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The role of periostin in kidney diseases
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Abstract

Chronic kidney disease (CKD) is a multi-symptomatic condition resulting from irreversible func-
tional and structural damage to the kidneys. Therefore, finding a specific and sensitive marker to predict  
the development and progression of CKD is of great interest. Periostin is a matricellular protein in-
volved in tissue remodeling and wound healing. It is highly expressed in various types of kidney diseases, 
especially in conditions associated with progressive renal fibrosis, while its expression in healthy kid-
neys is not significant. Numerous experimental and human adult studies indicate the role of periostin in 
the pathogenesis of various types of kidney disease, though the mechanism of action of periostin appears 
to be diverse and varies depending on the conditions. The article summarizes current knowledge on the 
possible roles of periostin in the pathogenesis of kidney injury and its position as a marker in various 
human renal pathologies. The studies performed so far indicate the potential of urinary and tissue 
periostin as a promising biomarker of CKD progression.
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Introduction
According to Kidney Disease: Improving Global Out-

come (KDIGO) 2012 recommendations, chronic kidney 
disease (CKD) is defined as abnormalities of kidney struc-
ture or function, present for more than three months, with 
serious implications for health. Chronic kidney disease is 
classified based on cause, glomerular filtration rate (GFR) 
category, and albuminuria category (CGA – cause, GFR, 
albuminuria classification) [1]. The incidence of CKD  
in children is estimated at 7.7-12.1 and prevalence at  
59-74.7 cases per million children [2, 3]. Congenital anom-
alies of the kidney and urinary tract are the leading cause 
of CKD in the pediatric population [3]. 

Chronic kidney disease is a multi-symptomatic condi-
tion resulting from irreversible functional and structural 
damage to the kidneys. Renal fibrosis is the key process 
responsible for the initiation and progression of CKD, 
leading ultimately to end-stage renal disease (ESRD). 
Renal fibrosis is a process characterized by excessive 
deposition of extracellular matrix proteins (ECM) with-
in the kidney interstitium, leading to interstitial scarring, 
glomerular sclerosis, tubular and vascular atrophy [4-6]. 
Since CKD places a significant burden on public health 
institutions, finding a specific and sensitive marker to 
predict the development and progression of CKD is of 
great interest. 

Extracellular matrix proteins are highly specialized 
molecules that form a scaffold for various cell types. They 

bind to numerous cell surface receptors and regulate vari-
ous matrix processes. Apart from their continuous role in 
remodeling, ECM proteins are important for wound healing, 
inflammation, fibrosis, and cancer progression. The compo-
nents of the extracellular matrix include collagens, elastin, 
fibronectin, thrombospondins (TSPs), osteopontin, secreted 
cysteine-rich acid protein (SPARC), and periostin [7]. 

Both experimental [8] and human adult [9] studies 
suggest that periostin is involved in the progression of re-
nal injury and could be used as an early marker reflecting 
CKD progression. The aim of this manuscript is to sum-
marize the current knowledge about the role of periostin in 
the progression of CKD and its role as a potent biomarker 
in various kidney pathologies.

The structure and expression of periostin

Periostin was first described in 1993 as an osteo-
blast-specific factor 2 (Osf-2) [10]. The periostin gene 
consists of 23 exons and is located on the 13q13.3 chro-
mosome. Periostin is a protein with a molecular weight of 
90 kDa. It belongs to the fasciclin family, together with 
transforming growth factor β-induced protein (TGFBIp, 
βig-H3), which shows 48% homology with periostin  
[11, 12]. Periostin is composed of an N-terminal secretory 
signal peptide, a small EMI domain, four repetitive and con- 
served cysteine-rich fasciclin (FAS1) domains, and a car-
boxyl-terminal domain (CTD) [11, 13, 14].



Central European Journal of Immunology 2021; 46(4)

The role of periostin in kidney diseases

495

The EMI domain is responsible for the multimerization 
of the protein, protein-to-protein interactions, and heparin 
binding. Through the EMI domain, periostin directly in-
teracts with the ECM proteins: collagen I, fibronectin, and 
Notch1 and is involved in collagen fibrillogenesis. It forms 
a scaffold for ECM proteins and increases the secretion of 
fibronectin into the extracellular matrix [15-17].

