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High mobility group box 1 attenuates aortic stenosis 
by modulating macrophages to reduce valvular 
calcification
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Our previous study demonstrated that HMGB1 may suppress M1 macrophage 
polarisation and mitigate the progression of calcific aortic valve disease (CAVD). 
However, the role of HMGB1 in regulating macrophage-mediated valvular calcifi-
cation remains to be further explored.
Serum samples from healthy individuals and CAVD patients with varying severity 
were collected and analysed by ELISA. Immunofluorescence staining of human 
heart tissue arrays assessed macrophage infiltration in calcified valves. A macro-
phage-aortic valve interstitial cell (haVIC) co-culture system was used to examine 
the effects of reHMGB1-treated macrophages. RUNX2 and osteopontin mRNA 
expression were measured by RT-qPCR, and alkaline phosphatase (ALP) staining 
was performed to evaluate calcification.
HMGB1 levels were significantly reduced in severe CAVD patients than controls. 
Immunofluorescence staining revealed increased CD68 expression in calcified valve 
samples, indicating macrophage infiltration. In the macrophage-haVIC co-culture 
system, macrophages pretreated with reHMGB1 led to reduced RUNX2 mRNA 
expression and lower ALP activity in haVICs, suggesting a potential inhibitory 
effect of HMGB1 on valvular calcification.
HMGB1 may have the potential to suppress inflammation and mitigate aortic 
valve calcification, making it a promising therapeutic target for preventing the 
progression of aortic stenosis.

Key words: HMGB1, valvular interstitial cells, calcific aortic valve disease, aortic 
stenosis, macrophage.

Introduction

Aortic stenosis (AS) is a degenerative valvular 
heart disease. It is the most common vascular heart 
condition among the elderly in developed countries 
[1]. It carries a potentially fatal risk, and once symp-
toms appear, the disease often progresses rapidly, 
with poor prognosis. Aortic stenosis is characterised 
by the narrowing of the aortic valve due to severe 
calcification, fibrosis, and lipid deposition, with cal-

cification being the most common cause of AS. This 
narrowing increases the pressure and workload on 
the left ventricle [2]. Therefore, investigating the 
mechanisms of calcific aortic valve disease (CAVD) 
and developing therapeutic strategies for AS are of 
urgent importance.

The inflammatory process plays a pivotal role in 
the development and progression of CAVD [3]. It is 
driven by diverse factors such as tumour necrosis fac-
tor a (TNF-a), interleukin-6 (IL-6), IL-1b, and oxi-
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dised low-density lipoprotein (ox-LDL), all of which 
are elevated and indicated to promote the calcification 
in aortic valves [2–5]. For example, increased TNF-a 
levels in AS patients [6, 7] can induce calcification in 
valvular interstitial cells (VICs) by upregulating alka-
line phosphatase (ALP) activity, bone morphogenetic 
protein 2 (BMP-2) expression, and matrix mineralisa-
tion [7, 8]. These inflammatory stimuli promote the 
osteoblastic differentiation of VICs, contributing to 
CAVD progression.

Valvular interstitial cells are the predominant 
cell type in heart valves and are essential for main-
taining valvular homeostasis. Under pathological 
conditions, VICs, stimulated by tumour growth 
factor  b (TGF-b), can differentiate into myofi-
broblast-like or osteoblast-like cells, leading to 
aortic valvular fibrosis, calcification, and stenosis  
[3, 9–11]. This osteogenic differentiation involves 
the activation of transcription factors such as 
runt-related transcription factor 2 (RUNX2), nu-
clear factor of activated T  cells  1 (NFATc1), and 
osterix, resulting in increased expression of osteo-
pontin and BMPs [12, 13]. 

Inflammatory processes in CAVD involve macro-
phage infiltration into the aortic valve tissue. These 
macrophages can polarise into pro-inflammatory 
M1 or anti-inflammatory M2 phenotypes, each in-
fluencing disease outcomes differently. M1 macro-
phages secrete pro-inflammatory cytokines such as 
IL-1b, IL-6, and TNF-a to promote osteogenic dif-
ferentiation of VICs. In contrast, M2 macrophages 
release anti-inflammatory cytokines like IL-10, con-
tributing to tissue repair and potentially mitigating 
calcification [14–16]. An imbalance favouring M1 
over M2 macrophages has been observed in calcified 
aortic valves [17], suggesting that modulating mac-
rophage polarisation could be a therapeutic strategy 
in CAVD.

