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Abstract
Purpose: To assess arterial spin labelling (ASL) perfusion and diffusion MR imaging (DWI) in the differentiation of 
grade II from grade III gliomas.

Material and methods: A prospective cohort study was done on 36 patients (20 male and 16 female) with diffuse 
gliomas, who underwent ASL and DWI. Diffuse gliomas were classified into grade II and grade III. Calculation of 
tumoural blood flow (TBF) and apparent diffusion coefficient (ADC) of the tumoral and peritumoural regions was 
made. The ROC curve was drawn to differentiate grade II from grade III gliomas.

Results: There was a significant difference in TBF of tumoural and peritumoural regions of grade II and III gliomas  
(p = 0.02 and p =0.001, respectively). Selection of 26.1 and 14.8 ml/100 g/min as the cut-off for TBF of tumoural 
and peritumoural regions differentiated between both groups with area under curve (AUC) of 0.69 and 0.957, and 
accuracy of 77.8% and 88.9%, respectively. There was small but significant difference in the ADC of tumoural and 
peritumoural regions between grade II and III gliomas (p = 0.02 for both). The selection of 1.06 and 1.36 × 10-3 mm2/s 
as the cut-off of ADC of tumoural and peritumoural regions was made, to differentiate grade II from III with AUC 
of 0.701 and 0.748, and accuracy of 80.6% and 80.6%, respectively. Combined TBF and ADC of tumoural regions 
revealed an AUC of 0.808 and accuracy of 72.7%. Combined TBF and ADC for peritumoural regions revealed an 
AUC of 0.96 and accuracy of 94.4%. 

Conclusion: TBF and ADC of tumoural and peritumoural regions are accurate non-invasive methods of differentiation 
of grade II from grade III gliomas.
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Introduction
Differentiation between World Health Organisation (WHO) 
grade II and III gliomas is of upmost importance for 
selecting and developing appropriate treatment, detect-
ing early treatment failure, and identifying accurate and 
clinically relevant biological endpoints for high-risk but 
potentially highly rewarding tumoural specific therapies 

tailored to the unique biology of an individual brain tu-
mour [1-4]. Another benefit of imaging is the possibil-
ity of identifying the most malignant areas within a tu-
mour in order to minimise the risk of biopsy sampling 
errors. Histopathology is the gold standard for grading of 
gliomas, but it carries sampling error due to the limited 
number of biopsy samples [5-8]. Conventional pre- and 
post-contrast MR imaging [9] and advanced magnetic 
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resonance (MR) imaging techniques such as dynamic 
contrast enhancement and dynamic susceptibility con-
trast MR imaging [10-13], diffusion-weighted MR imag-
ing [14,15], or combined MR pulse sequences [16,17] are 
used to differentiate grade II from grade III gliomas, but 
their results are overlapping [10-17].

Arterial spin labelling (ASL) is a non-invasive, per-
fusion-weighted MR imaging technique that calculates 
cerebral perfusion maps without administration of in-
travenous contrast agent [18-22]. The main principle of 
ASL is to use water protons of the arterial blood itself as 
a contrast agent to measure perfusion. The magnetisation 
of these inflowing protons is inverted in a region proximal 
to the scanned area by an external radiofrequency pulse 
[21-28]. Diffusion-weighted MR imaging has shown po-
tential value in differentiating between glioma grades and 
in predicting the outcome of gliomas. It was reported that 
the histopathological grade of gliomas is inversely corre-
lated with the apparent diffusion coefficient (ADC) value 
[29-32]. Few studies have discussed the role of ASL [21-24] 
and diffusion-weighted MR imaging [29-32] in the grad-
ing of gliomas. The novelty and uniqueness of this study is 
assessing combined tumour blood flow (TBF) and ADC  
of tumoural and peritumoural regions in the differentiation 
of grade II and grade III gliomas.

Its purpose is to assess ASL and DWI in the differen-
tiation of grade II and grade III gliomas.

Material and methods

Patients

This prospective study was approved by the Local Ethics 
Committee, and informed consent was obtained from each 
patient prior to the examination. The study included  
39 patients provisionally diagnosed to have untreated dif-
fuse gliomas based on conventional MR imaging. We ex-
cluded three patients from the study because two patients 
had metastasis and one patient had lymphoma. Finally, 
the study included 36 patients (20 male and 16 female). 
Their age ranged from 52-72 years (mean age, 62 years). 
The final diagnosis was based on histopathological exami-
nations. Gliomas were classified according to world health 
organisation (WHO) classification into WHO grade II for 
19 patients and WHO grade III for 17 patients.

