
RAFAŁ STEC

Personalizing treatment of kidney cancer (renal cell carcinoma) based on the current opportunities and new strategies

Poznań, 14 Mar 2019 r.

Disclosure declaration

Grant/Research Support: Angellini.

Honorary speakers: Angellini, Amgen, Novartis, Pfizer.

Consultant: Amgen, Novartis, Roche.

Renal cell carcinoma EPIDEMIOLOGY in Poland

- 1.9% of all cancer cases worldwide
- National Cancer Registry Data 2016 (recent):
- number of new cases per year: 3,134 men and 2,000 women
- number of deaths per year: 1,682 men and 955 woman
- Standing increasing rates of 2-3%/year
- 30% of patients have distant metastases at initial diagnosis
- And next 50%, within 3 years

Personalized medicine/healthcare — the most important "step" to achieve the our goal

 Personalized medicine/healthcare is associated with the adaptation of the therapeutic procedure and methods of prevention to each patient. An individual approach increases the effectiveness, efficiency and safety of the therapy and the chance of complete cure.

Personalization - treatment of kidney cancer

- Step 1.Staging the disease.
- Step 2. The prognostic group of patients.
- Step 3. Factors that are related to the patient.
- Step 4. Potential biomarkers that are related to cancer.
- Step 5. Patient's choice.

Step 1.
Staging the disease.

Potential Methods of Treatment Kidney Cancer

- 1. Surgical treatment
- radical nephrectomy / nephron—sparing surgery (NSS)
- metastasectomy
- 2. Radiotherapy
- 3. Systemic treatment
- immunotherapy **→**
- molecular-targeted treatment •

Surgical treatment

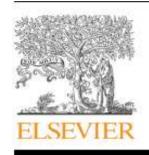
Nephrectomy should be performed on patients even in the case of metastatic disease (unless there are contraindications):

total nephrectomy or nephron-sparing surgery (NSS)

Surgical treatment

Metastasectomy, even in the case of advanced kidney cancer which can prolong survival:

- resection of single metastases
- metastasectomy of numerous metastases to lungs, liver and other organs, but "radical", not cytoreduction


Radiotherapy in the treatment of RCC

Radiotherapy in RCC:

- irradiation of CNS metastases
- irradiation of skeletal metastases

Systemic treatment

The importance of choosing the 1st line of treatment

Available at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.ejcancer.info

Second line treatment of metastatic renal cell carcinoma: The Institut Gustave Roussy experience with targeted therapies in 251 consecutive patients

Antonin Levy, Jean Menard, Laurence Albiges, Yohann Loriot, Mario Di Palma, Karim Fizazi, Bernard Escudier*

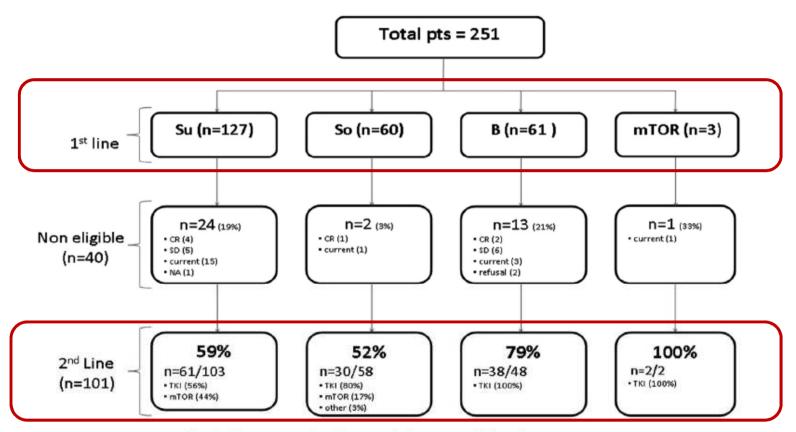


Fig. 1. Percentage of patients receiving a second line of treatment.

3.3. Second and third line exposure

Overall, 131 patients received a second line (131/251, 52.2%). According to our definition, 62% of 211 'eligible' patients received a second line with noticeable differences according to first line treatment: 59% (n = 61/103) for SU, 52% (n = 30/58) for SO and 79% (n = 38/48) for B (Fig. 1). The frequency of use of a second line treatment based on MSKCC classification and Eastern Cooperative Oncology Group (ECOG) performance status score (PS) is summarised Table 2. MSKCC classification (P = 0.02) and first line agent (P = 0.001) were significantly predictive for receiving a second line of treatment. PS score was not significantly predictive for receiving second line treatment (Table 2).

Forty-seven patients received third line treatment according to the eligibility criteria (47/131, 36%). The percentage of patients who received a third line according to the first line agent were: 56% (27/48), 28% (7/25) and 65% (13/20) for SU, SO and B respectively.

Original Study

Fuhrman Grade and Neutrophil-To-Lymphocyte Ratio Influence on Survival in Patients With Metastatic Renal Cell Carcinoma Treated With First-Line Tyrosine Kinase Inhibitors

Pawel Chrom,¹ Rafal Stec,¹ Aleksandra Semeniuk-Wojtas,¹ Lubomir Bodnar,¹ Nathaniel J. Spencer,² Cezary Szczylik¹

Table 1 Patient Characteristics	s (n = 266)
Variable	n (%)
Age at start of TKI therapy (years)	
Median	61
Range	22-85
Interval from diagnosis to TKI therapy (mo)	
Median	13.3
Range	0-242
Male gender	180 (67.7)
ECOG PS	
0	117 (44.0)
1	143 (53.7)
2	6 (2.3)
Histologic type	
Clear cell	248 (93.2)
Other	19 (6.8)
Sarcomatoid features	16 (6.0)
Fuhrman grade ^a	
1	13 (5.4)
2	127 (53.2)
3	71 (29.7)
4	28 (11.7)
TNM T stage ^b	
T1	45 (19.5)
T2	68 (29.6)
T3	109 (47.4)
T4	8 (3.5)
Previous immunotherapy	29 (10.9)
First-line TKI treatment	
Sunitinib	201 (75.6)
Pazopanib	45 (16.9)
Sorafenib	20 (7.5)
Second-line treatment	
None	159 (59.8)
Everolimus	97 (36.4)
Axitinib	10 (3.8)
Metastatic sites	
1	54 (20.3)
2	76 (28.6)
>2	136 (51.1)

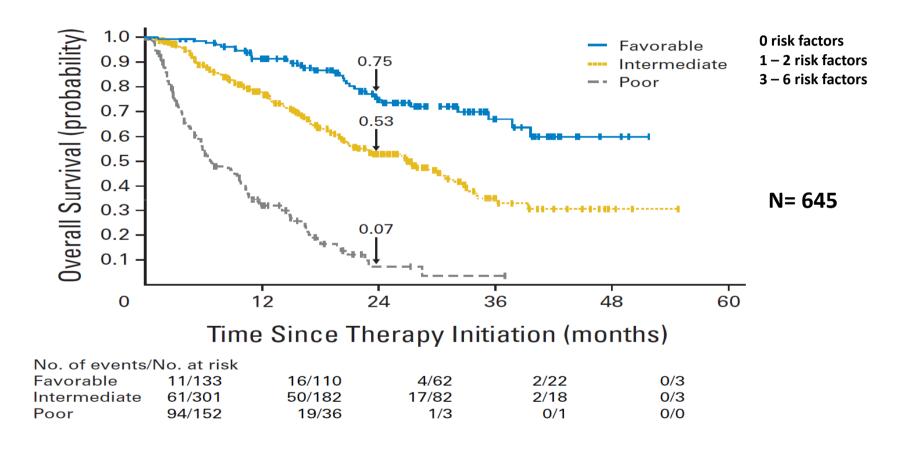
Step 2. The prognostic group of patients.