FAS1 domains of periostin consist of 150 amino ac-
ids, of which ten are conserved. FAS1 domains serve as 
a ligand for integrin αvβ1, αvβ3, αvβ5, α6β4 receptors 
and for the ECM protein tenascin-C. Integrins promote cell 
adhesion, proliferation, and migration, as well as the epi-
thelial-mesenchymal transition (EMT) [12, 15, 16, 18-20]. 
N-terminal secretory signal peptide recognizes vitamin K- 
dependent γ-glutamyl carboxylase, which catalyzes the 
conversion of glutamic acid to γ-carboxyglutamate (Gla). 
Gla residues bind calcium ions and may play a role in tissue 
calcification [21]. However, it is uncertain whether peri-
ostin promotes or prevents the calcification process [22]. 

The amino acid sequence of CTD varies, as it is alter-
natively spliced between 17 and 21 exons with consequent 
formation of shorter forms of the protein [13]. The number 

and the type of periostin isoforms vary depending on tissue 
or organ. Similar variability also occurs during embryo-
genesis, including fetal kidneys and lungs [23-25]. So far, 
eight shorter variants of periostin have been described [23, 
26]. The major factor inducing alternative periosteal splic-
ing is TGF-β [13], and the role of the shorter forms of peri-
ostin is not fully understood and requires further research. 

Expression of the periostin gene is under the control 
of numerous cytokines and hormones. The regulators of 
periostin expression include: TGF-β1, TGF-β2, TGF-β3, 
basic helix-loop-helix (bHLH) transcription factor, bone 
morphogenetic protein-2 (BMP-2) and BMP-4, platelet-de-
rived growth factor (PDGF), vascular endothelial factor 
growth factor (VEGF), connective tissue growth factor-2 
(CTGF-2), angiotensin II, interleukin (IL)-3, IL-4, IL-6, 
and IL-13 [19, 27] (Fig. 1). 

Periostin is expressed predominantly in areas rich in 
connective tissue with the highest content in ligaments, 
aorta, lower digestive tract, placenta, uterus, thyroid gland, 
and breasts [13, 28]. It is important for maintaining the 
integrity of the periodontal ligament, and its high expres-
sion enables the teeth to be fixed to the bone [14, 29, 30]. 

Growth factors Ang II IL-4 IL-13 TGF-β1
Periostin

Integrins αvβ3

PIP3/ILK

Smad 2/3

Periostin expression

STAT6MEK

ERK

NF-κB c-Fos
Twist

P38MAP

Smad 1/5

PIP3/ILK

PDGF

Periostin ECM

Ras

AGTR
RTK

STAT3IL-17

BMP2/4
BMP

Akt Fak

Differentiation
Proliferation
Apoptosis

Fig. 1. The diagram shows the factors that induce periostin secretion in the kidney. At first, as a consequence of mechanical 
stress or inflammation, transforming growth factor β (TGF-β) and/or IL-4, IL-13 are released. These cytokines triggered 
overexpression of periostin through transcription factors such as nuclear factor-kappa B (NF-κB), Twist-related protein 
(Twist), c-Fos, signal transducer, and activator of transcription 1 (STAT1) signal transducer and activator of transcription 6 
(STAT6), c-Jun. Then periostin is secreted and accumulated outside cells within ECM, where it binds to integrin receptor, 
induces integrin-linked kinase (ILK), and activates signaling pathways involved in inflammation and fibrosis in the kid-
neys. Also, periostin’s ability to activate latent TGF-β in the feedback loop has been observed. Other factors and signaling 
pathways inducing periostin expression are proposed: Ang II, PDGF, IL-17, BMP-2, BMP-4; p38 mitogen-activated protein 
kinases (p38MAPK), extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MEK), phosphatidy-
linositol-3 kinase (PIP3), receptor tyrosine kinases (RTK), focal adhesion kinase (FAK), serine/threonine-protein kinase 
(Akt); signal transducer and activator of transcription (STAT 3), angiotensin II receptor (AGTR)
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It plays a role in bone tissue remodeling, repair, and ho-
meostasis [14, 19, 31, 32]. Numerous studies confirm  
the role of periostin in wound healing and scar formation. 
Increased periostin expression has been reported in vari-
ous autoimmune entities such as psoriasis and scleroder-
ma [33-36]. Periostin plays a role in the differentiation of  
the heart vessels, development of valves, and formation of 
the fibrous skeleton of the heart [37-40]. Its involvement 
in the pathogenesis of arterial hypertension, progression of 
atherosclerosis, and restenosis after a percutaneous coro-
nary intervention has been described. It also promotes the 
progression of degenerative heart disease and its fibrosis 
[39, 41, 42]. 