High mobility group box 1 (HMGB1) is a nu-
clear protein that, when released extracellularly, 
exhibits dual functions in modulating immune re-
sponses. In its pro-inflammatory role, HMGB1 acts 
as a damage-associated molecular pattern (DAMP) 
[18, 19], binding to receptors such as Toll-like re-
ceptors (TLRs) and the receptor for advanced glyca-
tion end products (RAGE), thereby promoting the 
release of pro-inflammatory cytokines like TNF-a, 
IL-1b, and IL-6 [20–23]. Conversely, HMGB1 can 
also exert anti-inflammatory properties [24] by in-
fluencing macrophage polarisation [25]. Specifical-
ly, it promotes the transition of macrophages from 
the M1 phenotype to the M2 phenotype, leading 
to increased production of cytokines such as IL-10 
[26–28]. In the context of CAVD, this shift may 
mitigate disease progression by reducing inflam-
mation and subsequent valvular calcification. Our 
previous research demonstrated that recombinant 

HMGB1 increased IL-10 expression and decreased 
inducible nitric oxide synthase (iNOS) expression 
in macrophages, indicating a promotion of M2 po-
larisation and a potential protective role against 
CAVD progression [29]. However, direct evidence 
supporting the role of HMGB1 in mitigating calci-
fication remains limited. Therefore, this study aims 
to evaluate whether recombinant HMGB1-induced 
M2 macrophage polarisation can influence VICs by 
assessing the expression of RUNX2 and osteopontin 
mRNA, as well as ALP staining, to determine its 
potential impact on CAVD progression.

Material and methods

Cell culture and co-culture between human 
aortic valve interstitial cells and macrophage

THP-1 monocyte cell line was obtained from the 
American Type Culture Collection (ATCC, Manas-
sas, VA, USA) and maintained in a concentration of 
1 × 105 cells/ml. Cells were cultured in an RPMI-
1640 medium (GIBCO, Carlsbad, CA, USA) sup-
plemented with 10% foetal bovine serum, 100 U/
ml penicillin, 100 μg/ml streptomycin, and 2 mM 
glutamine at 37°C under 5% CO2. For the differen-
tiation processes, THP-1 monocytic cells at a den-
sity of 1 × 105 cells were induced to transform into 
M0 macrophages in a 6-well culture plate with the 
addition of 100 nM phorbol 12-myristate 13-ace-
tate (PMA, Sigma, St. Louis, MO, USA). Following 
a 24-h incubation period, the medium was discard-
ed and replaced with a RPMI/FBS medium devoid 
of PMA. Human aortic valve interstitial cells (haV-
IC) were obtained from iCell Bioscience (iCB, CA. 
USA, iCell-0084a). These cells were cultured under 
standard conditions in a medium recommended by 
the supplier (iCB, iCell-0084a-001b) at 37°C under 
5% CO2.

For the co-culture system establishment, THP-1 
cells were seeded at a density of 2 × 105 cells per 
insert. After 4–6 h of attachment, cells were stim-
ulated with 100 nM phorbol 12-myristate 13-ace-
tate (PMA) for 24 h. Subsequently, the inserts were 
transferred to new 6-well plates containing fresh 
PMA-free RPMI/FBS medium. Following a  1-h 
equilibration period, the differentiated THP-1 cells 
were exposed to 500 ng/ml recombinant HMGB1 
(MCE, Nanjing, China; HY-70570) for 24 h.

Concurrently, human aortic valve interstitial 
cells (haVICs) were seeded in separate 6-well plates 
at 2 × 105 cells per well. After 24 h, the THP-1 
cell inserts were washed thrice with RPMI/FBS me-
dium and transferred onto the haVIC cultures. The 
co-culture was maintained for 5  days. Following 
this period, haVIC cells were harvested for RNA 
extraction and subsequent RT-qPCR analysis or 
subjected to alkaline phosphatase (ALP) staining.
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Serum high mobility group box 1 
quantification via ELISA

Serum samples from 6 patients with moderate 
calcific aortic valve disease (CAVD), 6 with severe 
CAVD, and 7  healthy controls were analysed for 
HMGB1 and IL-10 levels using a commercial ELI-
SA kit (LSBio, Shanghai, China). The assay was per-
formed following the manufacturer’s protocol. In 
brief, serum samples were centrifuged (1,000 mg, 
10 min) and incubated in antibody-coated wells for 
60 min at 37°C. After aspiration, detection reagent A 
was applied for 60 min at 37°C, followed by 3 wash-
es. Subsequently, detection reagent B was added and 
incubated for 30 min at 37°C. Following 5 washes, 
TMB (3,3’,5,5’-tetramethylbenzidine) substrate was 
introduced, allowing colour development for 15 min. 
The reaction was terminated with stop solution, and 
absorbance was measured at 450 nm. 

