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A b s t r a c t

Lower motoneurons (MNs) show varied vulnerability in amyotrophic lateral sclerosis (ALS): those of non-ocular 
brainstem nuclei and most of those of the spinal cord are highly vulnerable, while those of extraocular brainstem 
nuclei are quite resistant. Results of our former study on the immunoexpression of the survival of motor neuron 
protein (SMN) and Gemins 2-4 in cervical spinal cord anterior horn α-MNs of sporadic ALS patients suggested that 
a relative deficit in Gemin2 may play some role in the pathomechanism of the disease. Here, we tested this idea fur-
ther by comparing immunoexpression patterns of SMN and Gemins 2-8 between MNs of the oculomotor nucleus and 
α-MNs of the cervical spinal cord anterior horns in autopsy material from sALS patients and controls. In the latter, no 
considerable difference in any studied protein was found between these structures except that SMN expression was 
slightly but significantly lower (p < 0.01) in the oculomotor MNs. In the sporadic ALS patients, the expression of SMN, 
Gemin4 and Gemin7 was significantly weaker (p < 0.05, p < 0.05 and p < 0.01, respectively), while that of Gemin8 
was stronger (p < 0.001) in the MNs of the oculomotor nucleus than in the examined cervical spinal cord anterior 
horn α-MNs. The immunoexpression of Gemin3 and Gemin6 in the spinal cord correlated strongly negatively with 
ALS duration (Spearman’s correlation coefficient: RS = –0.84, p < 0.001, and RS = –0.86, p = 0.002, respectively). In 
the oculomotor nucleus MNs, no studied protein immunoexpression correlated significantly with ALS duration, but 
there was a tendency for such negative correlation for Gemin2 (RS = –0.56, p = 0.07). There was an apparent relative 
deficit of Gemin2 and Gemin8 in the spinal cord α-MNs and of Gemins 2, 4 and 7 in the oculomotor nucleus MNs. 
These data do not support the hypothesis that the diverse ALS vulnerability of the two MN subsets is related to their 
disparate expression patterns of SMN and Gemins 2-8. The differences in these patterns may result from ALS-related 
epiphenomena, or from intrinsic differences in the structure and function between the MN subsets, or both.
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Introduction

Despite the extensive progress made over the last 
20 years, the etiology and pathogenesis of amyo
trophic lateral sclerosis (ALS) are not fully elucidated. 

This is due to the intricacy of the interplay between 
many underlying genetic, neurometabolic, develop-
mental, age-related, environmental, and stochastic 
factors (reviewed in [59,61,62]). Customarily, 5-10% 
of all ALS cases were classified as familial based 
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on family history, while the remaining 90-95% that 
seemed to occur occasionally were termed sporadic 
(sALS). However, this categorization appears spuri-
ous now since there is a sizeable genetic component 
also in the latter [61,62]. On the other hand, even 
the idea of ALS as one disease is increasingly dis-
puted because of the diversity of its clinicopatholog-
ical forms. Regardless of the phenotype, the disease 
causes a profound degeneration and loss of both the 
upper and the lower motoneurons (MNs), and the 
axial end-stage symptomatology includes atrophy of 
most skeletal muscles, bulbar palsy, tetraparesis or 
tetraplegia, and respiratory failure. However, oculo-
motor activity usually persists until late in the dis-
ease.

Detailed studies revealed a variety of oculomotor 
anomalies in sALS patients. Most are subtle deficits 
undetectable with a  routine neurologic examina-
tion, some of which can emerge early in the course 
of ALS; the most common defect, mainly in long-
term survivors, is ophthalmoparesis (reviewed in 
[18,49], for recent additions see [6,9,33]). However, 
the MNs of the brainstem oculomotor (ON), troch-
lear and abducens nuclei (also called jointly extra-
ocular motor nuclei or oculomotor nuclei) are much 
more ALS-resistant than those of other cranial nerve 
nuclei and of the spinal cord (SC) anterior horns, and 
their degeneration and loss over the course of the 
disease is much slower [18,49].