Increased expression of periostin has been reported 
in the course of numerous allergic and lung pathologies, 
e.g. asthma, pulmonary fibrosis, rhinosinusitis, and nasal 
polyps [43-47]. In the neoplastic process, periostin plays 
an important role in angiogenesis, cell migration, and the 
formation of metastases. Increased periostin expression 
has been found in many types of cancer, including thymo-
ma, lung, breast, pancreatic, bladder, and kidney cancer  
[19, 23, 48-50]. 

Periostin expression in the kidney 
The analysis of kidney biopsies from healthy kidney 

donors showed a constant presence of periostin in the vas-
cular pole of the glomerulus and around Bowman’s cap-
sule. Periostin was not present in tubules [51]. Of note, 
some other studies showed that periostin expression was 
not revealed in kidney specimens from people without re-
nal pathology [9, 52, 53]. Inversely, periostin was detected 
during nephrogenesis in the kidney mesenchyme, develop-
ing nephrons, ureteral epithelium, and kidney vessels [54]. 

Numerous experimental models revealed substantially 
increased periostin expression in various kidney pathology 
conditions, especially in progressive renal fibrosis. Experi-
mental studies have shown upregulation of periostin at the 
RNA and protein level in many CKD models, including the 
5/6 nephrectomy model, streptozotocin-induced diabetic 
nephropathy, and unilateral ureteral obstruction (UUO). 
Periostin overexpression was also observed in the kidneys 
of aging mice. Furthermore, its expression increased sig-
nificantly with the duration of CKD [55, 56]. For example, 
in UUO, periostin was initially present in the collecting 
tubules (the first to be damaged in obstructive nephropa-
thy) and next in the distal and proximal tubules, which is 
consistent with disease progression [56]. 

In line with the results of experimental studies, a sig-
nificant increase in the expression of periostin in renal tis-
sue during progressive renal damage was observed in adult 
humans [51, 52]; e.g., in autosomal dominant polycystic 
kidney disease, periostin is expressed in the epithelial cells 
of the cyst, cyst extracellular matrix and in the fluid [57]. 

The location of periostin depending on the disease entity 
is shown in Table 1. 

Periostin function in the kidneys 
The exact role of periostin in the kidney in health and 

disease is yet to be uncovered. Probably, periostin is in-
volved in normal nephrogenesis. During kidney develop-
ment, periostin is highly expressed in the renal interstitium 
and may play a role in tubulogenesis and vasculogenesis. 
Once kidney embryogenesis is completed, its expression 
significantly decreases [58]. Most likely other ECM pro-
teins replace periostin function in later stages of nephro-
genesis [54]. While the role of periostin in healthy kidney 
tissue appears to be small, this protein may be crucial in 
inflammation and fibrosis of the kidney. 

In the experimental CKD models, including UUO and 
streptozotocin-induced diabetic nephropathy, periostin 
mRNA and protein were substantially increased, mainly 
in the cytoplasm of tubules [55]. The major sources of 
periostin in tubular interstitium are fibroblasts and myofi-
broblasts [51]. Due to the strong secretory signal, periostin 
appears to be rapidly secreted from cells, where it accumu-
lates within the matrix [16]. Along with these effects, diffi-
culties in detecting it in cytoplasm or body fluids could be 
observed [59]. As a modulator of cell-matrix interaction, 
periostin promotes collagen cross-linking by supporting 
BMP-1 mediated activation of matricellular lysyl oxidase 
(LOX). Studies demonstrated the involvement of LOX  
in kidney fibrosis [60]. 