«Ideal» Prognostic scale

- Easy to use
- Correctly identifies groups of patients with different results
- Useful in informing patients
- Useful for making a therapeutic decision

Prognostic scale: MSKCC

(Memorial Sloan Kettering Cancer Center)


Prognostic scale: Heng's criteria (IMDC)

(The International Metastatic Renal Cell Carcinoma Database Consortium)

-	V-50			
Parameter	Parameter Estimate ± SE	Hazard Ratio	95% CI	P
Clinical				
KPS < 80%	0.92 ± 0.14	2.51	1.92 to 3.29	< .0001
Time from diagnosis to				
treatment < 1 year	0.35 ± 0.13	1.42	1.09 to 1.84	.0098
Laboratory				
Hemoglobin < LLN	0.54 ± 0.14	1.72	1.31 to 2.26	.0001
Calcium > ULN	0.59 ± 0.17	1.81	1.29 to 2.53	.0006
Neutrophil count > ULN	0.88 ± 0.17	2.42	1.72 to 3.39	< .0001
Platelet count > ULN	0.40 ± 0.16	1.49	1.09 to 2.03	.0121

Heng et al. J Clin Oncol. 2009

Prognostic scale: Heng's criteria (IMDC)

Prognostic scale: Heng's criteria (IMDC)

Parameters of different models

Risk Factors Assessed	MSKCC Model	French Model	CCF Model	IKCWG Model	CCF Model (2)	IMDC Model
KPS or ECOG PS	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	٧	$\sqrt{}$
Time from diagnosis to treatment	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	٧	$\sqrt{}$
Time from diagnosis to metastasis		\checkmark				
Previous immunoTx or RTx			√ (RTx)	$\sqrt{\text{(ImmunoTx)}}$		
Number of metastatic sites		\checkmark	$\sqrt{}$	$\sqrt{}$		
Liver metastasis		$\sqrt{}$				
Haemoglobin concentration	$\sqrt{}$		$\sqrt{}$	\checkmark		$\sqrt{}$
Calcium concentration	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	٧	$\sqrt{}$
Neutrophil count					٧	$\sqrt{}$
Platelet count					٧	$\sqrt{}$
LDH concentration	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$		
White blood cell count				$\sqrt{}$		
Alkaline phosphatase				$\sqrt{}$		

Table modified from Heng et al. Lancet Oncol. 2013

Motzer RJ et al. J Clin Oncol. 2002;20:289-296;Negrier S et al. Ann Oncol. 2002;13:1460-1468; Mekhail T et al. J Clin Oncol. 2005;23:832-841; Manola J et al. Clin Cancer Res. 2011;17:5443-5450.; Choueiri TK et al. Cancer. 2007;110:543-550.; Heng DY et al. J Clin Oncol. 2009;27:5794-5799.

1st line treatment of metastatic renal cell carcinoma/Poland/favourable and intermediate group

European Journal of Cancer 65 (2016) 102-108

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

Original Research

First-line sunitinib versus pazopanib in metastatic renal cell carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium

Jose Manuel Ruiz-Morales a,b, Marcin Swierkowski c, J. Connor Wells a, Anna Paola Fraccon d, Felice Pasini c, Frede Donskov f, Georg A. Bjarnason g, Jae-Lyun Lee h, Hao-Wen Sim i, Andrzej Sliwczynsk j, Aneta Ptak-Chmielewska k, Zbigniew Teter l, Benoit Beuselinck m, Lori A, Wood n, Takeshi Yuasa o, Carmel Pezaro p, Brian I. Rini q, Cezary Szczylik l, Toni K. Choueiri r, Daniel Y.C. Heng a,*

The number of patients enrolled in clinical practice - 1st line treatment

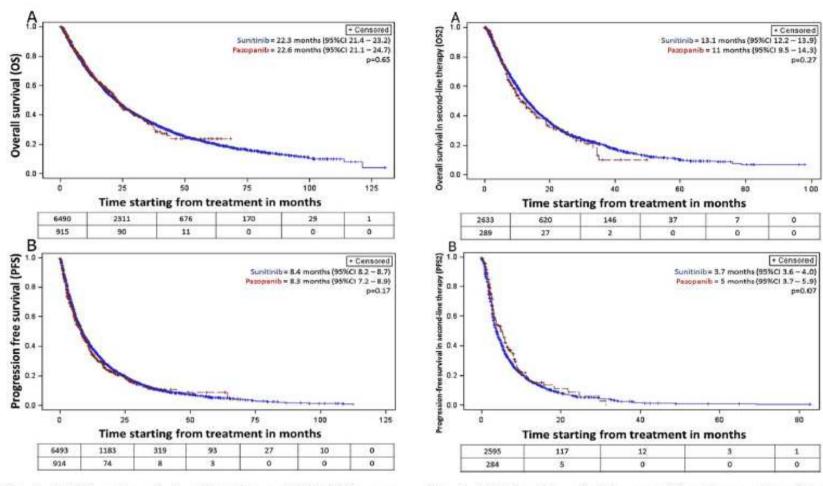
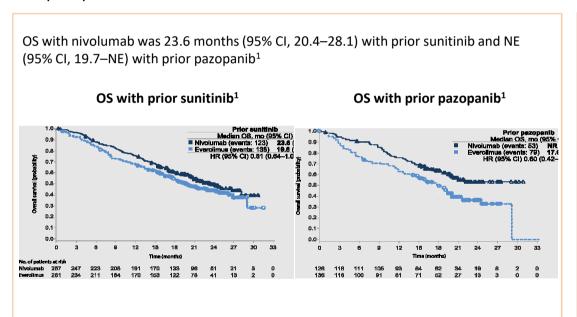
• Sunitinib: 6,519 patients

• Pazopanib: 919 patients

• Median follow-up: 40.4 months

Table 1 Baseline characteristics.