Immunohistochemistry of human heart tissue 
microarray

Human heart tissue microarray (BC30013) was 
procured from the TissueArray company (TissueAr-
ray.com, MD, USA). For immunohistochemistry, the 
slides were initially baked at 55°C for 40 minutes and 
subsequently deparaffinised using a xylene-ethanol 
protocol. Following deparaffinisation, antigen re-
trieval was performed in Tris-EDTA buffer (10 mM 
Tris Base, 1 mM EDTA, 0.05% Tween 20, pH 9.0) 
by heating the slides to 98°C for 40 minutes. Block-
ing was conducted using 1% bovine serum albumin 
(BSA) in PBS blocking buffer. The slides were then 
incubated with Alexa Fluor® 647-conjugated anti- 
CD68 (Abcam, Cambridge, UK), which was dilut-
ed in the blocking buffer. DNA was counterstained 
with 4',6-diamidino-2-phenylindole (DAPI). The 
stained samples were mounted with Vectashield 
mounting medium (Vector Laboratories) and visu-
alised using the TissueFAXS Plus whole-slide tissue 
cytometry system.

Gene expression analysis by RT-qPCR

RUNX2 and osteopontin expression levels were 
assessed using RT-qPCR with SYBR Green chem-
istry. RNA isolation was performed using a TRIzol-

based extraction kit (Life Technologies, MA, USA) 
as per the manufacturer’s guidelines. Reverse tran-
scription was carried out using the iScript cDNA 
synthesis kit (Bio-Rad, CA, USA). Quantitative 
PCR was conducted on a LightCycler 96 Real-Time 
PCR System using FastStart SYBR Green Master 
mix (Roche Applied Science, Mannheim, Germany). 
Primer sequences for target genes are provided in 
Table I. GAPDH served as the reference gene for 
normalisation.

Alkaline phosphatase staining

To analyse early osteogenic differentiation of val-
vular interstitial cells, we utilised an alkaline phos-
phatase (ALP) kit (Solarbio, Beijing, China, G1480) 
according to the manufacturer's protocol. Briefly, 
the culture medium was aspirated, and the cells 
were washed 3 times with 1 × PBS. Cells were then 
fixed using pre-chilled (4°C) ALP fixative for 1 min-
ute, followed by another 3 washes with PBS. ALP 
staining solution was applied to cover the cells, and 
the samples were incubated at 37°C for 15 minutes. 
Subsequently, the cells were washed 3 more times 
with PBS. For counterstaining, the nuclei were 
stained with Nuclear Fast Red for 5 minutes, fol-
lowed by 2 additional PBS washes. The slides were 
mounted with a sealing agent and observed under 
a fluorescence microscope (Nikon Eclipse C1). Blue 
light excitation (wavelength 330–380 nm, emission 
wavelength 420 nm) and red light excitation (wave-
length 510–560 nm, emission wavelength 590 nm) 
were used. Regions of ALP activity appeared blue, 
while the nuclei were stained red.

Data analysis

Results are presented as mean ±standard error of 
the mean (SEM) for each group. Comparisons of se-
rum HMGB1 concentrations between case and con-
trol groups were performed using unpaired 2-tailed 
t-tests, with p < 0.05 considered statistically sig-
nificant. For serum IL-10 comparison, which was 
the non-normal distribution, the non-parametric 
Mann-Whitney test was performed. Data analysis 
was conducted using IBM SPSS Statistics version 22 
for Windows (IBM Corp., Armonk, New York, USA).

Table I. Primer sequences using in the real-time PCR

Gene Primer Sequences

RUNX2
Forward ACAGTGACACCATGTCAGCA

Reverse TCGGCGATGATCTCCACCAT

Osteopontin
Forward AGCAGAATCTCCTAGCCCCCA

Reverse TGGTCATGGCTTTCGTTGGA
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Study design and ethical considerations

This study included participants aged ≥ 18 years, 
categorised into 3 groups: normal (n  = 7), moderate 
CAVD (n = 6), and severe CAVD (n = 6). The Nor-
mal group comprised non-CAVD individuals, while 
the Moderate and Severe CAVD groups included pa-
tients diagnosed via echocardiography, with areas of 
maximal calcification severity < 2 mm and ≥ 2 mm, 
respectively. All participants had no prior aortic valve 
surgery. On the other hand, the person with acute 
myocardial infarction, pregnancy, acute or chronic in-

fections, chronic inflammatory diseases (e.g., sepsis, 
autoimmune conditions, inflammatory bowel diseas-
es), or malignancies was excluded from the study. For 
detailed criteria, see Fig. 1A.