An important role in sALS pathogenesis is 
attributed to excitotoxicity. Data from animal and 
human studies show alterations in both excitatory 
and inhibitory signaling in the affected CNS struc-
tures and in intrinsic excitability of the respective 
MNs (reviewed in [25]). Monkey and human studies 
[44,45] revealed that the abundance of parvalbumin 
in MNs, which protects them from excess intracel-
lular Ca2+ ions, a key mediator of glutamate toxici-
ty, is much higher in the aforesaid three extraocular 
motor nuclei than that in other brainstem MN nuclei. 
These data are generally in line with those from ALS 
autopsy material [1]. Rat studies showed also that 
oculomotor MNs (OMNs) and trochlear MNs express 
much less metabotropic GluR1a glutamate receptors 
than hypoglossal and spinal MNs [28] and there is 
a similar difference in the expression of NR2B subunit 
of the NMDA ionotropic glutamate receptor between 
the OMNs and hypoglossal MNs [22], which features 
also reduce possible glutamate toxicity. Notable dif-
ferences between ALS-vulnerable and ALS-resistant 

brainstem MNs, supporting a  better protection of 
the latter against such toxicity, exist in the respec-
tive patterns of GABAA receptor subunits expression 
as well [29]. MNs of the ALS-resistant brainstem 
extraocular motor nuclei show also, in both rodents 
and end-stage sALS patients, an enhanced (neuro)-  
trophic tone that was postulated to contribute to 
their higher resistance to ALS [2,24,50]. The resis-
tance of MNs of these nuclei may also be attributed 
to the fact that they all lack direct, i.e., monosynaptic, 
connections with cortical MNs [56,58].

The aforementioned findings regarding the dif-
ferences in synaptic transmission-related cellular 
gear between ALS-resistant and ALS-vulnerable MNs 
were mostly confirmed by protein signature [17] and 
transcription profile studies [7] in human autopsy 
material. The latter study has revealed extensive 
differences between these MN types in the expres-
sion of about 1800 genes involved, i.a., in ubiquitin- 
dependent proteolysis, mitochondrial function, extra
cellular matrix, and immune system.

Differences between the respective glial envi-
ronments may contribute to the differences in ALS 
vulnerability as well. Astrocytes in ALS-vulnerable 
brainstem motor nuclei (facial, trigeminal, and hypo-
glossal) and spinal motor nuclei express much more 
of the glutamate transporter GLT-1 (EAAT2) than 
those in the ALS-resistant brainstem extraocular 
motor nuclei, whereas levels of the neuronal glu-
tamate transporter EAAC1 in all the respective MN 
subsets are relatively low [31]. In the case of GLT-1 
deficit that develops in sALS [47], extracellular glu-
tamate may elevate in the vicinity of the various 
MN subsets. This should enhance Ca2+ influx and 
the related cell damage more in the ovalbumin-poor, 
ALS-vulnerable MNs located in the initially GLT-1-rich 
nerve nuclei, see [31] and references therein.

There is also a large and ever-growing body of evi-
dence for anomalous RNA processing as a key driv-
er of neurodegeneration in motor neuron diseases 
including ALS [3]. A major role in the latter is played 
by perturbed biogenesis of Sm-class small nuclear 
RNA-protein complexes (UsnRNPs) involved in the 
maturation of pre-mRNAs [54]; reviewed in [13]. In 
vertebrates, this process requires apt functioning of 
a  protein complex formed by the survival of motor 
neuron protein (SMN, or Gemin1), Gemins 2-8 and 
the Unrip protein [10,11,20]; for review see [13,43].  
The best-documented role of this canonical complex 
is specific cytoplasmic assembly of Sm protein cores 
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onto uridine-rich small nuclear RNAs to yield UsnRNPs 
that then enter the nucleus where they take part in 
pre-mRNA splicing [4,41]. Recent studies indicate 
that the SMN-Gemins complex is also a  chaperone 
for nuclear and cytoplasmic small nuclear ribonucle-
oproteins [43], and SMN-Gemin2 complex is a  ver-
satile platform for ribonucleoprotein exchange [52].  
SMN and at least some of Gemins, acting in the form 
of joint non-canonical complexes or complexes with 
an assortment of additional macromolecules, are 
essential players in a  number of other RNA metab-
olism-related processes as well [51]. Some of these 
processes are specific for neurons and are of high 
importance for their function and viability, particularly 
in MNs [8,12,46]. Deficits in the expression or function 
of SMN and/or the other Gemins and their complex-
es may thus enhance vulnerability to and severity of 
motor neuron diseases [20,46,57].