50 20	SU	PZ	
Median age	62 (IQR: 56-69)	65 (IQR: 58-73)	p < 0.0001
KPS <80%	816/6084 (13%)	122/879 (14%)	p = 0.70
Diagnosis to treatment <1 year	3569/6517 (55%)	470/918 (51%)	p = 0.04
Hypercalcaemia	738/5860 (13%)	110/833 (13%)	p = 0.62
Low haemoglobin	2805/6223 (45%)	386/876 (44%)	p = 0.57
Neutrophilia	821/6122 (13%)	102/870 (12%)	p = 0.17
Thrombocytosis	919/6140 (15%)	129/884 (15%)	p = 0.77
Male	4630/6519 (71%)	646/919 (70%)	p = 0.65
Nephrectomy	5627/6514 (86%)	811/917 (88%)	p = 0.09
Heng - IMDC risk group (n = 2830)	Favourable 1259/5514 (23%)	197/807 (24%)	p = 0.36
	Intermediate 3175/5514 (57%)	467/807 (58%)	3.52
	Poor 1080/5514 (20%)	143/807 (18%)	
Liver metastases	812/4038 (20%)	71/487 (15%)	p = 0.004
Brain metastases	344/4108 (8%)	34/479 (7%)	p = 0.34
Non-clear cell	374/3863 (10%)	29/417 (7%)	p = 0.07
Greater than one site of metastases	3200/4269 (75%)	388/504 (77%)	p = 0.32
Prior immunotherapy	664/6501 (10%)	97/908 (11%)	p = 0.66
Patients still on first-line TKI	1345/6510 (21%)	353/917 (39%)	p < 0.0001
Second line	2667/6519 (41%)	290/919 (32%)	$p < 0.0001^n$
Sorafenib	585/2667 (22%)	6/290 (2%)	107 500 10
Axitinib	225/2667 (8%)	57/290 (20%)	
Everolimus	1194/2667 (45%)	154/290 (53%)	
Other	673/2667 (25%)	73/290 (25%)	
Third line	980/3917 ^b (25%)	82/510 ^b (16%)	$p = 0.0007^{\circ}$
Sorafenib	204/980 (21%)	8/82 (10%)	. PART - SON WARE BUILD
Axitinib	81/980 (8%)	18/82 (22%)	
Everolimus	283/980 (29%)	29/82 (35%)	
Other	412/980 (42%)	27/82 (33%)	

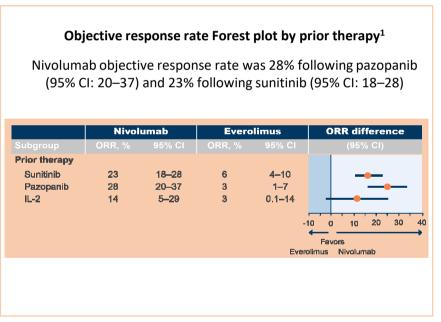
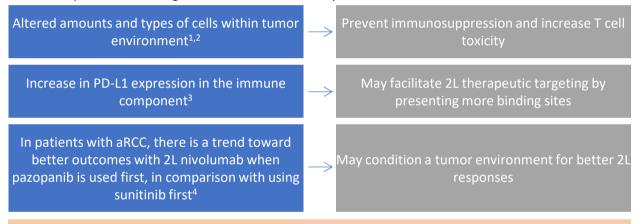
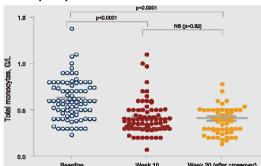

Fig. 1. (A) Overall survival of first-line sunitinib (SU) versus pazopanib (PZ). (B) Progression-free survival of first-line SU versus PZ.

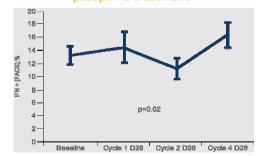
Fig. 3. (A) Overall survival in second-line therapy after either sunitinib (SU) or pazopanib (PZ). (B) Progression-free survival in second-line therapy after either SU or PZ.

VEGF receptor inhibitors may improve overall survival and objective response rate when used before nivolumab


Nivolumab is effective in aRCC patients previously treated with antiangiogenic agents such as sunitinib and pazopanib¹


1L pazopanib may improve 2L immunotherapy response in a/mRCC

• Pazopanib has a range of immunomodulatory effects:



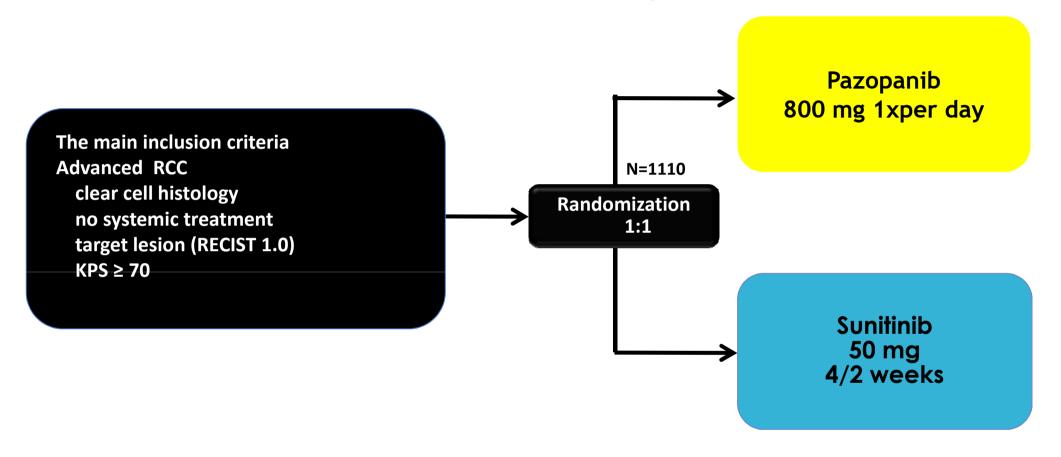
Enhanced response of 2L immunotherapy in a/mRCC may be due to an immuno-conditioning class effect of VEGF receptor inhibitors

Reduction in immunosuppressive cell types after pazopanib or sunitinib treatment¹