This prospective observational study adhered to 
the principles outlined in the Declaration of Helsinki 
and received approval from the Internal Review Board 
of Shanghai Geriatric Medical Centre (Shanghai Mu-
nicipal Centre for Aging Research) Ethics Committee 
(IRB No. B2023-009). Written informed consent was 
obtained from all participants prior to inclusion.

Fig. 1. Serum HMGB1 and IL-10 levels in relation to CAVD severity. A) Inclusion and exclusion criteria for study partic-
ipants, detailing parameters for enrolling patients with moderate and severe calcific aortic valve disease (CAVD), as well as 
healthy controls. Histogram displaying mean serum HMGB1 (B) or IL-10 (D) concentrations among healthy individuals 
and patients with moderate and severe CAVD. Individual data distribution of serum HMGB1 (C) or IL-10 (E) levels within 
each group, which was derived from the same dataset (B and D, respectively). Each dot represents an individual sample. 
Data presented as mean ±SEM; * p < 0.05, ** p < 0.01; ns – not significant
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Results

High mobility group box 1 and interleukin-10 
levels in relation to calcific aortic valve disease 
severity

To compare serum HMGB1 levels across vary-
ing degrees of CAVD patients, we collected serum 
samples from individuals with moderate and severe 
CAVD, with inclusion and exclusion criteria detailed 

in Fig. 1A. The levels of serum HMGB1 and IL-10 
were determined by ELISA assay. Our analysis re-
vealed that serum HMGB1 levels were significantly 
reduced by approximately 30% in patients with severe 
calcific aortic valve disease (CAVD) compared to healthy 
controls (888.4 pg/ml vs. 1,266.8 pg/ml, respectively;  
Fig. 1B and C). Conversely, serum IL-10 levels were 
markedly elevated in CAVD patients, showing a more 
than sevenfold increase compared to healthy controls 
(11.7 pg/ml vs. 84.0 pg/ml, respectively; Fig. 1D, E). 

Fig. 2. Expression of CD68 in normal great artery tissues and tissues with chronic rheumatic valvular disease with calcifica-
tion. A) Representative immunofluorescence staining for CD68 (red, macrophage marker) in normal and calcified valvular 
tissues from patients with chronic rheumatic valvular disease. DAPI (blue) was used to label nuclei. CD68 signals were 
localised within the cytoplasm. Scoring criteria were based on fluorescence intensity: Score 0, no detectable staining; Score 
1+, weak staining in scattered cells; Score 2+, moderate staining in localised clusters; Score 3+, strong staining diffusely 
distributed across the tissue. B) Quantification of CD68-positive cells in normal and calcified valvular tissues. Data were 
expressed as the percentage of cells at each intensity grade (0, 1+, 2+, and 3+). C) Representative immunofluorescence 
images showing CD68 in normal and calcified valvular tissues. D) Quantification of CD68 expression intensity was per-
formed on 5 randomly selected fields from each duplicate core per case in normal and calcified valvular tissues. Analysis was 
conducted using ImageJ software, and the results are presented as mean ±SEM; ** p < 0.01
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This inverse relationship between HMGB1 and  
IL-10 levels suggests a shift in the inflammatory land-
scape of CAVD, where reduced HMGB1 expression 
may contribute to disease progression. Given the sig-
nificant rise in IL-10, we hypothesised an ongoing 
inflammatory response and further investigated mac-
rophage infiltration in calcified valvular tissue using 
CD68 immunostaining (Fig. 2).

Increased macrophage infiltration in calcified 
valvular tissue

To investigate inflammatory activity in calcified 
valvular tissue, we performed immunofluorescence 
staining on heart tissue arrays, comparing samples 
from patients with chronic rheumatic valvular dis-
ease with calcification to normal great arteries tis-
sue. While degenerative calcific aortic stenosis re-
mains the predominant pathology in the elderly, our 
study utilised human valvular tissues with chronic 
rheumatic calcification, which shares key features 
of immune-mediated calcific processes and provides 
a useful inflammatory model for exploratory investi-
gations. Our analysis revealed a substantial increase 
in CD68-positive macrophage infiltration in calci-
fied valve samples (Fig. 2), approximately sevenfold 
higher than in normal tissues (Fig. 2D). These find-
ings further support the presence of a pronounced 
inflammatory response in CAVD, highlighting the 
involvement of immune cell recruitment in the dis-
ease process, which may contribute to disease pro-
gression.

