For 95% 1RM and 100% 1RM a significant decrease of alpha values was recorded for novice powerlifters (decreased motivation).

The EG varied their motivation to a much higher degree to optimize their performance in the final attempts with maximum loads. The athletes of this group started with a significantly lower level of motivation for lighter loads (35-55% 1RM). The level of motivation for EG gradually increased up to 70% 1RM. Then the temporary relaxation became visible. However, strong motivation was recorded again at 80-85% 1RM and 90% 1RM with significant differences between the groups.

TABLE 1. Characteristics of study participants.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Elite Group (n=8)</th>
<th>Novice Group (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs.)</td>
<td>22.7±3.2</td>
<td>22.4 ± 2.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>181.2±2.1</td>
<td>178.3±4.9</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>81.8±3.2</td>
<td>79.2 ± 2.6</td>
</tr>
<tr>
<td>FM (%)</td>
<td>10.2±2.1</td>
<td>10.8±2.4</td>
</tr>
<tr>
<td>Wt - upper limbs (J/kg)</td>
<td>172.6 ± 21.3</td>
<td>112.5 ± 10.8</td>
</tr>
<tr>
<td>Pmax – upper limbs (W/kg)</td>
<td>8.9±1.1</td>
<td>8.7±0.4</td>
</tr>
</tbody>
</table>

TABLE 2. Statistically significant differences between the NG and EG groups for FAI values with increasing loads from 35% to 100%1RM.

<table>
<thead>
<tr>
<th>Load [%]</th>
<th>D</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0.861</td>
<td>0.0016</td>
<td>15202.81</td>
</tr>
<tr>
<td>40</td>
<td>0.780</td>
<td>0.0044</td>
<td>2264.88</td>
</tr>
<tr>
<td>50</td>
<td>0.799</td>
<td>0.0018</td>
<td>5566.23</td>
</tr>
<tr>
<td>55</td>
<td>0.231</td>
<td>0.1051</td>
<td>18.04</td>
</tr>
<tr>
<td>60</td>
<td>0.790</td>
<td>0.0039</td>
<td>2559.73</td>
</tr>
<tr>
<td>65</td>
<td>0.801</td>
<td>0.0013</td>
<td>7900.49</td>
</tr>
<tr>
<td>70</td>
<td>0.884</td>
<td>0.0004</td>
<td>24659.45</td>
</tr>
<tr>
<td>75</td>
<td>0.854</td>
<td>0.0011</td>
<td>11002.67</td>
</tr>
<tr>
<td>80</td>
<td>0.923</td>
<td>0.0003</td>
<td>30213.35</td>
</tr>
<tr>
<td>85</td>
<td>0.989</td>
<td>0.0001</td>
<td>63035.46</td>
</tr>
<tr>
<td>90</td>
<td>0.852</td>
<td>0.0011</td>
<td>8952.70</td>
</tr>
<tr>
<td>95</td>
<td>0.556</td>
<td>0.0015</td>
<td>655.67</td>
</tr>
<tr>
<td>100</td>
<td>0.773</td>
<td>0.0044</td>
<td>2259.98</td>
</tr>
</tbody>
</table>

Note: D - effect size; p - statistical significance; F – value of analysis of variance function
when the maximum load was attempted. We observed that motivation increased for the EG significantly for 70% 1RM, 95% 1RM and 100% 1RM with significant differences between groups. For the EG motivation increased significantly for 70% 1RM, 95% 1RM and 100% 1RM with significant differences between groups.

Some research has focused on measuring differences between elite and sub-elite athletes. Wilson et al. [38], using EEG equipment, investigated university volleyball players, who were deemed by their coaches to be better under the stress of critical game situations. They had lower resting frequencies at O1–T3 (cortical sites in the occipital and temporal regions, designated in the 10–20 international system) during baseline resting states than those who were not as competent under pressure [38]. An example of a more refined study was performed by Haufler et al. [31], who examined EEG differences between experts and novices in a shooting task. The expert marksmen showed increased alpha power across all regions, but particularly at T3, compared with novices. The authors suggested that the increased alpha may reflect a refinement in analytical or better self-talk strategies during the pre-shot time. A very simplified interpretation of their conclusions includes the following: The demands of the sport result in task-specific cortical resources being used in an efficient manner; that is, the same amount of work is accomplished but with less cortical activation or effort. Expert performance is associated with quieting of the left hemisphere and, in some cases, quieting of the right hemisphere; tasks are performed better if the person learns to become more “automatic” rather than engaging in “thinking”.

Considering the aspect of motivation in relation to athletes, it can be concluded that the results obtained in this research are indirectly convergent with the research of other authors and confirm their observations referring to the dependence of sports performance on individual skills during the bench press movement [19]. In addition, the obtained results of this study verify to a certain extent the results obtained during the measurements of muscular tension of competitors during a bench press competition [19,39]. Researchers found that muscle tension was much higher in the initial trials at lower 1RM percentages. In later attempts the tension dropped until loads of 95% 1RM to 120% 1RM were reached [39,40]. It was observed that in professional powerlifters, the muscle tension increased in direct proportion to the load [19,39,40,41].

CONCLUSIONS

The present study should be treated as a pilot study and provides preliminary results for further original research. To the authors’ knowledge this is the first study focused on groups of elite and novice athletes who were compared during the bench press performance using EEG to determine motivation before attempting different loads. These findings showed that the EEG methodology with analysis of FAI changes seems to be a reliable tool to observe brain activity under field conditions such as those taking place during the bench press exercise. Further studies with a greater sample size and including different exercises such as the leg press are needed to confirm these preliminary results.

Acknowledgements

This research was funded by a grant from the Ministry of Science and Higher Education of Poland (NRS4A4 040 54) and by the UNCE/HUM/032 grant and by the GACR project GA19-12150S.

REFERENCES