Numerous mechanisms of periostin action in kidney 
pathology have been proposed. 

Firstly, as the periostin FAS1 domain binds to integ-
rin receptors, periostin can activate integrin-linked kinase 
(ILK), thus influencing proliferation and apoptosis of re-
nal cells as revealed in the experimental mouse model of 
glomerulonephritis [61]. The periostin-ILK signal pathway 
has been found to participate also in renal cyst growth [57]. 
In addition, periostin has been shown to strongly induce 
the expression of integrin β3, which activates the inflam-
matory process [62]. 

Excessive activation of the renin-angiotensin-aldoste-
rone system (RAAS) is a key mechanism leading to the 
progression of renal fibrosis. Activation of RAAS could 
be a link between periostin and renal damage. Increased 
periostin levels in fibroblasts and vascular smooth muscle 
cells in rats in response to chronic infusion of angiotensin 
II have been revealed [63]. Another paper pointed out that 
periostin could contribute to oxidative stress and was up-
regulated by angiotensin II via the reactive oxygen species 
signaling pathway in fibroblasts of hypertensive rats [64]. 
The mutual relation between RAAS and periostin may 
be more complex as periostin downregulation attenuated 
5/6 nephrectomy-induced intrarenal RAAS activation and 
renal tissue fibrosis [65]. In a mouse model of hyperten-
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Table 1. Localization of periostin in kidneys

Author Year Disease Object  
of the study

Periostin localization

Wallace et al. [57] 2008 ADPKD Human Epithelial cells of the cyst, cyst extracellular matrix, cyst fluid

Sen et al. [51] 2011 Kidneys removed 
for transplantation

Human Vascular pole of the kidney and glomerulus, areas of 
interstitial fibrosis: tunica media of the renal arteries, tubular 

cells in the area of fibrosis and inflammatory infiltrations, 
extracellular matrix, and area of tubular atrophy; upregulated 

in the interstitium and glomerulus, exacerbated with renal 
function deterioration

Sen et al. [51] 2011 MGN, lupus 
nephropathy

Human Mesangial proliferation, glomerular vascular area

Sen et al. [51] 2011 FSGS Human Glomerular sclerosis area, mesangium area as in healthy 
people

Sen et al. [51] 2011 IgAN Human No significant overexpression observed

Sen et al. [51] 2011 Healthy transplant 
donors

Human Glomerulus in the area of the vascular pole and Bowman’s 
capsule, no expression in tubular cells

Sorocos et al. [54] 2011 Kidney and ureter 
development 

Mice Mesenchyme surrounding the kidney and the ureter, renal 
stroma, metanephric mesenchyme, ureter epithelium and 
developing nephrons, renal and intrarenal artery smooth 

muscle cells, ureteral smooth muscle cells

Satirapoj et al. [55] 2012 5/6 Nx 
UUO 

SZ-DN DBA2J
aged DBA2J

Rat
mice

Areas of necrosis, infarction, apical part of tubular cytoplasm 
(gradual increase in tubular expression along with CKD 

duration), tubular cells exfoliating into the lumen, area around 
renal arteries and arterioles, extracellular matrix 

of sclerotic glomeruli

Guerrot et al. [8] 2012 Hypertensive 
nephropathy 

Rat Intima and media, de novo interstitium, proximity to the most 
advanced lesions in the glomerular and interstitial vessels

Normal rat kidney – low expression in the area of the median 
membrane of the renal arteries and arterioles

Mael-Ainin et al. [56] 2014 UUO Mice Renal tubules, initially collecting tubules, next distal  
and proximal tubules

Satirapoj et al. [53] 2014 CAN Human Sclerotic glomerulus, peri-glomerular and interstitial areas 
around renal arteries and arterioles, tubular cytoplasm in the 
area of inflammatory infiltrate in the interstitium and fibrosis