Restoration of anti-tumor immunity after pazopanib treatment²

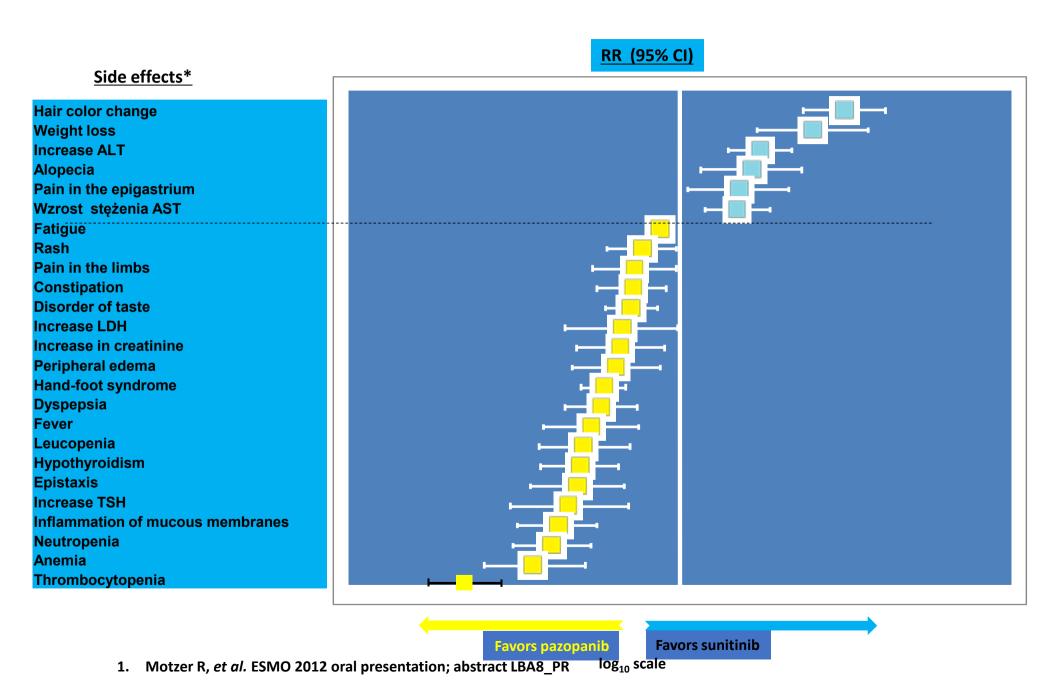
1st line treatment of metastatic renal cell carcinoma/Poland/poor group

Overall survival (months):


- Interferon 7,3

- Temsirolimus 10,9 (HR for death, 0.73; 95%, [CI], 0.58 to 0.92; p=0.008)

- Inteferon + Temsirolimus 8,4


Step 3. Factors that are related to the patient.

COMPARZ study

1. Motzer R, et al. ESMO 2012 oral presentation; abstract LBA8_PR.

The Relative Risk of Incidence of Adverse Events

Increased activity of liver enzymes (≤35%)¹ laboratory values

Increased activity of liver enzymes,* %	Pazopan	ib (n=554)	Sunitinib (n=548)		
	All grades	Grade 3/4	All grades	Grade 3/4	
ALT	60	15/2	43	4/<1	
AST	61	11/1	60	3/0	
Bilirubin	36	3/<1	27	2/<1	
Albumin	33	<1/0	42	2/0	
Creatinine	32	<1/0	46	<1<1	
Hyperglycaemia	54	5/0	57	4/<1	

Haematologic toxicity (≥35%)¹

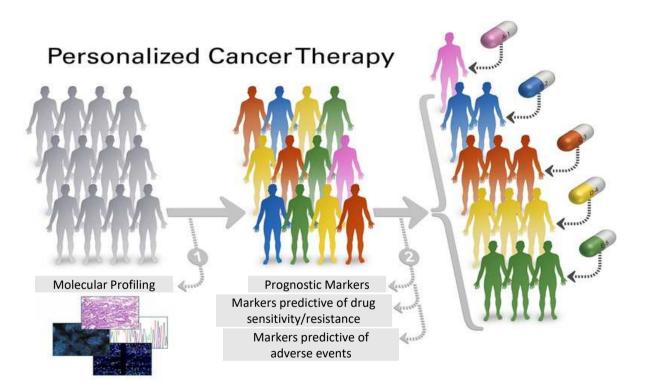
Haematologic toxicity, * %	Pazopan	ib (n=554)	Sunitinib (n=548)		
	All grades	Grade 3/4	All grades	Grade 3/4	
Anemia	31	1/<1	60	6/1	
Neutropenia	37	4/<1	68	19/1	
Thrombocytopenia	41	3/<1	78	18/4	
Lymphocytopenia	38	5/0	55	14/<1	
Leucopenia	43	1/0	78	6/0	

Step 4. Potential biomarkers, related to cancer.

Prognostic versus predictive biomarkers

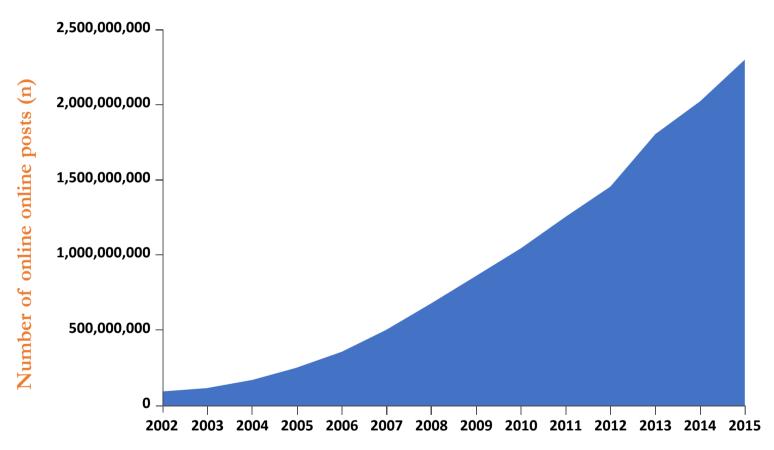
Prognostic Biomarkers

Biomarkers classify patients into groups with good, intermediate or poor prognosis, regardless of the type of therapy


Predictive Biomarkers

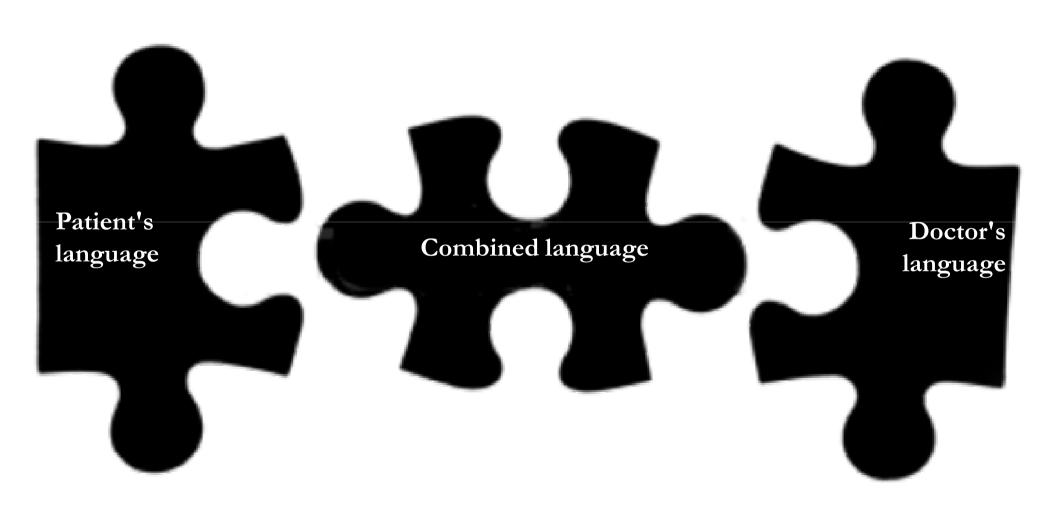
Biomarkers identify patients who can benefit from individual treatment regimens

Potential biomarkers under evaluation


Candidate Biomarker	Prospective Studies in RCC
PD-L1 expression	Nivolumab vs everolimusAtezolizumabPazopanib vs sunitinib
VEGFR-1 polymorphisms	BevacizumabAxitinib vs sunitinib
<i>IL-8</i> polymorphisms	PazopanibSunitinib
PBRM1, SETD2, BAP1, or KDM5C mutation in chromatin-modifying genes	Everolimus vs sunitinib
High circulating IL-18 levels	 Everolimus vs sunitinib

The development of genomics and advanced multiplatform technology can lead to the personalization of therapy and the new classification of kidney cancers

Reprinted with permission from The University of Texas MD Anderson Cancer Center. https://pct.mdanderson.org/#/. Accessed March 15, 2017. Step 5. Patient's choice.