Results of our initial study on the immunoexpres-
sion of SMN and Gemins 2-4 in α-MNs of cervical 
SC anterior horns in sALS patients [42] suggested 
that some deficits in these proteins may contribute 
to sALS pathogenesis; namely, Gemin2 was present 
at a very low level relative to SMN level. The ques-
tion has arisen whether the expression of the SMN- 
Gemins complex proteins in the MNs of the ON dif-
fers from that in the SC α-MNs. The present study 
aimed at the comparison of the expression of SMN 
and Gemins2-8 between the two locations. The 
results of the comparison might help answer the 
question whether these proteins may play a role in 
the resistance of MNs of the ON in sALS.

Material and methods

All procedures concerning human material com-
plied with the ethical principles for medical research 
involving human subjects as stipulated in the Helsin-
ki Declaration and with the current laws of Poland 
regarding the use of human tissues and organs.  
The study protocol has been approved by the Medi-
cal University of Warsaw Bioethics Committee (per-
mit No. AKBE/20/14).

The studied sALS material comprised archival par-
affin blocks with formalin-fixed SC samples (C4-C8 
level) or midbrain samples carrying the ON from 14 
sALS patients. The initial ALS sign in the patients was 
a  spastic/flaccid limb paresis or bulbar symptoms, 
but at the death all the patients showed severe bul-
bar syndrome and deep tetraparesis or tetraplegia.

The motoneurons from lateral and medial nucle-
us of the anterior spinal horn were examined. Since 
the autopsy material came from patients who at the 
moment of death had a similar neurological deficit, 
it means that in any case both of the above men-
tioned nuclei were damaged. The motoneurons of 
oculomotor nuclei in the midbrain were also studied.

The control material comprised paraffin blocks 
with same SC samples from 13 patients who died 
of non-CNS internal organ diseases; midbrain sam-
ples with the ON were available from only three of 
these patients. No one of the control group donors 
showed signs of a motor neuron disease, including 
ophthalmoplegia or ophthalmoparesis, and no such 
ophthalmic symptoms were apparent in the sALS 
group donors. For basic characteristics of both donor 
groups see Table I. All autopsies were performed 
11-24 h post mortem.

The selected paraffin-embedded samples were 
cut transversely into 8-µm slices, deparaffinized and 
rehydrated by standard procedures and then were 
subject to routine histologic (hematoxylin-eosin and 
cresyl violet) staining and SMN/Gemin immunohis-
tochemistry by the streptavidin-biotin-peroxidase 
method. Briefly, the rehydrated slices were micro-
waved in citrate buffer pH 6 for antigen retrieval and 
then incubated with the following primary antibodies 
(Santa Cruz Biotechnology, Dallas, TX, USA): 1) anti-
SMN (rabbit polyclonal, cat. no. sc-15320, dilution  
1 : 200), 2) anti-Gemin2 (mouse monoclonal, cat. no.  
sc-166187, dilution 1 : 50), 3) anti-Gemin3 (mouse 
monoclonal, cat. no. sc-271853, dilution 1 : 250),  
4) anti-Gemin4 (mouse monoclonal, cat. no. sc-166418, 
dilution 1 : 250), 5) anti-Gemin5 (goat polyclonal, 
cat. no. sc-21440, dilution 1 : 50), 6) anti-Gemin6 
(rabbit polyclonal, cat. no. sc-367218, dilution 1 : 50),  
7) anti-Gemin7 (rabbit polyclonal, cat. no. sc-368684, 
dilution 1 : 200), and 8) anti-Gemin8 (mouse mono-
clonal, cat. no. sc-376419, dilution 1 : 50). Next, the 
slices were treated with biotinylated F(ab)2 fragment 
of goat anti-mouse IgG (Beckman Coulter, cat. no.  
PN IM0816, dilution 1 : 1500), or biotinylated F(ab)2 
fragment of goat anti-rabbit IgG (Beckman Coulter, 
cat. no. PN IM0830, dilution 1 : 1500), or horseradish 
peroxidase-labeled horse anti-goat IgG (Vector Labs., 
cat. no. MP-7405, dilution 1 : 1500) as appropriate. 
The formed immunocomplexes, except those with 
the horse IgG, were then incubated with a strepta-
vidin-horseradish peroxidase conjugate. All sections 
were next developed with diaminobenzidine as  
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Table I. Basic clinical characteristics of the spinal cord and midbrain sample donors