Control group: no significant expression

Satirapoj et al. [9] 2015 Type 2 diabetes Human Glomerular sclerosis, the area of periglobular fibrosis, 
Bowman’s capsule, ischemic lesions in the glomerulus, 

cytoplasm of atrophic and non-atrophic tubules
Control group: no expression

Wantanasiri et al. [52] 2015 Lupus nephropathy Human Periglomerular, sclerotic glomeruli, interstitial fibrosis, 
fibrotic vessels, renal tubular epithelial cells, atrophic tubules, 

exfoliated tubular cells
Normal kidneys: no expression

Zhao et al. [77] 2017 Lupus nephropathy Mice Tubular cells, glomerular mesangium

An et al. [74] 2018 Unilateral I/R model Mice Tubular cells

Alferi et al. [78] 2019 Kidney removed  
for transplant

Human Interstitial and glomerular area with intermediate  
and advanced lesions

Kormann et al. [75] 2020 I/R model Mice The area of interstitial fibrosis, damaged proximal tubules  
and Henle’s loop, area of distal and collecting tubules

5/6 Nx – 5/6 nephrectomy (Nx), UOO – unilateral ureteral obstruction, SZ-DN DBA2J mice – DBA2J mice with streptozotocin induced diabetic nephropathy,  
I/R model – ischemia/reperfusion model, ADPKD – autosomal dominant polycystic kidney disease, MGN – mesangial glomerulonephritis, FSGS – focal segmental 
glomerulosclerosis, IGAN – IgA nephropathy, CAN – chronic allograft nephropathy
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sive nephropathy, periostin was expressed predominantly 
in areas of kidney damage – mainly located around blood 
vessels. The study showed a significant positive relation-
ship between creatinine concentration, proteinuria, and 
periostin mRNA and a negative relationship between re-
nal flow and periostin mRNA. In this model, blockage of 
RAAS with losartan reduced expression of periostin in re-
nal tissue, improved renal hemodynamics, and decreased 
proteinuria [8]. Similarly, a reduction in RAAS activity 
was observed after periostin blockade [65, 66]. 

Another pathophysiological pathway proposed is 
crosstalk between periostin and TGF-β signals [46]. This 
mutual, reciprocal relation has been described in kidneys 
but also in other human pathologies, e.g., in scleroderma 
[67]. Periostin promotes adhesion and TGF-β release in 
immune cells. In turn, TGF-β induces periostin production 
in fibroblasts [67]. In kidney tissue, periostin can induce 
cell dedifferentiation, increase in TGF-β expression, and 
extracellular matrix deposition. TGF-β can also promote 
the expression of periostin, which induces the loss of renal 
tubular epithelial phenotype (epithelial-mesenchymal tran-
sition) and finally leads to renal fibrosis and ESRD [56]. 
In vitro studies showed that increased periostin expression 
was accompanied by the loss of E-cadherin, a epithelial 
cell marker, in tubular cells, which indicates loss of epi-
thelial phenotype [55]. The administration of TGF-β1 in-
creased periostin expression and intensified the acquisition 
of the mesenchymal cell phenotype by tubular cells [56]. 
Additionally, periostin increased the proliferation of me-
sangial cells [55]. Prakoura et al. reported that periostin 
secretion is not always directly activated by TGF-β1 and 
that TGF-β1 controls periostin secretion through a Smad 
independent pathway [68]. 

The profibrotic role of periostin was also found in 
human kidney biopsy specimens [51, 52, 59]. In vitro 
stimulation of renal mesangial cells by external addition 
of TGF-β1 resulted in significant induction of periostin 
expression and addition of periostin to mesangial cells in-
duced cell proliferation and decreased the number of cells 
expressing activated caspase-3, a marker of apoptosis [51]. 

There are many other mechanisms that could explain 
the role of periostin in kidney pathology. A relationship be-
tween periostin and autophagy was revealed. It was shown 
that periostin blockade decreased the level of pro-inflam-
matory cytokines and partially restored the level of p62, 
a well-established negative marker of autophagy. The 
authors suggest that periostin can activate autophagy by 
interacting with mTOR kinase complex 1 (mTORC1) [65]. 

