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- Background

Dementia is a comprehensive term for several diseases
affecting memory or other cognitive and behavioral skills
that significantly interfere with a person’s ability to perform
daily activities.

Its prevalence increases exponentially with aging, doubling
every 5.5 years. In Latin America, the prevalence goes from
1.3% at age 60 to 63.9% after age 902, Although age is the
most well-known risk factor for dementia, it is not a normal
part of aging. In addition, dementia does not exclusively affect
older people, with cases such as the early onset dementia
(defined as the onset of symptoms before age 65), which
represents up to 9% of cases®. Currently, the number of
people living with dementia in the world is approximately 50
million, with the prospect of reaching 152 million in 2050%.
In Brazil, 55 thousand new cases of dementia are estimated
every year>,

One of the causes of dementia is the Alzheimer’s disease
(AD), which accounts for 60% to 80% of the cases®. There
are two forms of AD, sporadic (usually of late onset, after
age 65) and familial (usually of early onset, before age 65),
which represents 5% of AD cases’®. The most common
form of AD is the amnestic impairment, which affects recent
memory and the ability to learn new facts. There may be
non-amnestic impairment related to language (remembering
words), executive functions (affecting reasoning, judgment
and problem solving), and visual-spatial function (loss of the
ability to identify objects or people, disturbance in the sense
of sight and reading)?*.

AD can have different stages: mild, moderate, and
severe, depending on the progress of the disease and the
impairment of cognitive ability and daily activities*. The
clinical manifestations of dementia in AD go through a stage
called mild cognitive impairment (MCI) and the preclinical
phase!®!?. Patients in the MCI stage do not necessarily
progress to dementia; however, the risks for this population
increase substantially compared to the population without
MCI, reaching a conversion rate for dementia of 10% per
year's 14,

Pathophysiology of AD

Before the MCI phase, AD enters the preclinical phase,
which can take years, even decades, before the clinical
diagnosis of demential®12% The onset of AD seem to occurin
a cascade of events, with mutations in the genes of enzymes
that cleave a neuronal transmembrane protein, the amyloid
precursor protein (APP), leading to extracellular production
anddepositionof3-amyloid peptides. These peptidesbecome
neurotoxic through structural reorganization, forming
oligomers that aggregate and form senile plaques, differently
from what would happen under normal conditions, in which
APP cleavage would generate protein fragments that would
protect the neuronal metabolism'. (-amyloid peptides
and their oligomers change the structure and the synaptic
transmission” and can quickly block the mechanism of new
memory formation, changing synaptic plasticity'®.

Another protein, called tau protein, is also involved in
AD pathological changes. This protein, which supports the
neuronal cytoskeleton, is normally soluble, but in AD cases
it becomes hyperphosphorylated and transforms into an
insoluble filamentous polymer. This process destabilizes
the microtubules, protein structures that are part of the
cytoskeleton, leading to their degradation and, consequently,
to the death of neurons. This happens because these
microtubules transport nutrients and information on
neuronal extensions to their cell body and vice versa?:?1. As
a result of tau protein hyperphosphorylation, the anatomical
pathology of AD identifies intraneuronal neurofibrillary
tangles? that impair axonal transport, resulting in synaptic
function deficit and neuronal death??.

Thus, the deposition of 3-amyloid in senile plaques and
the tau protein accumulated in neurofibrillary tangles define
AD as a unique neurodegenerative disease among the
different disorders that can lead to dementia?®. In addition to
these changes, cerebral glucose hypometabolism is observed
decades before the onset of symptoms?#2°.

+ Glucose Hypometabolism

The human brain weighs about 2% to 3% of the weight
of an adult and uses approximately 20% to 23% of the daily
energy requirement?*. Most of the glucose consumed is used
to maintain the pre- and postsynaptic ion gradient necessary
for glutamatergic neurotransmission?¢. Glucose transporters
(GLUTs) are responsible for glucose uptake. GLUT1, located
in the blood-brain barrier, and GLUT3, located in the
neurons, are the main GLUTs in the brain. These transporters
are not sensitive to insulin, and the glucose uptake process
is correlated to its concentration on both sides of the blood-
brain barrier (BBB)?. On the other hand, GLUT4 is insulin
dependent, being present in different regions of the brain
related to memory and cognition?.

In the human brain affected by AD, glucose transport is
reduced in most metabolically active brain regions, such as
the cortex and hippocampus®”%°. Post-mortem brain analysis
of AD patients showed decreased levels of GLUT1 and
GLUT3 in the cerebral cortex®!, with significant loss of the
neuronal glucose transporter GLUT3. These lower levels
are associated with the most severe AD pathology®?, which
decreases glucose uptake by neurons®.