sALS patients

Case# Age [years] Sex ALS history [years] Initial symptoms

1 59 F 1 Bulbar syndrome + lower limb weakness

2 52 M 1 Foot drop

3 73 M 1 Bulbar syndrome

4 73 F 2 Dysphagia

5 87 F 2 Limb weakness

6 78 F 2 Bulbar syndrome

7 73 F 3 Upper limb weakness

8 70 F 3 Lower limb weakness

9 67 F 4 Gait disturbances

10 64 M 4 Bulbar syndrome + upper left limb weakness

11 55 M 4 Upper left limb weakness

12 65 M 4 Lower limb paraparesis

13 74 M 8 Lower left limb weakness

14 76 F 9 Lower limb paraparesis

Mean age ± SD (range) [years]: 69.4 ± 9.6a (52-87)

Controls

Case# Age [years] Sex Cause of death; other diseases

1b 56 F Circulatory insufficiency; Th10-Th11 meningioma

2b 68 M Circulatory insufficiency; cauda equina neuroma

3b 82 F Circulatory insufficiency; Th11-Th12 meningioma 

4b 59 M Ischemic stroke

5b 64 M Acute respiratory failure; Th3-Th4 intraspinal abscess

6b 60 F Digestive tract hemorrhage

7b 67 F Heart infarct

8b 54 M Chronic liver insufficiency

9b 64 M Chronic liver insufficiency

10b 37 M Renal insufficiency; insulinoma

11 75 F Circulatory insufficiency; Alzheimer’s disease 

12 61 M Pulmonary embolism; chronic ethanol intoxication

13 66 F Breast cancer with liver metastasis

Mean age ± SD (range) [years]: 62.5 ± 10.8 (37-82)
aNot significantly different from that for the control group (p = 0.09, Student’s t test) 
bCases with midbrain sample missing.

the chromogen, counterstained with hematoxylin, 
and coverslipped using DPX mountant. Immunos-
taining specificity was verified for each protein by 
running a negative control with the respective pri-
mary antibody absent; no sizable staining was found 
in any such control. Intensity of specific staining was 
assessed as follows: 0 – none, 1 – traces in some 
MNs, 2 – weak, 3 – medium, 4 – strong and uniform. 
Only α-MN staining was assessed in the SC slices. 
The assessment was done individually by two special-
ists blinded to sample identity, using a Nikon (Japan) 
light microscope equipped with a Nikon CCD camera. 

In case of divergent assessments, the results were 
averaged.

Statistics

Because of their semi-quantitative character, 
immunostaining data were analyzed by nonpara-
metric methods. Between-group comparisons were 
run using the Mann-Whitney U  test. Differences 
between data obtained from paired tissue samples 
and those between data obtained from overlap-
ping donor subsets were tested with the Wilcox-
on signed-rank test and the Mann-Whitney U  test, 
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respectively. Differences in regional patterns of SMN 
and Gemins immunoexpression were assessed with 
the Kruskal-Wallis ANOVA followed by Dunn’s multi-
ple comparisons test. The association between vari-
ables was assessed by calculating Spearman’s rank 
correlation coefficient (RS). All the analyses were 
performed using Statistica v.11 software (StatSoft, 
Tulsa, OK, USA). In all cases, p ≤ 0.05 was considered 
significant.

Results

Morphology

In the SC anterior horns from sALS patients, 
routine histological stainings (not shown) revealed 
a typical picture of this clinical entity. Compared to 
the respective control material, SC anterior horns of 
the sALS patients showed much less α-MNs per field 
of view, especially in cases with the longest disease 
history (8-9 years), which revealed the presence of 
but single surviving α-MNs. There was no such dif-
ference between the corresponding ON samples. In 
sALS patients, OMNs were morphologically normal 
except for the presence of vacuoles in the cases with 
the most rapid disease course. Fairly clear chroma-
tin-poor α-MN nuclei were found in some sALS cas-
es, but same changes were apparent in few control 
cases.