The literature data suggest a relationship between 
periostin and peroxisome-activated α-receptor (PPARα). 
PPARα, a transcription factor regulating fatty acid transport 
and metabolism, plays a role in cell proliferation and differ-
entiation and exerts anti-inflammatory properties [69, 70]. 
In the CKD experimental 5/6 nephrectomy model, Bian 
et al. found that the increase in periostin expression was 

accompanied by a decrease in PPARα expression in the 
injured kidney. Periostin inhibition improved kidney func-
tion in rats, increased PPARα expression, decreased the 
severity of fibrosis, and improved cardiovascular function 
in CKD [71]. As PPARα is able to inhibit TGF-β/Smad3 
signaling [72], the authors suggest that the increase in 
PPARα activity associated with periostin blockade may 
reduce ECM deposition due to the TGF-β inhibition [71]. 

There is evidence showing a beneficial role of periostin 
inhibition in kidney pathology. As already mentioned, peri-
ostin blockade with losartan attenuated renal injury in an 
experimental rat model [8]. Also, Hwang et al. found that 
periostin blockade was associated with a significant reduc-
tion in the areas of fibrosis in the affected kidney. More-
over, periostin-induced significant reductions in the expres-
sion of collagen, alpha-smooth muscle actin (αSMA), and 
monocyte chemoattractant protein-1 (MCP-1) have been 
observed [62]. Also, Raman et al. demonstrated that loss 
of periostin in pcy/pcy mice leads to preservation of kidney 
function and reduction of fibrosis [73]. In an experimental 
model of ischemic kidney, An et al. detected a relation-
ship between periostin and p38 mitogen-activated kinase  
(p38 MAPK). Periostin knockout mice showed lower ex-
pression of p38 MAPK than wild-type mice. Administra-
tion of p38MAPK inhibitor reduced fibrosis and apoptosis 
induced by recombinant periostin [74].

In contrast to numerous studies indicating negative 
effects of periostin, a recent study by Kormann et al. de-
scribed the protective role of periostin in acute kidney in-
jury (AKI) in a mouse ischemia-reperfusion (I/R) model. 
Periostin protects against epithelial damage by inhibiting 
the cell cycle and reducing apoptosis. It was observed that 
24 and 72 hours after I/R, mice overexpressing periostin 
had preserved kidney function, less severe necrosis and 
dilation of the tubules, and lower expression of proinflam-
matory cytokines as compared to periostin knockout mice. 
In addition, in the repair phase, periostin-overexpressing 
mice showed increased proliferation of macrophages with 
a pro-regenerative phenotype [75]. Thus, it is possible that 
the role of periostin in AKI is different from chronic kid-
ney pathologies and resembles the beneficial action of the 
protein observed in tissue regeneration and wound healing.

Periostin as a potential marker of chronic 
kidney disease in humans

In recent years, promising human adult studies have 
been published that could support the role of periostin as 
a potential marker of chronic kidney damage and CKD 
progression.

Sen et al. analyzed the expression of matricellular pro-
teins, e.g., periostin, in the kidney specimens of patients 
with glomerulopathies. Among all the analyzed proteins, 
periostin showed the highest expression. The expression of 
periostin mRNA and the intensity of periostin staining in 
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the glomeruli and interstitium correlated negatively with 
GFR. In patients with preserved renal function periostin 
expression was limited to glomeruli, whereas in those 
with renal dysfunction, enhanced periostin expression in 
the mesangium, tubular interstitium, and sites of fibrosis 
was found [51]. Also, Satirapoj et al. observed increased 
glomerular, periglomerular, and tubular expression of peri-
ostin in patients with diabetic nephropathy [9] and chronic 
allograft nephropathy (CAN) [53]. In contrast, periostin 
was not detected in control kidneys [9, 53].