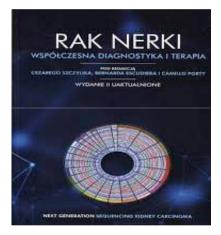

The increase in the number of patients and their families participating in online "disease" communities

Data collected from open-source communities; not collected from closed-source communities, except in instances involving partnerships.

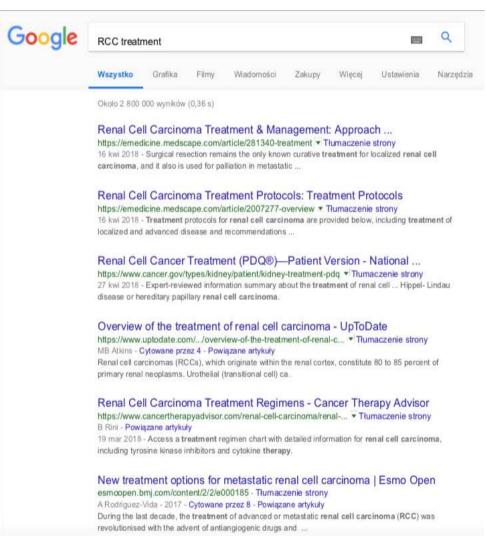
Source: Treato. December 2015.

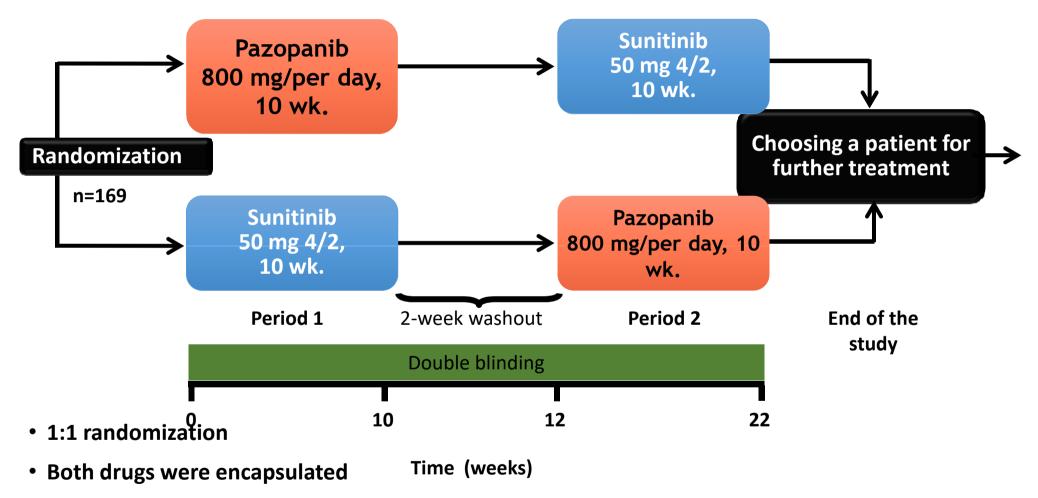
Understanding and adapting the "language" to the patient

When the patients have not received enough information from the doctor......

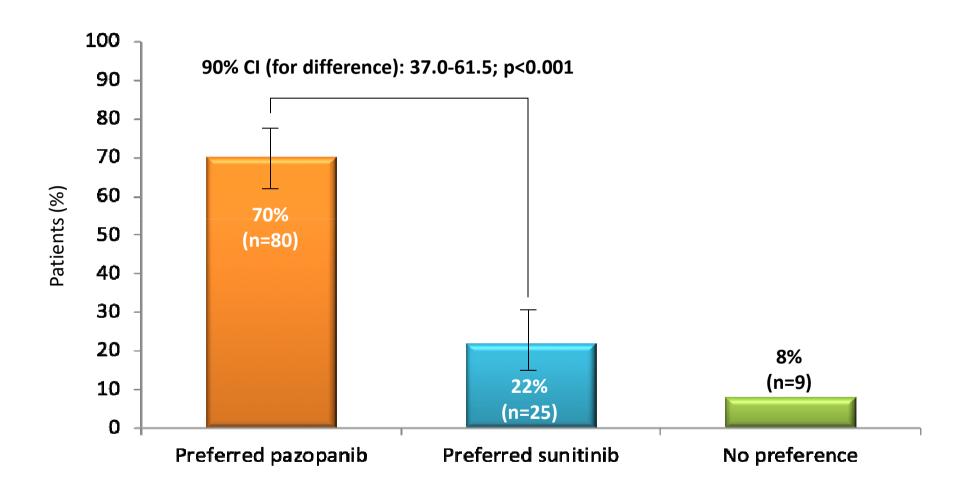

• Patients are looking for information online



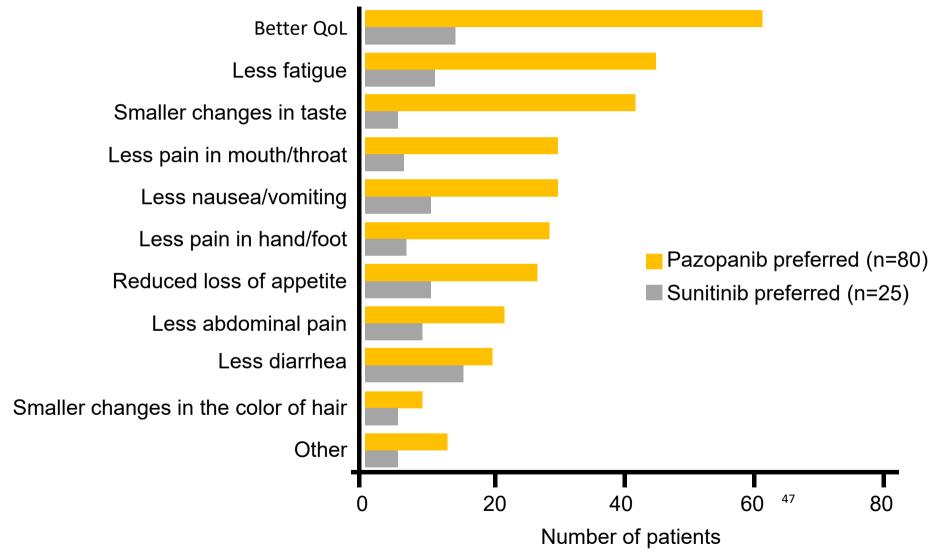




- Information changes every day
- A lot of information is helpful
- Some information is harmless
- Some information is dangerous or false