SMN and Gemins regional 
immunoexpression patterns

There was no significant correlation (p ≥ 0.12) 
between donor age and the expression of any 
studied SMN-Gemins complex component in cervi-
cal SC α-MNs from the controls (data not shown). 
Control samples of the ON were too few (n = 3) for 
a  meaningful test of the correlation between the 
OMNs’ expression of SMN or Gemins 2-8 and either 
donor age, or the expression of these proteins in the 
respective cervical SC α-MNs.

In the sALS group, there was no significant correla-
tion between the expression of any studied protein 
in cervical SC α-MNs (p ≥ 0.12) and patients’ age, but 
a moderate negative correlation was found between 
patients’ age and Gemin8 expression in the OMNs 
(Spearman’s rank correlation coefficient RS = –0.57, 
n = 13, p = 0.043). There was also a high negative 
correlation between ALS duration and either Gemin3 
or Gemin6 expression in the cervical SC anterior horn 
α-MNs (RS = –0.84, n = 12, p < 0.001, and RS = –0.86,  

n = 10, p = 0.002, respectively). In the OMNs, a tenden-
cy for negative correlation was only found between 
ALS duration and Gemin2 expression (RS = –0.56,  
n = 13, p = 0.073).

In all the sALS patient samples, SMN immuno-
expression was generally strong, whereas a  high 
variability in Gemins 2-8 staining intensities of indi-
vidual MNs was found both in the cervical SC and 
ON samples. Typical images of the immunostained 
cervical SC anterior horn sections and ON sections 
are shown in Figure 1 and Figure 2, respectively.  
The immunosignal for each studied Gemin was 
detected in the cytoplasm of MN perikarya, and 
sometimes also in the proximal part of the axon. In 
some MNs also nuclear localization of the immuno-
signals was observed (with the exception of Gemin5 
showing only cytoplasmic presence).

Control midbrain samples were too few (n = 3) 
for a meaningful comparison of the immunoexpres-
sion of SMN and individual Gemins within OMNs 
or between the OMNs and the corresponding cer-
vical SC anterior horn α-MNs. SMN expression in 
the OMNs from the controls (n = 3) was slightly but 
significantly (p < 0.01) lower than that in their SC 
counterparts (n = 8), whereas no significant differ-
ence was found for Gemins 2-8 (p ≥ 0.15; data not 
shown).

In the cervical SC anterior horn α-MNs, the immu-
noexpression of SMN, Gemin3 and Gemin5, but not 
of the remaining Gemins, was significantly lower 
in the sALS patients than in the controls (p < 0.05,  
p < 0.01, p < 0.05, and p ≥ 0.18, respectively; data not 
shown). In contrast, there was no significant differ-
ence between these groups in the immunoexpres-
sion of any of these proteins in the OMNs (p ≥ 0.15; 
data not shown).

Statistical analysis showed a  significantly low-
er expression of Gemin7 in the OMNs of the sALS 
patients than that in the respective cervical SC ante-
rior horn α-MNs, and a  similar tendency (0.05 < p  
< 0.10) for SMN and Gemin4 expression. In contrast, 
Gemin8 expression was significantly higher in the 
OMNs than in the respective SC α-MNs (Fig. 3). Simi-
lar analysis including the cases with data missing for 
any of the two MN subsets (using the Mann-Whit-
ney U test) confirmed these findings at even lower 
p values (Fig. 4).

The analysis of Gemin immunostaining inten-
sity in the material from sALS patients has shown 
considerable differences between Gemin expression 
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Fig. 1. Representative photomicrographs showing immunoexpression of survival of motor neuron protein 
(SMN) and Gemins 2-8 in motoneurons of cervical spinal cord anterior horns of controls (leftmost column) 
and donors with end-stage sporadic amyotrophic lateral sclerosis (ALS) of different duration; scale bar:  
50 μm. Note uniformly poor (irrespective of disease duration) staining for Gemin2 contrasting with that for 
other studied subunits of the SMN-Gemins complex in ALS patient samples.