Periostin may play a role as a marker of the progres-
sion of kidney disease in lupus nephropathy. Wantanasiri 
et al. found a significant positive correlation between the 
chronicity index, segmental and global glomerular sclero-
sis, interstitial fibrosis, tubular atrophy, and periostin tis-
sue expression. Periostin tissue expression also correlated 
negatively with GFR. It was found that patients with low 
disease activity or a low disease chronicity index value 
but high periostin expression had significantly lower GFR 
compared to patients with low tissue periostin expression. 
The authors concluded that periostin kidney expression 
may be a tissue biomarker associated with the pathogenesis 
of chronic kidney injury in systemic lupus erythematosus 
patients [52]. 

Two studies by Satirapoj et al. analyzed the presence 
of periostin in the urine of adult patients with CKD. In the 
first study, the authors found that urinary periostin was sig-
nificantly higher in CKD subjects compared to the control 
group. There was no difference between proteinuric and 
non-proteinuric CKD patients in urinary periostin level. 
Urinary periostin showed higher sensitivity and specificity 
in CKD diagnosis compared to neutrophil gelatinase-as-
sociated lipocalin (NGAL) [55]. In the second study, the 
authors analyzed urinary periostin in adult patients with 
type 2 diabetes mellitus. Urinary periostin levels were sig-
nificantly elevated in normoalbuminuric, microalbumin-
uric, and macroalbuminuric patients compared with healthy 
controls. In diabetic patients, increased urine periostin level 
correlated significantly with aging, albuminuria, and de-
cline of GFR. The authors concluded that urinary periostin 
might be used as an early marker of diabetic renal injury [9]. 

In diabetic patients also serum periostin as a poten-
tial biomarker of disease progression was investigated. 
El-Dawla et al. analyzed serum levels of periostin in pa-
tients with type 2 diabetes. The authors found that serum 
periostin concentration correlated positively with urinary 
albumin excretion and with concentration of glycated  
hemoglobin [76]. 

An et al. analyzed urinary periostin (expressed as peri-
ostin/creatinine ratio) in patients with AKI. Urinary peri-
ostin at the time of AKI was significantly higher in those 
who progressed to CKD compared to subjects who did not 
develop CKD [74]. 

Periostin concentration in the urine may prove to be 
an early marker of fibrosis, progression of renal damage, 

and outcome in IgA nephropathy (IgAN). Hwang et al. re-
ported that patients with high tissue expression of periostin 
had a significantly higher periostin concentration in the 
urine. The level of urinary periostin (periostin/creatinine 
ratio) was significantly higher in patients with interstitial 
fibrosis/tubular atrophy, interstitial inflammation, hyaline 
arteriolosclerosis, and glomerular sclerosis in renal biopsy. 
Urinary periostin correlated negatively with initial GFR 
and GFR after a mean 27 months of follow-up. High initial 
urine or tissue periostin levels were significant risk factors 
for GFR reduction and progression to ESRD [59]. 

Urinary periostin might be a useful marker of chronic 
allograft nephropathy (CAN). Satirapoj et al. found that the 
urinary periostin level was significantly higher in patients 
with CAN compared to transplant patients with normal 
renal function and healthy volunteers. In addition, urine 
periostin levels correlated directly with urine protein cre-
atinine ratio, whereas significant inverse correlations were 
evidenced with estimated glomerular filtration rate [53].

Summary
The studies conducted so far show a significant role of 

periostin in the pathogenesis of kidney diseases. Periostin 
is involved in inflammation and kidney fibrosis. The exact 
mechanism of action of periostin in kidney disease has not 
been established yet, and further studies in the field are 
warranted. Periostin is highly expressed in various types of 
kidney diseases (mainly shown in animal models), while 
its expression in healthy kidneys is not significant. Perios-
tin renal tissue and urinary concentrations increase with the 
duration and extent of kidney damage and with GFR re-
duction. The studies performed so far indicate the potential 
of urinary and tissue periostin as a promising biomarker 
of CKD progression. As periostin was found to be upreg-
ulated in a mouse model of UUO and CAKUT (congeni-
tal anomalies of the kidney and urinary tract) is a leading 
cause of CKD in children, there is a need for studies on the 
usefulness of periostin as a marker of renal pathology in 
the pediatric population.

The authors declare no conflict of interest.
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