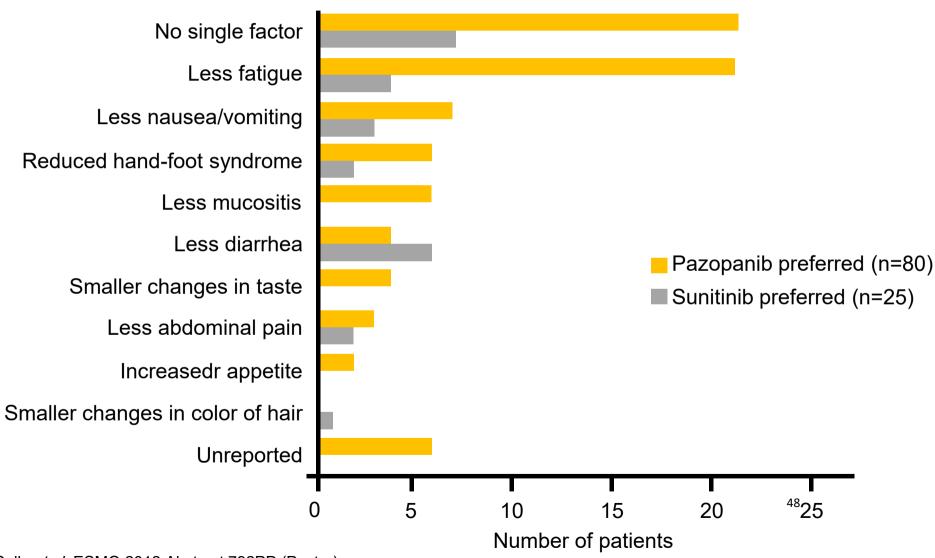


PISCES study

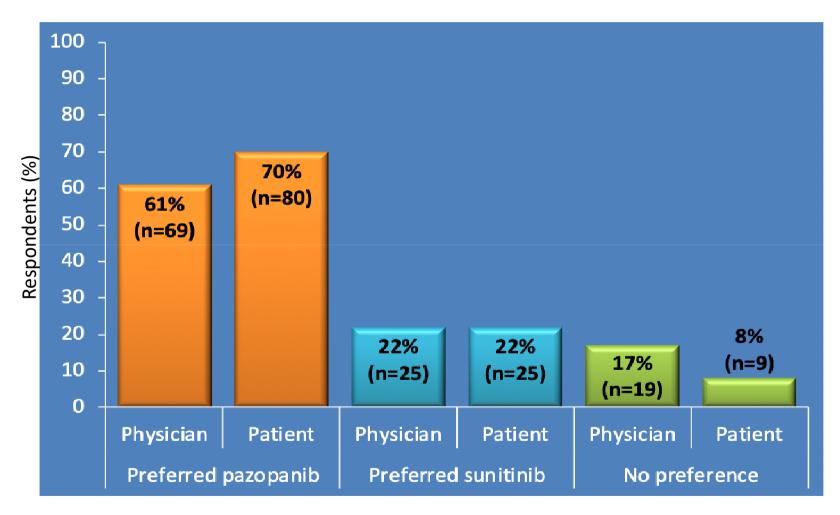


• Patients treated with sunitinib received placebo in 2 weeks without treatment

Primary Endpoints: Patient's preferences in the PISCES Study



Factors associated with the choice of treatment:


^{1.} Escudier et al. J Clin Oncol 2014;32:1412-8.

The most important single factor affecting patient selection

^{1.} Cella et al. ESMO 2012; Abstract 792PD (Poster).

Doctor's preferences regarding drugs used in the study (primary analysis)¹

Doctor's preferences are extremely important because they also include side effects that are not noticed by patients

Take home massage

- Step 1.Staging the disease.
- Step 2. The prognostic group of patients.
- Step 3. Factors that are related to the patient.
- Step 4. Potential biomarkers that are related to cancer.
- Step 5. Patient's choice.

Are we ready for a new standard?

Therapy	Disease setting	Trial	Control	Absolute survival gain	HR (95 % CI)	QoL/Toxicit y	MCBS Score ^b
Nivolumab, a PD- 1 checkpoint inhibitor	Advanced clear cell renal cell carcinoma previously treated with one or two regimens of anti- angiogenic	Study of nivolumab vs. everolimus in pre-treated advanced or metastatic clear-cell renal cell carcinoma (CheckMate 025) [50] Phase III NCT01668784	Everolimus Median OS: 19.6 months	OS gain: 5.4 months	OS HR: 0.73 (0.57– 0.93)	Improved toxicity profile and QoL	5 (Form 2a)
Cabozantinib	therapy Advanced renal cell carcinoma in adults following prior vascular endothelial growth factor receptor tyrosine kinase inhibitors	A study of cabozantinib (XL184) vs everolimus in subjects with metastatic renal cell carcinoma (METEOR) [52] Phase III NCT01865747	Everolimus Median OS: 16.5 months	OS gain: 4.9 months	OS HR: 0.66 (0.53– 0.83)	_	3 (Form 2a)
Lenvatinib in combination with everolimus	Advanced or metastatic renal cell carcinoma following one prior vascular endothelial growth factor-	Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial [53] Phase II	Everolimus Median OS: 15.4 months	OS gain: 10.1 months	OS HR: 0.51 (0.30– 0.88)	_	4 (Form 2a; secondary endpoint of OS in a small phase II
	targeted therapy	NCT01126722					randomise
Nivolumab in combination with ipilimumab	First-line therapy for intermediate- and poor-risk advanced metastatic renal cell carcinoma	NCT01136733 Nivolumab plus ipilimumab versus sunitinib in advanced renal cell carcinoma (CheckMate 214) [28, 69] Phase III	Sunitinib Median OS: 26.0 months	OS gain: 7.3 months ^c	OS HR: 0.63 (0.44– 0.89)	QoL benefit reported in exploratory evaluation ^d	d study) 3 (Form 2a)
Tivozanib	Recurrent or metastatic renal cell carcinoma with clear cell component,	NCT02231749 Tivozanib versus sorafenib in patients with advanced renal cell carcinoma [45] Phase III	Sorafenib Median PFS: 9.1 months	PFS gain: 2.8 months	PFS HR: 0.80 (0.64– 0.99)	OS NS No QoL bene fit	1 (Form 2b)
	and prior nephrectomy	NCT01030783	Es	cudier, et al. A	nn Oncol. 20	 19, doi.org/10.	1093/annonc/m