Furthermore, some studies have shown that cerebral
insulin signaling may be impaired in AD patients®*3> when
compared to control subjects®®. The Rotterdam study,
published in 1996, demonstrated that patients with type 2
diabetes mellitus (DM2) had twice as much AD as healthy
subjects®’. Since then, there has been a growing number of
studies associating DM2 to DA% with inflammation, insulin
resistance, and mitochondrial dysfunction being common
signs in both diseases®.

Insulin resistance and, consequently, reduced glucose
uptake and use, decrease neuronal cell energy, homeostatic
functions, and synaptic connection*. Thus, a decreased
glucose metabolism results in decreased cholinergic
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transmission and nerve cell atrophy. This is because
acetylcholine synthesis (ACh) is extremely sensitive to
glucose metabolism in the brain, since it occurs exclusively in
the glycolytic pathway, impairing synapses and, consequently,
neurotransmission®’. At the cellular level, AD is associated
with reduced ACh in the synaptic process, decreasing
cholinergic neurotransmission*®. The low availability of
glucoseisalsorelatedtotauproteinhyperphosphorylation*’>°
and unbalanced homeostatic functions, such as increased
oxidative stress and mitochondrial dysfunction with the
generation of reactive oxygen (ROS) and reactive nitrogen
(RNS) species®!.

Brain glucose uptake and metabolism are assessed using
the cerebral glucose metabolic rate (CGMR)?*. Some studies
indicate a 20% to 25% reduction in CGMR in AD, with earlier
reductions in the hippocampal area (related to the processing
of new information for long-term memory). CGMR reduction
is also seen in areas related to space, sound and language
interpretation and orientation, such as the parietal and
temporal lobes®?°%. In addition, there is a relationship
between decreased CGMR and worsening cognitive status in
AD patients®.

As already discussed, the pathophysiology of AD is
complex, and, so far, the treatment can delay disease
progression, but cannot cure it. Thus, the search for other
nonpharmacological measures has increased in recent years
with the objective of contributing, at least partially, to slow
the disease progression, especially if performed early. Based
onthe hypotheses that explain AD, it is possible to investigate
nutritional mechanisms that can clinically benefit these
patients.

- Alternative Energy Pathway

Although the brain’s primary fuel is glucose, it is
important to highlight that this organ can easily use ketone
bodies during periods of prolonged fasting, which can be
considered the main source of fuel in these situations>>¢.
Decreased plasma glucose and insulin levels, as occurs in
periods of fasting or intense carbohydrate reduction, release
free fatty acids that are beta-oxidized in the mitochondria.
Excess acetyl-CoA increases ketone body production since
there is extra acetyl-CoA to be used in the Krebs cycle®®.

The comparison between the cerebral metabolic rates
of glucose (CMRG) and ketone bodies, such as the cerebral
acetoacetate metabolic rate (CAMR), in patients with or
without AD shows a decreased CGMR in the gray matter of
mild AD patients, while the CAMR presents no difference
between groups>’<°. In addition, there is a linear relationship
between the plasma concentration and brain uptake of
ketone bodies in these patients*®°, suggesting that ketone
bodies can compensate for the energy deficit in AD
patients?**® and be a great strategy to improve cerebral
energy metabolism®!.

- Caprylic and Capric Acids

Caprylic (C8:0) and capric acids (C10:0) are medium-
chain fatty acids recognized for their ability to form ketone
bodies>®2%% even when added to a regular meal. This
happens due to a rapid absorption by the portal system and
beta-oxidation in the liver, generating excess acetyl-Coa,
which leads to ketone body formation?®44,

Acetoacetateis the first ketone body produced®?, followed
by beta-hydroxybutyrate (BHB), considered the main ketone
body?¢. Ketone bodies cross the blood-brain barrier®’, enter
neurons and generate ATP by oxidative phosphorylation in
the mitochondria®®.

BHB acetoacetate levels reach 0.010 to 0.015 mM in
the postprandial period®. Supplementation with 12 grams
of caprylic acid combined with eight grams of capric acid,
twice a day, brought BHB levels to 0.6 mM¢, indicating that
the consumption of caprylic and capric acids safely induces
mild to moderate ketonemia without the need for prolonged
fasting or consumption of high fat content, as in the classic
ketogenic diet. In addition, caprylic and capric acids do not
stimulate fat deposition®s.

In AD patients, when plasma BHB levels are around 0.1
mM, ketone bodies provide more than 5% of brain energy,
providing about 10% to 15% when reaching 1 mM?>8 The
daily supplementation of 30 grams of capric acid combined
with caprylic acid, or just caprylic acid, in mild to moderate
AD patients, decreased the brain energy deficit by 23% due
to an increased supply of ketone bodies, without changing
the use of cerebral glucose®'. Another study reported that,
in addition to the increased plasma concentration of ketone
bodies, the ingestion of 20 grams of capric acid combined
with caprylic acid resulted in cognitive improvements
assessed through memory tests in participants with mild
to moderate AD’°.