	 Control	 ALS	 ALS	 ALS
		  duration 1 year	 duration 4 years	 duration 8-9 years

Spinal cord

SMN

Gemin2 

Gemin3

Gemin4

Gemin5

Gemin6

Gemin7

Gemin8
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Fig. 2. Representative photomicrographs showing immunoexpression of survival of motor neuron protein 
(SMN) and Gemins 2-8 in oculomotor motoneurons of controls (leftmost column) and donors with end-
stage sporadic amyotrophic lateral sclerosis (ALS) of different duration; scale bar: 50 μm. Note uniformly 
poor staining for Gemin2 in ALS patient samples.

	 Control	 ALS	 ALS	 ALS
		  duration 1 year	 duration 4 years	 duration 8-9 years

Oculomotor nuclei

SMN

Gemin2 

Gemin3

Gemin4

Gemin5

Gemin6

Gemin7
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patterns in the OMNs and the cervical SC α-MNs.  
In the latter, SMN and Gemin6 showed the high-
est expression that on average was only margin-
ally higher than that of Gemins 3-5 and 7, while 
Gemins 2 and 8 showed a clearly lower expression  
(Fig. 4A). In the OMNs, Gemins 6 and 8 showed the 
highest expression that, however, was only slight-
ly and non-significantly higher than that of SMN,  
Gemin3 and Gemin5, while the expression of Gemins 
2, 4 and 7 was noticeably lower (Fig. 4B). Interesting-
ly, while there was a  statistically significant appar-
ent deficit in the expression of Gemin2 and Gem-
in8 in relation to that of SMN in the spinal α-MNs, 
the expression of neither Gemin2, nor Gemin4, nor 
Gemin7 was significantly lower than that of SMN in 
the OMNs.

Discussion

It is well known that loss of SMN expression is 
irreconcilable with cell viability [8] and the same 
applies to the lack of any vertebrate Gemin expres-
sion tested thus far (Gemins 2-5); reviewed in [13], 
for a recent addition see [32]. There also is indirect 
evidence from a  Drosophila study suggesting that 
Gemin8 is essential for survival and motor function, 

but Gemin6 and Gemin7 may be not [27]. A major 
deficit in any of the essential Gemins may thus be 
expected to exert a detrimental effect on MN viabil-
ity and function.

A number of studies have shown that the canoni
cal SMN-Gemins complex involved in UsnRNPs bio-
synthesis is made of few disparate subcomplexes 
that probably take part in its progressive construc-
tion. These modules include some SMN-contain-
ing structures that target and function in diverse 
cellular compartments, including neurite granules 
[48,51,53]. There are also few SMN-free structures, 
some of which as well as their single elements may 
have functions beyond the complete SMN-Gemins 
complex [5,10,11,16,21,23,34]. The exact in vivo stoi
chiometry of all these subcomplexes is unknown 
[43] and one cannot judge with certainty about rela-
tive deficit(s) of their individual components based 
on whole-cell-based assessments.

Immunohistochemistry revealed diverse expres-
sion patterns of single components of the SMN- 
Gemins complex in both the α-MNs of cervical SC 
anterior horns and the OMNs in our sALS material. 
Particularly striking was the difference in the expres-
sion of Gemin8 between the two locations, while the 
expression of Gemin2 in the same was similarly poor. 
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Also, while SMN content was generally high in both 
the spinal α-MNs and the OMNs, it was significantly 
lower in the latter in both study groups, which differ-
ence was in apparent contrast to the respective ALS 
vulnerability of these MN subsets. However, SMN 
may be less important for OMNs survival because of 
their relative enrichment in other proteins fostering 
the resistance and/or paucity of proteins that pro-
mote their vulnerability (see Introduction).

