CAR T-cells: Life in the fast lane

Benjamin Draper CAR Mechanics, King's College London, Guy's Hospital

I III III III III KING'S HEALTH PARTNERS

Disclosures

- Shareholder in Autolus Therapeutics (NASDAQ)
- Currently funded by Leucid Bio
- Hold patents related to CAR T-cell technology

Introduction

- Interest in CARs has dramatically increased in the last decade
- How did CARs come to be?
- How successful are CARs?
- Numper 1000 800-400-200-1990 2000 2010 2020 Year

"Chimeric Antigen Receptor" articles indexed by Pubmed

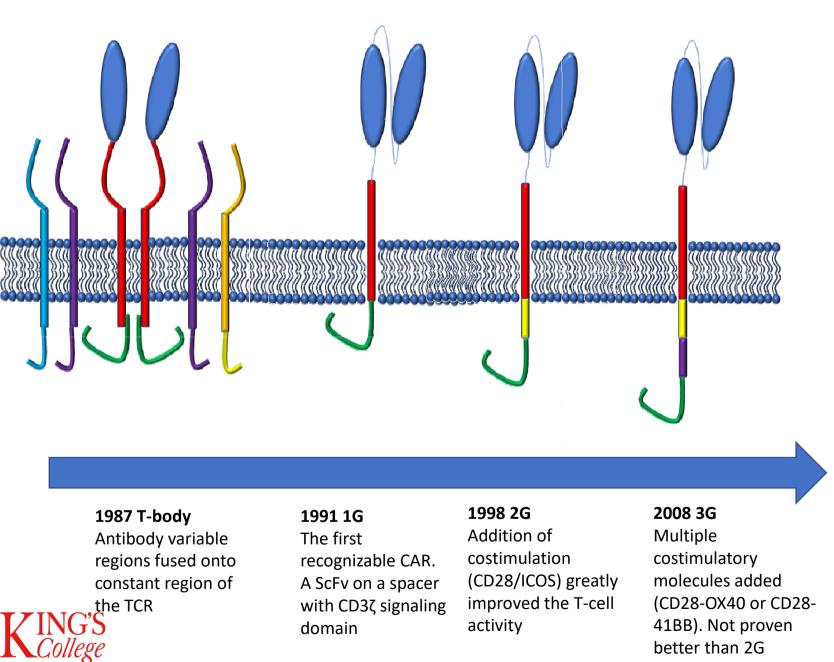
• What is the future for CARs?

Brief History: Immunotherapy

1891

W.B Coley observed tumour regression after bacterial infection in patients College

1955 Adoptive transfer of lymph nodes in mice showed anti-tumour activity


1957 Thomas and Burnet's theory of immunosurveilla nce

1976 Treatment of bladder cancer patients with bacteria prevents relapse

1978 Characterisatio n and cloning of IL2 allows *ex vivo* culture of lymphocytes

1991

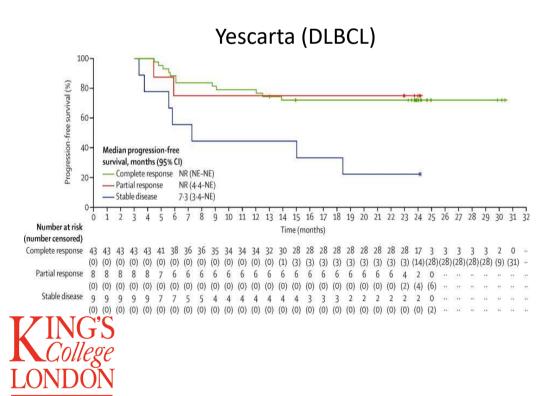
A Tumour specific antigen was administered and successfully elicited an immune response

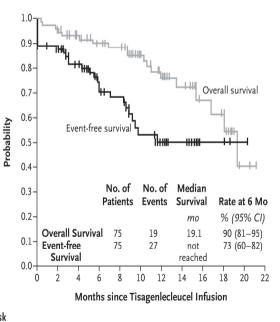
Binding moiety (ScFv/ligand) Extracellular Spacer (Stalk/Hinge)

Transmembrane CD28/4-1BB 4-1BB/OX40 CD3ζ

Early CAR Trials

- 2006: First clinical trial with a 1st Generation CAR targeting folate receptor in ovarian cancer
 - Limited efficacy
 - T-cells undetectable in all of patients 10 days post-infusion
- 2007: Results from a 1st generation CAR targeting CD171 in neuroblastoma showed similar results
- 2011: Results from a 2nd Generation CAR targeting CD19 in a CLL patient resulted in a complete response with CAR+ Tcells detectable at least 6 months post-infusion