One dose of Instanth® NEO provides

20 g of caprylic acid and 15 g of capric acid.

- Phosphatidylserine

Synaptic dysfunction is an important factor that increases
cognitive impairment in AD”*. Neuropathological analyses
of AD patients show a strong association between degrees
of cognitive impairment and synaptic changes’?. One of the
causes may be related to the composition and function of
neuronal membranes.

Post-mortem brain analyses of AD patients showed
changes in the composition of neuronal membranes, such as
decreased phospholipid content, when compared to control
subjects of the same age, who presented changes mainly in
the hippocampus and cerebral cortex’747678,

Among phospholipids, decreased phosphatidylserine
(PS) in neuronal membranes has been associated with
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impaired memory and deficits in mental cognitive
abilities””, since PS plays a fundamental role in neuronal
membrane functioning’¢78.

Oral supplementation of PS crosses the blood-brain
barrier, increasing the supply of this compound to the brain”?,
which is related to increased interneuronal communication
due to an increased fluidity of cell membranes®-#2_ PS is also
related to cholinomimetic action, inhibiting cholinesterase,
an enzyme that degrades ACh, in addition to being related
to glucose metabolism’®. Probable AD subjects presented
an increase of 15% in CGMR after three weeks of PS
supplementation (500 mg/day)®°.

A randomized double-blind controlled study on patients
diagnosed with probable AD, receiving supplementation of
200 mg of PS daily for three months, reported significant
improvements in memory, information processing, and the
ability to perform daily activities compared to the placebo
group®. In another study, patients diagnosed with AD who
received supplementation of 300 mg of PS daily for five
months presented increased cognitive assessment scores in
vocabulary and image memory tests after treatment®.

One dose of Instanth® NEO provides

300 mg of PS and 459 mg of choline.

PS is a constituent of neuronal membranes that
protects cell membranes against oxidative damage®. In AD
patients, PS seems to inhibit the oxidation of cell membrane
phospholipids caused by ROS®’. Choline is an important
nutrient in the metabolism of phospholipids that also plays
a role in cholinergic dysfunction and in synaptic membrane
functioning®. In AD, the need for choline increases due to the
high brain levels necessary to correct synaptic dysfunction®’.
In this context, post-mortem research documented lower
levels of choline and phospholipids in the brain of AD patients
compared to controls of the same age®. In animal models,
choline supplementation increased free choline and ACh
concentrations in the cortex and hippocampus, indicating
improved cognitive deficits and anxiety, and decreased
3-amyloid deposition?*.

- Docosahexaenoic acid (DHA)

Brain cell membranes are rich in Q3 polyunsaturated
fatty acids, such as DHA. However, in AD, DHA levels are
decreased” and there is significant experimental evidence
that DHA deficiency or enrichment in the hippocampus is
associated, respectively, with decreased orincreased learning
related to memory skill?®.

In addition, about 20% to 30% of the PS content in
the gray matter is combined with DHA5. A reduction in
PS DHA content in the cerebral cortex is associated with
the progression of mild cognitive impairment to AD&%.
Consequently,theincorporationof PSintohumanmembranes
depends on the availability of PS itself, but also of DHA8?4,

DHA positively modulates PS biosynthesis and reserves in
neuronal cells that promote survival and inhibit apoptosis,
in a PS-dependent manner. In addition, the combined
supplementation of DHA and PS significantly reduced nitric
oxide (NO) levels (which demonstrated antioxidant activity),
in the brain tissue of animals, being more efficient than the
supplementation of DHA or PS alone?’.

A double-blind placebo-controlled trial investigating the
safety of using 300 mg of PS combined with 79 mg of Q3 for
15 weeks showed that this supplementation was safe and
well tolerated”®. Another double-blind placebo-controlled
study showed that the same dose of PS combined with DHA
improved cognitive performance in older patients with
memory complaints”.

One dose of Instanth® NEO

provides 180 mg of DHA.

- Hyperhomocysteinemia and AD

Brain cell membranes are rich in Q3 polyunsaturated
fatty acids, such as DHA. However, in AD, DHA levels are
decreased” and there is significant experimental evidence
that DHA deficiency or enrichment in the hippocampus is
associated, respectively, with decreased orincreased learning
related to memory skill”.