Routine magnetic resonance imaging

The MR imaging of the brain was performed using a 1.5 
Tesla MRI scanner (Ingenia, Philips) using a Stream Head 
Neck 20 channel coil. T1-weighted (TR/TE = 600/25 ms), 
T2-weighted (TR/TE = 6000/90 ms), and FLAIR (TR/
TE/TI = 10000/115/2700 ms) sequences were obtained. 
The scanning parameters were matrix = 80 × 80, field of 
view (FOV) = 250 × 170 mm2, and slice thickness = 5 mm. 
Post-contrast T1-weighted images were obtained after intra-

venous administration of gadoterate meglumine, 0.5 ml/kg 
(0.1 mmol/kg) body weight, with maximum dose of 10 ml 
using a 20-22 G venous cannula with flow rate of 2 ml/s.

Arterial spin labelling imaging

ASL perfusion imaging was performed with pseudo-con-
tinuous labelling. Multiple time points were acquired after 
the label pulse. Fast spin echo single-shot EPI parallel im-
aging sequence SENSE was used with reduction of P 2.3 to 
reduce echo train length susceptibility-related distortions. 
The following parameters were used: slice thickness = 8 mm,  
inter-slice gap = 1.5 mm, FOV = 240 × 240 mm, data ma-
trix = 68 × 68, voxel size = 3.6 × 3.5 × 3 mm, TR/TE = 250/ 
20 ms, slice number = 6, scan duration = 4 min, and post- 
labelling delay time = 1.5 s.

Diffusion-weighted imaging

Imaging was done in the axial plane using multiple b values 
(b values of 0 and 1000 s/mm2). It was performed before 
administration of contrast medium by using a single-shot, 
spin-echo, echo-planar imaging sequence with the following 
parameters: slice thickness = 8 mm, inter-slice gap = 1.5,  
FOV = 240 × 240 mm, voxel size = 1.51 × 2.17 × 5 mm,  
TR/TE = 3004/88 ms, and scan duration = 1 min.

Post processing

Image analysis was performed by one radiologist expert 
in neuroradiology with 10 years’ experience, who was 
blinded to the histopathological results. The DICOM 
images were transferred to a workstation (extended MR 
Workspace 2.6.3.5, Philips medical systems Nederland 
BV) supplied by the vendor. The post processing of ar-
terial spin-tagging data typically involves initial sub-
traction of alternating tag and control image pairs and 
motion correction. The regions of interest (ROIs) were 
placed within tumoural and peritumoural regions (within  
a 1 cm distance from the outer enhancing tumoural mar-
gin). The ROIs were drawn in an area with maximum sig-
nal enhancement on an ASL map and the lowest signal on 
ADC. Necrotic tissue and large vessels were avoided by 
comparison with T1Gd and T2-weighted images. The TBF 
was calculated as previously described [20].

Statistical analysis

Statistical analyses were carried out using Statistical Pack-
age for Social Sciences version 20 (SPSS, Chicago, IL).  
The data was normally distributed. Quantitative data were 
presented as mean ± standard deviation (SD). Normally 
distributed data were compared between the two major 
groups using independent samples t test and between oth-
er groups. Probability (p) values < 0.05 were considered 
statistically significant. The receiver operating characteris-
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tic (ROC) curves of different matrices of the tumoural and 
peritumoural regions were done with calculation of the 
area under the curve (AUC). The optimum cut-off values 
of different metrics of tumoural and peritumoural regions 
with the highest accuracy were selected to differentiate 
grade II from grade III gliomas were calculation of ac-
curacy, sensitivity, and specificity. The multivariate linear 
regression analysis was done for variables that reached  
a p value of 0.05 for the best combination of TBF and 
ADC metrics in the tumoural and peritumoural regions 
used to differentiate grade II from grade III gliomas.

Results
Based on histopathological results, the patients were divid-
ed into grade II gliomas (Figure 1) (n = 19) and grade III 
gliomas (n = 17). Table 1 shows the mean, standard devi-
ation, minimum, maximum, TBF, and ADC of tumoural 
and peritumoural regions of grade II and grade III gli-
omas. Table 2 shows the ROC results of TBF and ADC  
of tumoural and peritumoral regions of grade II and  
grade III gliomas.