CARs in Haematological Malignancies

CD19 CAR Success

• CD19 targeted CARs have been approved by the FDA, EMA and MHRA for ALL and DLBCL

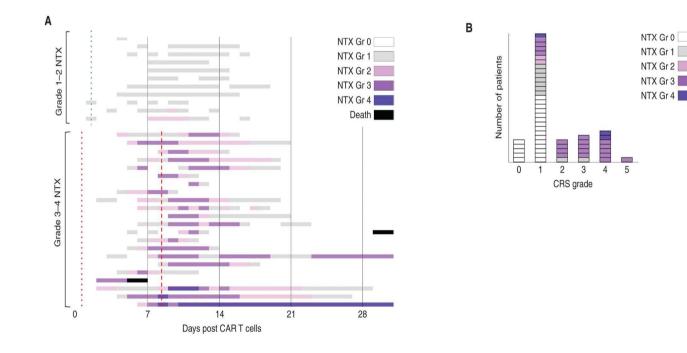
Overall survival	75	72	64	58	55	40	30	20	12	8	2	0
Event-free survival	75	64	51	37	33	19	13	8	3	3	1	0

No. at Risk

CD19 CAR Toxicity

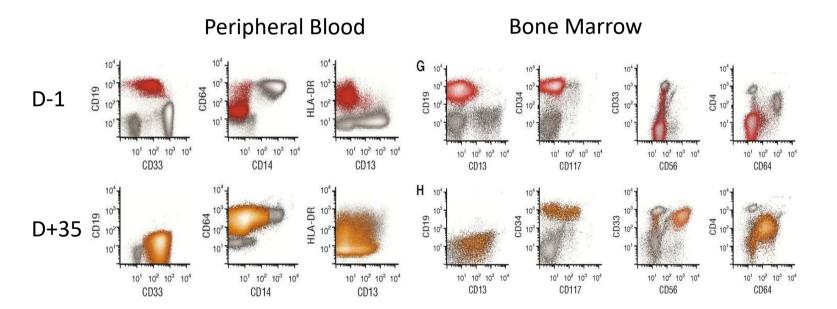
Adverse Events	Any	Grade 1/2	Grade 3	Grade 4	Grade 5
Any	108 (100%)	0	28 (26%)	69 (64%)	9 (8%)
Treatment-related	107 (99%)	36 (33%)	53 (49%)	16 (15%)	2 (2%)
SAE	60 (56%)	8 (7%)	34 (31%)	9 (8%)	9 (8%)
Neurological Event	72 (67%)	37 (34%)	32 (30%)	3 (3%)	0
Cytokine Release Syndrome	100 (93%)	88 (81%)	7 (6%)	4 (4%)	1 (1%)

5 Grade 5 due to relapse

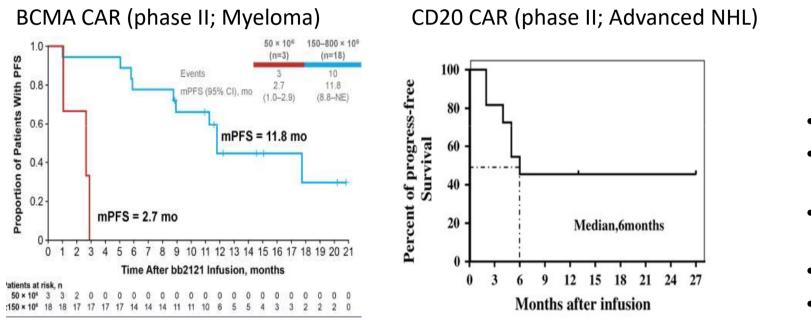

CD19 CAR Toxicity

- Cytokine Release Syndrome (CRS) or Tumour Lysis Syndrome results from a "cytokine storm" due to a vast number of T-cells becoming activated.
- IL6 is implicated
- Treatment with tocilizumab (anti-IL6)
- Can lead to death in severe cases

CD19 CAR Toxicity

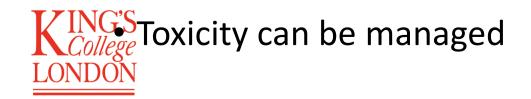

• CRS is a serious side-effect of CAR-T therapy which can lead to neurotoxicity.