In addition, about 20% to 30% of the PS content in
the gray matter is combined with DHA#>. A reduction in
PS DHA content in the cerebral cortex is associated with
the progression of mild cognitive impairment to AD®¢%,
Consequently,theincorporationof PSintohumanmembranes
depends on the availability of PS itself, but also of DHAZ%4,
DHA positively modulates PS biosynthesis and reserves in
neuronal cells that promote survival and inhibit apoptosis,
in a PS-dependent manner. In addition, the combined
supplementation of DHA and PS significantly reduced nitric
oxide (NO) levels (which demonstrated antioxidant activity),
in the brain tissue of animals, being more efficient than the
supplementation of DHA or PS alone?”.

A double-blind placebo-controlled trial investigating the
safety of using 300 mg of PS combined with 79 mg of Q3 for
15 weeks showed that this supplementation was safe and
well tolerated”. Another double-blind placebo-controlled
study showed that the same dose of PS combined with DHA
improved cognitive performance in older patients with
memory complaints®.

One dose of Instanth® NEO provides

6.8 mcg of vitamin B12, 289 mcg of folic acid,
and 20 mg of vitamin Bé.
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- Vitamin D

Vitamin D deficiency can impact the development of
several diseases and accelerate aging''®, since this vitamin
is related to neuronal protection*. Vitamin D receptors
(VDR) are widely expressed throughout the central nervous
system (CNS), with greater expression in the hippocampus,
hypothalamus, thalamus, cortex, subcortex, and substantia
nigra, essential areas for cognition?'’.

Vitamin D has an anti-inflammatory action that
can reverse age-related changes in the hippocampus in
an animal model'*®. The neuroinflammation caused by
3-amyloid accumulation plays a key role in AD pathogenesis
and progression'™, being represented by the increased
expression of pro-inflammatory cytokines released by the
non-neuronal cells astrocytes and microglia, auxiliary cells
that support the SNC operation2012t,

The probable neuroprotective mechanism of action
of vitamin D occurs through the suppression of cerebral
proinflammatory cytokines'?? and the recovery of the ability
of macrophages to phagocyte B-amyloid*?3 - withitsincreased
brain efflux - and, consequently, decrease the number of
amyloid plaques'?+123,

InAD patients, hypovitaminosis D is associated with faster
cognitive decline'?1?7 which demonstrates the potential
benefit of supplementing this nutrient.

One dose of Instanth® NEO

provides 41 mcg of vitamin D.

- Mix of Antioxidant Vitamins and Minerals

Older people present decreased antioxidant levels in
brain regions related to AD'?®. In AD, oxidative stress is
closely related to mitochondrial dysfunction due to a defectin
the electron transport chain and an increased production of
free radicals'®, which increase neurodegeneration®°. Thus,
a combination of antioxidant vitamins and minerals must be
present in the diet of AD patients.

One dose of Instanth® NEO provides

antioxidant vitamins and minerals: vitamins C and E,
selenium, zinc, and magnesium.
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« Instanth® NEO is a unique combination of nutrients for brain nutrition in Alzheimer’s patients. Caprylic and
capric acids increase ketone body formation, partially compensating for the energy deficit observed in AD patients.
Phosphatidylserine plays a fundamental role in neuronal membrane functioning, supporting cognitive functions.
However, the incorporation of phosphatidylserine in the membranes is mediated by DHA, which also supports the
proper functioning of synapses. The combination of vitamins and minerals with anti-inflammatory and antioxidant
properties present in Instanth® NEO supports the brain nutrition.

4-week adaptation (28 days): 2 boxes with 37 sachets (13.75 grams each).

. . . . Number of sachets
Adaptation period Duration Quantity for the period
1% to 6™ day 6 days 1 sachet 1x day 6 sachets
7" to 12" day 6 days 1 sachet 2x day 12 sachets
13" to 20" day 8 days 1 sachet 3x day 24 sachets
21* to 28" day 8 days 1 sachet 4x day 36 sachets
or 2 sachets 2x day
(2 to 4 days)

How to use:

O o 6

water () Q
juice 2
)
milk
soup Dose of

Instanth® NEO Stir well

During the adaptation period, Instanth®
NEO should be consumed after meals.

Consumption guidance for the adaptation period

"toé"ay ~ ~ N N N
1 sachet a day J et et it

DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6

7" to 12" day
1 sachet 2x day

DAY 12 DAY 11 DAY 10 DAY 9 DAY 7

13" to 20" day
1 sachet 3x day

DAY 13 DAY 14 DAY 15 DAY 16
Start of the second box :

of Instanth® NEO

21" to 28" day

1 sachet 4x day
or 2 sachets 2x day DAY 20 DAY 19 DAY 18

DAY 28 DAY 27 DAY 26

Continuous use after the adaptation period:

4 sachets of 13.75 g consumed preferably together,
or 2 sachets of 13.75 g twice a day.
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