High mobility group box 1 inhibited 
osteogenic differentiation in human aortic 
valve interstitial cells co-cultured with 
macrophages

Building on our earlier findings that severe 
CAVD patients exhibited decreased serum HMGB1 
levels and increased macrophage infiltration, we 
hypothesised that HMGB1 may mitigate calcifica-
tion in CAVD by modulating macrophage polari-
sation. Specifically, we propose that HMGB1 could 
promote the transition of macrophages toward the 
anti-inflammatory M2 phenotype, thereby alleviat-
ing osteogenic differentiation in the haVICs. To in-
vestigate this hypothesis, we employed a co-culture 
system of macrophages and haVICs, exploring the 
interplay between HMGB1 and macrophage-medi-
ated mechanisms. Macrophages were pretreated with 
recombinant HMGB1 (reHMGB1) for 24 h and then 
co-cultured with haVIC for 5 days. RT-qPCR analysis 
revealed that RUNX2 mRNA expression in haVICs 
was reduced by 60% in the reHMGB1-treated group 
compared to the control group (1.0 vs. 0.4, Fig. 3A). 
Similarly, ALP staining showed a marked reduction in 
the percentage of ALP-positive haVICs, decreasing by 

approximately 75% in the reHMGB1 group compared 
to the control group (68.5% vs. 17.3%, Fig. 3C, D). 
In contrast, osteopontin mRNA levels remained large-
ly unchanged between the HMGB1-treated and un-
treated groups (1.0 vs. 0.96, Fig. 3B). These findings 
suggest that HMGB1 appeared to mitigate osteogenic 
differentiation in haVICs through macrophage-medi-
ated mechanisms.

Discussion

This study explored the role of HMGB1 in CAVD 
progression, particularly its impact on macrophage 
polarisation and VIC calcification. By analysing pa-
tient serum, tissue samples, and in vitro co-culture 
systems, our findings provide new insights into the 
relationship between inflammatory signalling, mac-
rophage-mediated responses, and osteogenic differ-
entiation in CAVD. While our in vitro co-culture 
model reveals a potential link between recombinant 
HMGB1 and reduced osteogenic activity in haVICs 
via macrophage modulation, the absence of in situ 
validation within native aortic valve tissue represents 
a limitation. Thus, the current data suggest an as-
sociative, rather than causative, role of HMGB1 in 
regulating valvular calcification. Moreover, the im-
munofluorescence analysis was based on tissue from 
chronic rheumatic valvular disease, which may not 
fully reflect the pathology of degenerative calcific 
AS. Therefore, the inflammatory landscape described 
herein should be interpreted with an awareness of 
this histological limitation. While previous studies 
have identified HMGB1 as a pro-inflammatory me-
diator in VICs via TLR4 signalling [30], our findings 
suggest that, in the context of macrophage-precon-
ditioned co-cultures, HMGB1 may instead promote 
anti-inflammatory effects. This discrepancy high-
lights the importance of cellular context and micro-
environment in HMGB1 function.

High mobility group box 1, interleukin-10, and 
macrophage polarisation in calcific aortic valve 
disease severity

Our results demonstrated that HMGB1 lev-
els were significantly reduced in severe CAVD pa-
tients, while IL-10 levels were markedly elevated, 
and CD68-positive macrophage infiltration was in-
creased in calcified valvular tissue. Given that IL-10 
is a well-established anti-inflammatory cytokine, its 
upregulation could represent a compensatory mech-
anism in response to chronic inflammation in CAVD, 
limiting excessive immune responses and preventing 
tissue damage [31]. However, this paradoxical in-
crease in IL-10 within a pro-inflammatory environ-
ment suggests a complex regulatory network under-
lying CAVD pathology.