In metazoans, the amount of SMN and Gemin2 
was found to be usually far larger than that of any of 
the other then-known Gemins 2-6, hence the core of 
the SMN-Gemins complex was guessed to comprise 
only SMN and Gemin2; actually, the core of proteins 
interacting directly with SMN includes also Gemin3 
and Gemin8 [11,15,40]. While SMN is needed to link 
up the different proteins and hence plays a key role 
in the design of the complete SMN-Gemins com-

plex, the main task of Gemin2 is to stabilize interac-
tions between the various components and hence 
to stabilize the activity of the complex [37,38,60]. 
Gemin8 is essential for the complex structure and 
activity as well, due to its forming a subcomplex by 
direct interaction with the Gemin6-Gemin7 heterod-
imer that also binds Unrip via Gemin7 [39]. A com-
plex comprising only SMN, Gemin2 and Gemin8 
was shown to be necessary and enough to accept 
Sm proteins in the assembly of UsnRNPs [14], but 
Gemin7 is required for efficient UsnRNPs assembly 
[37,38]. Gemin5 provides the recognition of UsnRNA 
component for the assembly [4] and binds to Gem-
in2 in the cytoplasm, but not in the nucleus, while 
Gemin4 binds to both Gemin8 and Gemin3 and like-
ly serves as a cofactor of the latter that is the DEAD 
box helicase [23]. Gemin4 is also the sole member 
of the canonical SMN-Gemins complex which carries 

Fig. 4. Comparison of Gemin immunoexpression patterns in cervical spinal cord (SC) anterior horn α-moto-
neurons (A) and oculomotor motoneurons (B) of end-stage sporadic amyotrophic lateral sclerosis patients.  
***p < 0.001 vs. survival of motor neuron protein (SMN); §p < 0.05, §§p < 0.01 vs. Gemin3; +p < 0.05 vs. Gemin5; 
##p < 0.01, ###p < 0.001 vs. Gemin6; ΔΔp < 0.01 vs. Gemin8 (Kruskal-Wallis ANOVA followed by Dunn’s mul-
tiple comparisons test). •p < 0.05, ••p < 0.01, •••p < 0.001 vs. the respective data for the SC anterior horn 
α-motoneurons (the Mann-Whitney U test). The numbers of samples are shown in parentheses.

a
-M

ot
on

eu
ro

n 
im

m
un

os
ta

in
in

g 
in

te
ns

it
y,

 a
rb

it
ra

ry
 u

ni
ts

M
ot

on
eu

ro
n 

im
m

un
os

ta
in

in
g 

in
te

ns
it

y,
 a

rb
it

ra
ry

 u
ni

ts4

3

2

1

0

4

3

2

1

0

Spinal cord anterior horns Oculomotor nucleus
SM

N

SM
N

G
em

in
2

G
em

in
2

G
em

in
3

G
em

in
3

G
em

in
4

G
em

in
4

G
em

in
5

G
em

in
5

G
em

in
6

G
em

in
6

G
em

in
7

G
em

in
7

G
em

in
8

G
em

in
8

(10)

(11)

(11)

(13)

(12)

(13)

(13)

(13)
(13)

(13)

(10)

(10)

(10)

(10)

(9)

(12)

A B

Mean Mean ± SEM Mean ± SD



317Folia Neuropathologica 2018; 56/4

Sporadic ALS: is SMN-Gemins protein complex of importance for the relative resistance of oculomotor nucleus motoneurons to degeneration?

a  classical nuclear localization signal motif and is 
likely important for nuclear import of the SMN-Gem-
ins complex or its subunits [32].

In an earlier study, we speculated that a relative 
Gemin2 deficit may result in lowering the stability 
of the SMN-Gemins complex, hence a large dispar-
ity in the expression of SMN and Gemin2 may be 
a  risk factor for MN degeneration and death, and 
thus for ALS [42]. Remarkably, Gemin2 expression in 
the OMNs did not significantly exceed that in the 
spinal α-MNs in sALS patients in the present study 
(p = 0.33). However, while the expression of Gem-
in2 was significantly lower than that of SMN in the 
spinal α-MNs, the respective disparity in the OMNs 
did not reach significance. This may be related, at 
least in part, to anatomical differences between the 
two MN types. Spinal α-MNs compared to OMNs 
have considerably larger soma but noticeably thicker 
and many times longer axon, and their axon volume 
comprises much larger fraction of the total cell vol-
ume. Notably, SMN has functions in MN axons which 
do not involve some or all Gemins, including Gemin2 
[12,30,51]. One may thus guess that the difference 
in SMN expression between the two MN subsets is 
related to a higher demand for it, but not necessarily 
for the other elements of the SMN-Gemins complex, 
in the extremely long axons of the spinal α-MNs.  
By the same token, the Gemin2-unbound SMN would 
likely represent a  larger fraction of the total SMN 
content in the spinal α-MNs and would contribute 
this way to the seeming major Gemin2 deficit.