Guidelines for treatment of mRCC - ESMO 2019

Setting	Risk group	Standard	Option
First line	Good risk	Sunitinib [I,A] Bevacizumab + IFN-α [I,A] Pazopanib [I,A] Tivozanib [IIA}	High-dose IL2 [III,B] Bevacizumab + Iow-dose IFN-α [III,B]
	Intermediate/Poor risk	Nivolumab + Ipilimumab [I,A]	Cabozantinib [II,A]/Cabozantinib [II,C] Sunitinib [I,B]/Sunitinib [II,C] Pazopanib [I,B]/Pazopanib [II,C] Tivozanib [II,B]/Temsirolimus [I,C] Bevacizumab + IFN-α [II,C]/
Second line	Post TKI	Nivolumab [I,A, MCBS 5] Cabozantinib [I,A, MCBS 3] Tivozanib [II,C, MCBS 1]	Axitinib [II,B] Everolimus [II,B] Levantinib + Everolimus [II,B, MCBS 4]
	Post Nivolumab + Ipilimumab		Any TKI [IV,C] Levantinib + Everolimus [IV,C, MCBS 4]
Third line	First line - TKI Second line - Nivolumab	Cabozantynib [IV,B]	Axitibib [II,B] Everolimus [V,C]
	First line - TKI Second line - Cabozantinib	Nivolumab [II,B, MCBS 5]	Axitibib [V,C] Everolimus [V,C]
	First line - TKI Second line - TKI	Cabozantinib [I,A] Nivolumab [I,A, MCBS 5]	Everolimus [V,C]
	First line - Nivolumab + Ipilmumab Second line - TKI	Nivolumab [V,A]	Another TKI [V, C] Everolimus [V,C]

And.....

JAVELIN RENAL 101: STUDY DESIGN

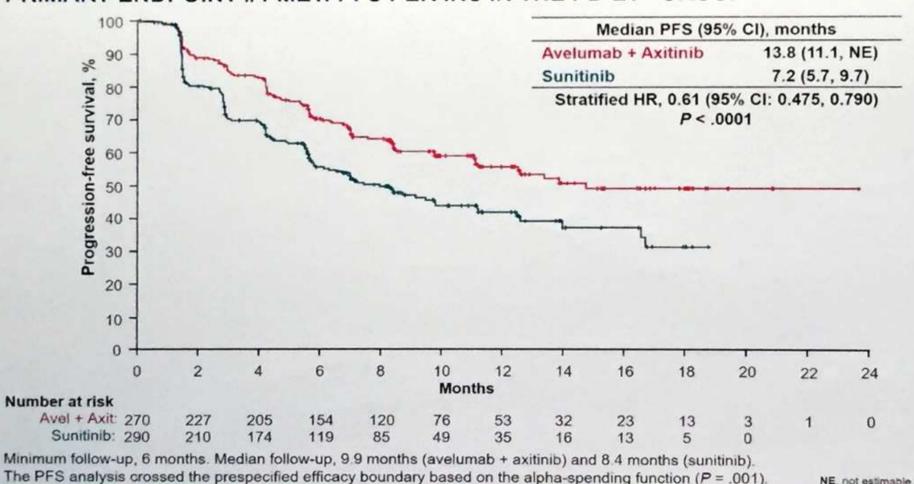
Key eligibility criteria:

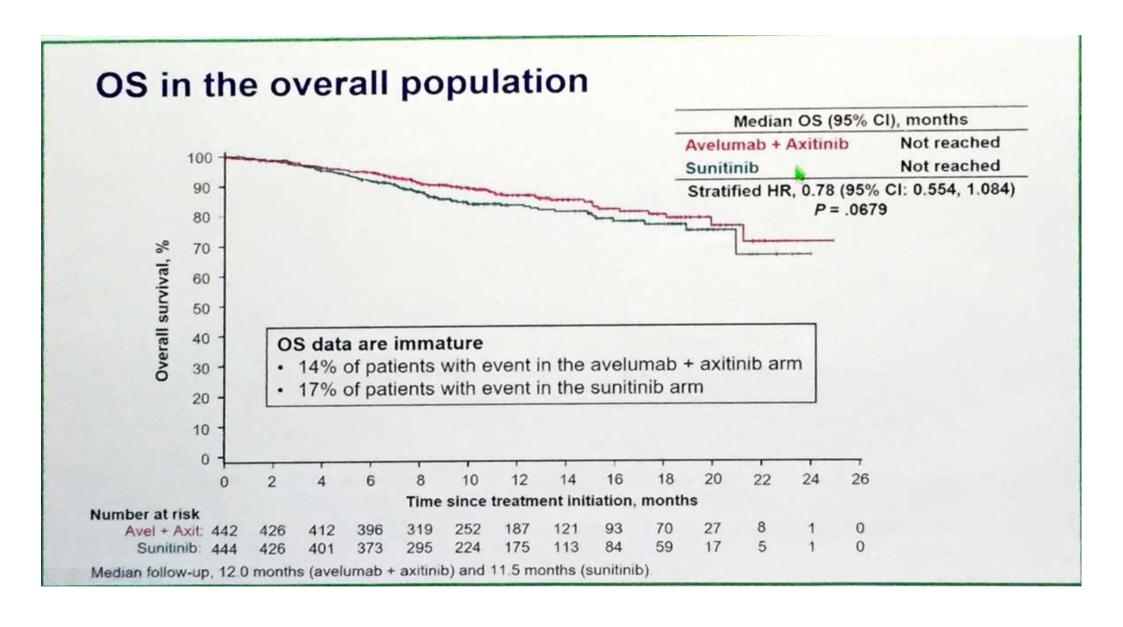
- Treatment-naive aRCC with a clear cell component
- ≥ 1 measurable lesion as defined by RECIST v1.1
- Tumor tissue available for PD-L1 staining
- ECOG PS 0 or 1

Stratification:

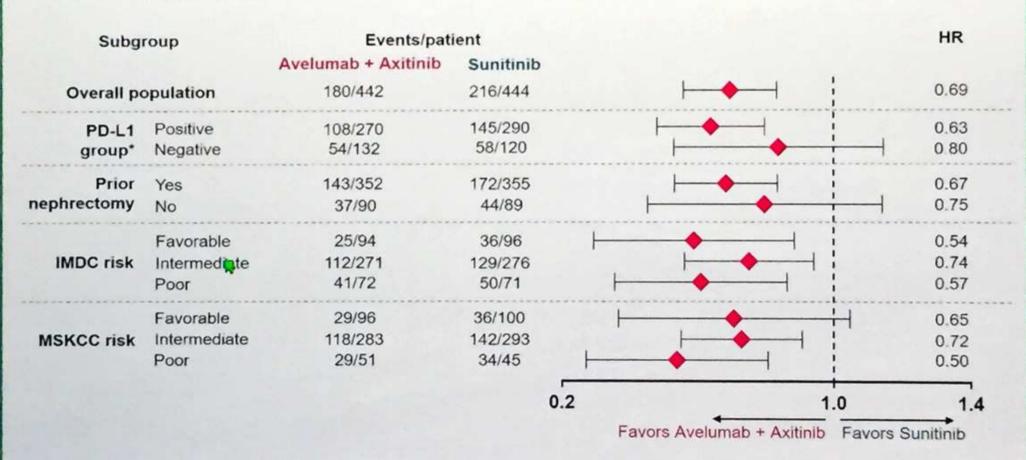
- ECOG PS (0 vs 1)
- Geographic region (USA vs Canada/Western Europe vs ROW)

Axitinib 5 mg PO BID (6-week cycle)


Sunitinib 50 mg PO QD (4 weeks on, 2 weeks off)


N = 886

NE, not estimable.