147

High mobility group box 1 attenuates aortic stenosis by modulating macrophages to reduce valvular calcification

Fig. 3. Effects of recombinant HMGB1 on osteogenic markers in haVICs co-cultured with macrophages. Macrophages 
were treated with reHMGB1 (500 ng/ml) for 24 h, followed by co-culture with haVICs for 5 days. A, B) Relative mRNA 
expression levels of RUNX2 and osteopontin in haVICs, normalised to GAPDH. Each treatment was performed in triplicate  
(n = 3). C) Alkaline phosphatase (ALP) activity in haVICs. ALP activity in haVICs was assessed using histochemical stain-
ing, with ALP-positive areas appearing blue and nuclei counterstained in red. Quantification was performed on 3 randomly 
selected fields from each group by calculating the percentage of ALP-positive nuclei relative to the total nuclei (D). Data are 
presented as mean ±SEM; * p < 0.05, ** p < 0.01, *** p < 0.001, ns – not significant
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tion depending on the cellular context and environ-
mental stimuli. Activation of mTOR can promote 
inflammatory responses and calcification by enhanc-
ing the production of pro-inflammatory cytokines 
such as IL-1b, IL-6, and TNF-a, and macrophage 
infiltration, facilitating immune cell proliferation 
and tissue remodeling [38–43]. Conversely, mTOR 
signalling can exert anti-inflammatory effects by 
modulating immune cell functions and promoting 
the polarisation of macrophages toward the anti-in-
flammatory M2 phenotype [44–49]. However, a key 
consequence of mTOR activation is the inhibition 
of autophagy, a process crucial for cellular homeo-
stasis, stress adaptation, and degradation of calcifi-
cation-promoting cellular debris [50–54]. Notably, 
autophagy has been reported to mitigate valvular 
calcification, as it reduces the accumulation of dam-
aged organelles and apoptotic vesicles that serve as 
nucleation sites for calcium deposition [55, 56].

Given that HMGB1 is known to modulate mTOR 
signalling via TLRs and RAGE interactions, it is plau-
sible that HMGB1 may counteract mTOR activation 
[57, 58], thereby promoting autophagy and reducing 
CAVD progression. This hypothesis aligns with our 
in vitro findings, where recombinant HMGB1 treat-
ment led to a significant reduction in RUNX2 ex-
pression and ALP activity in co-cultured VICs. This 
raises the possibility that HMGB1 could influence 
mTOR-related signalling and promote autophagy, 
which in turn mitigates CAVD progression. Howev-
er, direct validation of mTOR activity or autophagic 
flux in our model was not performed, and future work 
is needed to assess these pathways experimentally.

Distinct roles of RUNX2 and osteopontin in 
early- and late-stage calcification

Our findings also highlighted the differential 
regulation of RUNX2 and osteopontin, underscor-
ing the complexity of calcification mechanisms in 
VICs. RUNX2, a key transcription factor for osteo-
genesis, is primarily involved in the early stages of 
calcification, driving the differentiation of VICs into 
osteoblast-like cells and promoting extracellular 
matrix mineralisation [59, 60]. In contrast, osteo-
pontin plays a more prominent role in the later stag-
es of calcification, regulating mineral deposition and 
matrix remodeling [61–64]. The fact that HMGB1 
treatment suppressed RUNX2 and ALP activity but 
had no significant effect on osteopontin expression 
suggests that HMGB1 primarily interferes with 
early-stage osteogenic differentiation rather than 
the maturation of calcified nodules in CAVD. While 
our results are limited to mRNA-level changes, they 
provide a basis for future protein-level validation 
studies to determine the sustained functional rele-
vance of HMGB1 in modulating VIC calcification.

Conclusions

Future studies could focus on delineating the 
precise interplay between HMGB1, mTOR, and 
autophagy in CAVD progression, specifically inves-
tigating whether HMGB1 directly inhibits mTOR 
signalling in macrophages could provide mechanis-
tic insights into its role in CAVD pathology, and 
additionally exploring whether restoring autophagy 
via pharmacological mTOR inhibition can serve as 
a potential therapeutic strategy to mitigate CAVD 
progression.

Furthermore, it is worth examining the macro-
phage polarisation states in CAVD tissues and their 
correlation with mTOR activity, IL-10 signalling, and 
autophagy induction. Moreover, mechanistic studies 
should investigate whether HMGB1 influences key 
calcification-related pathways, such as Wnt/b-caten-
in, PI3K/Akt, or TGF-b signalling, in both macro-
phages and VICs.

Finally, given that HMGB1 has been implicated 
in various inflammatory and autophagic processes, 
its therapeutic potential in CAVD warrants further 
exploration, investigating whether HMGB1-based 
interventions can modulate macrophage polarisation 
and restore autophagy in preclinical CAVD models 
may pave the way for innovative treatment strategies 
aimed at preventing aortic valve calcification and ste-
nosis.
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