In the sALS material, disparities in the expres-
sion of other single components of the SMN-Gemins 
complex occurred both in the spinal α-MNs and in 
the OMNs, but their patterns differed. In contrast 
to the OMNs that showed a  low expression of the 
essential Gemin4 and the (possibly) non-essen-
tial Gemin7, the spinal α-MNs showed a  very low 
expression of the essential Gemin8. The latter deficit 
may greatly reduce formation of both the canonical 
SMN-Gemins complex and other functional complex-
es involving Gemin8 (see above) and hence interfere 
with a  number of vital cellular functions. Notably, 
in contrast to the apparent deficits in Gemin2 and 
Gemin8 expression in the spinal α-MNs, none of the 
deficits found in OMNs resulted in the respective 
Gemin expression significantly below that of SMN. It 
may also be that some of the alleged deficits in the 
pattern of Gemins expression in the OMNs represent 
normal characteristics of these cells that are related 

to their specific excitability and functionality and the 
uniqueness of the respective motor units (for review 
see [35]), or are just epiphenomena of ALS.

A crucial question in the studies on motor neuron 
diseases is the cause and mechanism of selective 
MN death. Spinal α-MNs are particularly prone to 
degeneration because of vast length of their axons 
and their reliance on the cytoskeleton for mechan-
ical stability, axonal transport, and signaling [36]. 
MNs of the same genetic background can highly dif-
fer by their SMN levels, which diversity was found in 
both controls and ALS patients; notably, SMN-poor 
MNs are at higher risk of death [46]. One reason is 
that SMN deficit hinders transport of mRNAs vital 
for neurite extension and stability, thus contributing 
to axon degeneration and MN death [19]. It is thus 
possible that the surviving spinal α-MNs in our sALS 
material showed a  high SMN expression because 
those with a  low SMN expression perished earlier 
in the disease course. It should be said here that 
a marked decrease (–50%) in the level of full-length 
SMN was reported in post-mortem SC tissue from 
sALS patients compared to that from people who 
died with no neurologic disease [55]. However, those 
data were obtained by Western blot analysis of lum-
bar samples of the entire SC and thus showed an 
averaged SMN level across all cell types present in 
the samples, of which MNs were a minority. Hence 
the reported drop in SMN level may have represent-
ed mostly the decrease in the number of surviving 
MNs. Major disparities in the immunoexpression of 
the various components of the SMN-Gemins com-
plex obviously were not a critical obstacle to MNs’ 
viability in either the cervical SC anterior horns or 
the ON.

It has been postulated that the constitutive char-
acteristics of essential biology of MNs are the pres-
ence of unfolded (i.e., damaged) proteins and inher-
ent endoplasmic reticulum stress [26]. Notably, MNs 
are more vulnerable to the stress compared to other 
cell types, and their basal ER/unfolded protein stress 
level correlates positively with their size. An addition 
to the pre-existing stress may mess up a  delicate 
balance between their endoplasmic reticulum stress 
and neuronal excitability and exceed the threshold 
level these cells can endure without triggering apop-
tosis [26].

In summary, our present results do not support 
the hypothesis that the difference in ALS vulnera-
bility of spinal α-MNs and OMNs is related to their 
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expression patterns of SMN and Gemins 2-8, and 
particularly to the difference in Gemin2 expression. 
This is because the identified marked differences 
between the respective patterns of the immunoex-
pression of individual Gemins provide no clue about 
the actual role of the canonical SMN-Gemins com-
plex or its individual constituents in OMNs’ resis-
tance to the pathologic process in ALS. One may still 
speculate that it is the deficit of Gemin8 which is of 
importance for spinal α-MNs’ vulnerability in sALS. It 
may also be that some of the alleged deficits in the 
pattern of SMN and Gemins expression in the OMNs 
represent epiphenomena of the disease superposed 
on normal characteristics of this particular MN sub-
set. These questions cannot be answered without 
more studies.
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