PRIMARY ENDPOINT #1 MET: PFS PER IRC IN THE PD-L1+ GROUP

Subgroup analysis

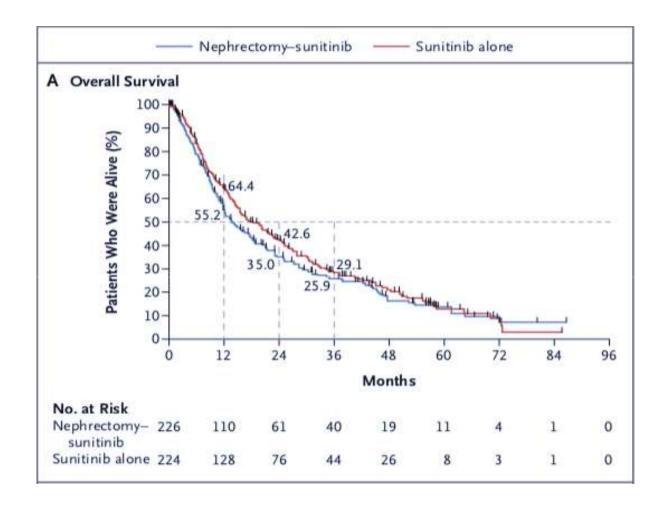
PFS PER IRC IN KEY SUBGROUPS

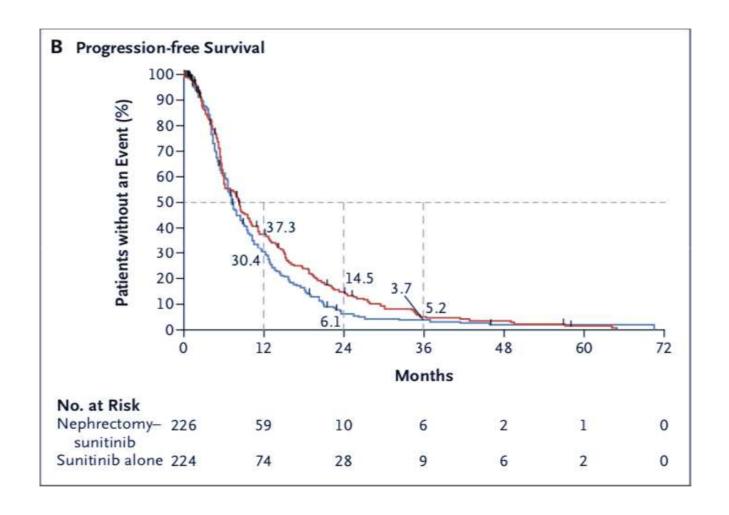
^{*} Among patients not evaluable for PD-L1 expression, PFS events occurred in 18/40 patients (avelumab + axitinib) vs 13/34 patients (sunitinib); HR, 0.83; 95% CI: 0.403, 1.699.

NEJM Carmena (strona 1 z 11)

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


AUGUST 2, 2018


VOL. 379 NO. 5

Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma

A. Méjean, A. Ravaud, S. Thezenas, S. Colas, J.-B. Beauval, K. Bensalah, L. Geoffrois, A. Thiery-Vuillemin, L. Cormier, H. Lang, L. Guy, G. Gravis, F. Rolland, C. Linassier, E. Lechevallier, C. Beisland, M. Aitchison, S. Oudard, J.-J. Patard, C. Theodore, C. Chevreau, B. Laguerre, J. Hubert, M. Gross-Goupil, J.-C. Bernhard, L. Albiges, M.-O. Timsit, T. Lebret, and B. Escudier

RESULTS

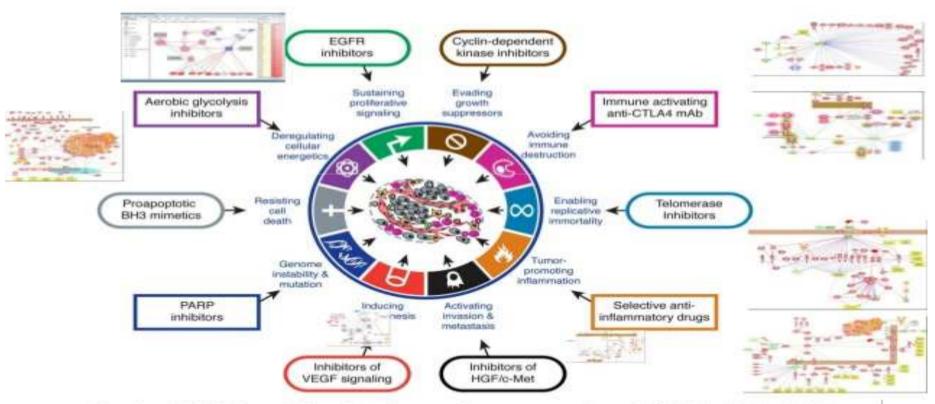
A total of 450 patients were enrolled from September 2009 to September 2017. At this planned interim analysis, the median follow-up was 50.9 months, with 326 deaths observed. The results in the sunitinib-alone group were noninferior to those in the nephrectomy–sunitinib group with regard to overall survival (stratified hazard ratio for death, 0.89; 95% confidence interval, 0.71 to 1.10; upper boundary of the 95% confidence interval for noninferiority, ≤1.20). The median overall survival was 18.4 months in the sunitinib-alone group and 13.9 months in the nephrectomy–sunitinib group. No significant differences in response rate or progression-free survival were observed. Adverse events were as anticipated in each group.

CONCLUSIONS

Sunitinib alone was not inferior to nephrectomy followed by sunitinib in patients with metastatic renal-cell carcinoma who were classified as having intermediaterisk or poor-risk disease. (Funded by Assistance Publique–Hôpitaux de Paris and others; CARMENA ClinicalTrials.gov number, NC100930033.)

Conclusion

Sunitinib alone was not inferior to nephrectomy followed by sunitinib in patients with metastatic renal-cell carcinoma who were in the MSKCC intermediate - risk or poor-risk groups.


But due to some doubts, we should abstain from the final announcement of the standard!

Kontakt: drrafals@wp.pl

Our solution: Pathway Activity signatures identify targets for anti-cancer drugs

Hanahan & Weinberg. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74

Thank you for your attention