The mean TBF of tumoural and peritumoural re-
gions of grade II glioma were 25.56 ± 3.34 and 13.54  
± 1.48 ml/100 g/min, and for grade III glioma they were 
27.98 ± 2.98 and 16.54 ± 1.06 ml/100 g/min, respective-
ly, with a significant difference (p = 0.02 and p = 0.001). 
Selection of 26.1 and 14.8 ml/100 g/min as the cut-off 
values of TBF of the tumoural and peritumoural regions 
to differentiate between the two groups revealed AUC of 
0.69 and 0.957, accuracy of 77.8% and 88.9%, sensitivity 
of 82.4% and 94.1%, and specificity of 73.7% and 84.2%, 
respectively (Figure 2).

The mean ADC of tumoural and peritumoural re-
gions of grade II gliomas were 1.18 ± 0.11 and 1.52 ± 0.21  
× 10-3 mm2/s, and for grade III gliomas they were 1.05 ± 
0.22 and 1.37 ± 0.16 (10-3 mm2/s), respectively, with a sig-
nificant difference for both regions (p = 0.02). Selection of 
1.06 and 1.36 × 10-3 mm2/s as cut-off values of ADC of the 
tumoural and peritumoural regions to differentiate between 
grade II and III gliomas revealed AUC of 0.701 and 0.748, 
accuracy of 80.6% and 80.6%, sensitivity of 70.6%, 82.6%, 
and specificity of 89.5% and 78.9%, respectively (Figure 3).

Combined TBF and ADC of the tumoural region 
used for differentiation of grade II from grade III glio-
mas revealed AUC of 0.808, accuracy of 2.7%, sensitivity 
of 70.6%, and specificity of 73.7%. Combined TBF and 
ADC of the peritumoural region used for differentiation 
of grade II from grade III gliomas revealed AUC of 0.96, 
accuracy of 94.4%, sensitivity of 94.1%, and specificity of 
94.1% (Figure 4).

Discussion
The main findings in this study are that there is significant 
difference in TBF of tumoural and peritumoural regions 

of grade II and grade III gliomas (p = 0.02 and p = 0.001, 
respectively). There is a significant difference in ADC of 
tumoural and peritumoral regions between grade II and 
grade III gloms (p = 0.02). Multi-parametric TBF and 
ADC of the tumoural and peritumoural regions increased 
the diagnostic performance of MR imaging in differentia-
tion of grade II and grade III gliomas. This study is differ-
ent from other multi-parameter studies because we used 
two advanced MR sequences without the application of 
contrast medium, which reflects the cellularity and vas-
cularity of the gliomas. 

In this study, there was slightly significant difference of 
TBF of the tumoural region differentiating grade II from 
grade III gliomas (p = 0.02), while the peritumoural re-
gion TBF measures revealed a highly significant difference 
between both groups (p = 0.001). Other studies done us-
ing ASL techniques distinguishing high- from low-grade 
gliomas based on tumoural region measurements revealed 
higher CBF in high-grade than in low-grade gliomas with 
highly significant difference [20,22,24]. Another study 
added that the use of ASL-normalised vascular intratu-
moural signal intensity values allows differentiation be-
tween low-grade and high-grade gliomas and thus may 
serve as a new, non-invasive marker for astrocytoma grad-
ing [23]. One study revealed that TBF by ASL enabled 
discrimination of astrocytomas with and without IDH 
mutation (p = 0.014) and trial for discrimination astro-
cytomas with IDH mutation from oligodendrogliomas  
(p = 0.074) [21].

In this study, there was a lower ADC value of the tu-
moural and peritumoural regions of grade III gliomas 
compared to grade II, with a slightly significant difference 
of ADC values measured in the tumoural region differ-
entiating grade II from grade III gliomas (p = 0.02). One 
study reported that the ADC value calculated from ADC 
maps obtained from high b values is a better imaging 
biomarker in the grading of gliomas [29]. Other studies 
reported that lower ADC values are used to discriminate 
high- from low-grade gliomas [30,33]. Another study us-
ing DTI technique showed a significant difference in ADC 
measured at the tumoural region (p = 0.001), while meas-
urements at the peritumoural region showed only a less 
significant difference (p = 0.042) [32].

In this study, multi-parametrics of TBF and ADC 
measured at tumoural and peritumoural regions of glio-
mas increased the diagnostic performance of grading of 
gliomas. The best combination for differentiation between 
grade II and III gliomas is the TBF of the peritumoural 
regions, showing an accuracy of 94.4% with AUC 0.96. 
Another study reported that the combination of ASL and 
conventional MR imaging gave good performance, with 
a diagnostic accuracy of 81.40% [24].

The advantages of ASL are the absolute values of 
perfusion of tissue by blood, without injected contrast 
agent or ionising radiation [20-28]. The advantages of 
diffusion-weighted MR imaging are its non-invasive, 
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Figure 1. Grade II astrocytoma. A) Axial T2-weighted image shows intra- 
axial space occupying lesion of abnormal signal intensity seen in the right 
thalamic region with hyper-intense peritumoral region. B) Axial FLAIR  
image shows the difference between tumoural and peritumoural region.  
C) Axial post-contrast T1-weighted image shows faint diffuse enhancement. 
D) Arterial spin labelling perfusion map show scattered nodular areas of 
increased signal, and the calculated tumour blood flow of the tumoural and 
peritumoural regions were 26.3 and 12.7 ml/100 g/min, respectively. E) ADC 
map shows restricted diffusion, and the calculated ADC value of the tumour-
al and peritumoural regions were 1.23 and 1.43 × 10-3 mm2/s, respectively 
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Table 1. Mean, SD, minimum, maximum, p value of TBF and ADC of tumoural and peritumoural regions of grade II and III gliomas

Parameter Grade II
n = 19

Grade III
n = 17

p value

TBF peritumoural region 13.54 ± 1.48 16.54 ± 1.06 0.001

TBF tumoural region 25.56 ± 3.34 27.98 ± 2.98 0.02

ADC peritumoural region 1.52 ± 0.21 1.37 ± 0.16 0.02

ADC tumoural region 1.18 ± 0.11 1.05 ± 0.22 0.02
TBF – tumour blood flow, ADC – apparent diffusion coefficient

Table 2. ROC of ASL, ADC, and combined parameters at tumoural and peritumoural regions of grade II and grade III gliomas with calculation of AUC, accuracy, 
specificity, and sensitivity

Parameter AUC Cut off point Sensitivity Specificity Accuracy

TBF peritumoural region 0.957 14.8 94.1 84.2 88.9

TBF tumoural region 0.69 26.1 82.4 73.7 77.8

ADC peritumoural region 0.748 1.36 82.4 78.9 80.6

ADC tumoural region 0.701 1.06 70.6 89.5 80.6

Combined TBF & ASL of peritumoural 0.96 94.1 94.7 94.4

Combined TBF & ASL of tumoural 0.808 70.6 73.7 72.7
TBF – tumoural blood flow, ADC – apparent diffusion coefficient, ASL – arterial spin labelling

Figure 2. ROC curve of tumour blood flow (TBF). Selection of 26.1 ml/ 
100 g/min as a cut-off point of TBF at the tumoural region to differentiate 
grade II from grade III gliomas revealed AUC of 0.69 and an accuracy of 
77.8%. Selection of 14.8 ml/100 g/min as a cut-off point of TBF at the peri-
tumoral region to differentiate grade II from grade III gliomas revealed AUC 
of 0.957 and an accuracy of 88.9%

Figure 3. ROC curve of apparent diffusion coefficient (ADC). Selection of 1.06 
× 10-3 mm2/s as a cut-off point of ADC of tumoural region to differentiate 
grade II from grade III gliomas revealed AUC of 0.701 and accuracy of 80.6%. 
Selection of 1.36 × 10-3 mm2/s as a cut-off point of ADC of peritumoural re-
gion to differentiate grade II from grade III gliomas revealed AUC of 0.748 and  
an accuracy of 80.6%
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rapid nature, which gives information about cellularity 
of the tumours, and without injection of contrast agent 
[34-39].

There are some limitations to this study. First, the small 
number of patients limits the statistical results. We recom-
mended further studies with larger numbers of patients. 
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Figure 4. ROC curve of combined tumour blood flow (TBF) and apparent diffusion coefficient (ADC). A) Combined TBF and ADC of the tumoural region revealed 
AUC of 0.808 and accuracy of 72.7%. B) Combined TBF and ADC of the peritumoural region revealed AUC of 0.96 and accuracy of 94.4% 
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Second, this study was done using a 1.5 Tesla scanner. 
Further studies using a 3 tesla scanner are recommend-
ed to improve the results. Third, this study used ASL and 
ADC; further studies with application of diffusion tensor 
imaging [40-42], perfusion MR imaging [43-47], and pro-
ton MR spectroscopy [48-50] will improve the grading of 
gliomas. Fourth, there was no genetic correlation. Further 
studies with correlation of genetic studies and the molec-
ular classification introduced by the 2016 WHO classifica-
tion will help to better characterise diffuse gliomas.

Conclusions
We conclude that combined TBF and ADC of tumoural 
and peritumoural regions is a non-invasive method that 
improves the diagnostic power of discrimination between 
grade II and grade III gliomas.
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