CD19 CAR Relapse

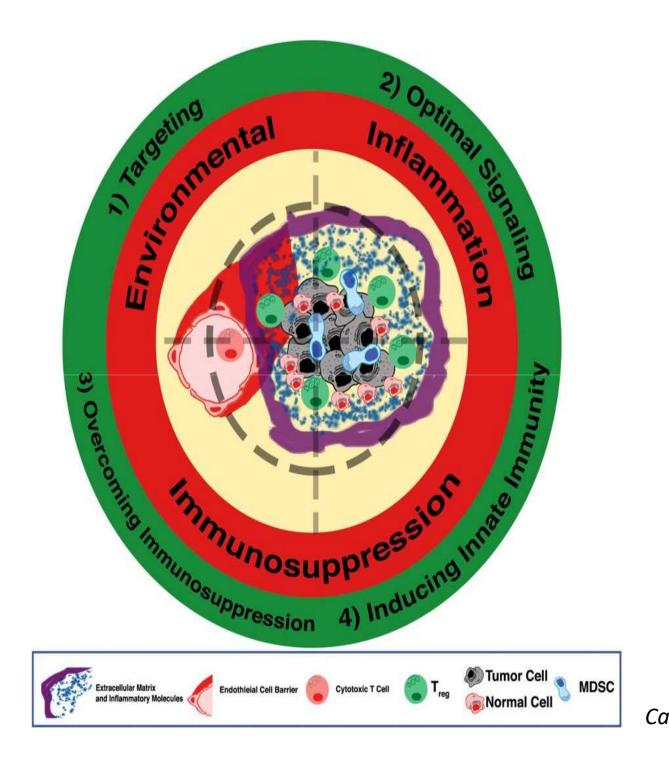

• A majority of relapses occur with CD19- or CD19 variants

Gardner et al., Blood (2)

Other targets

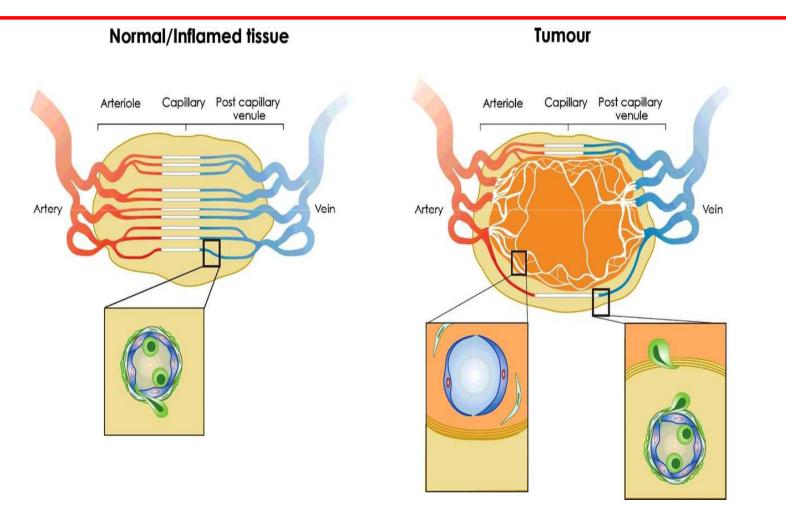


- CD22 (ALL)
- TRBC2 (T-ALL)
- TRBC1 (T-ALL)
- CD33 (CML)
- CD44v6 (AML)
- ...


Haematological Malignancies -Summary

- Success in CD19+ ALL and DLBCL has lead to two CD19 targeted CARs approved for use in patients
- Early phase trial results from other targets and diseases are promising
- Antigen loss can be solved by targeting multiple antigens

CARs in Solid Malignancies



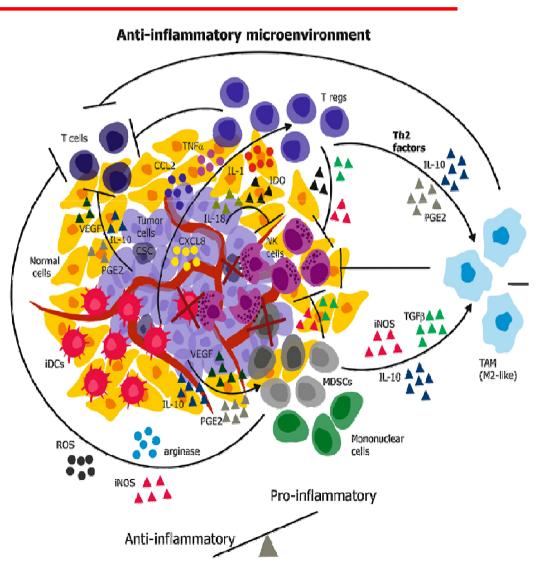
Castellarin et al. (20

Solid Tumour Access

Ager et al. Biochemical Society Transactior

Navarro et al. Frontiers in Immunolog

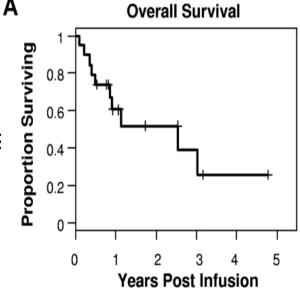
Solid Tumour Microenvironment

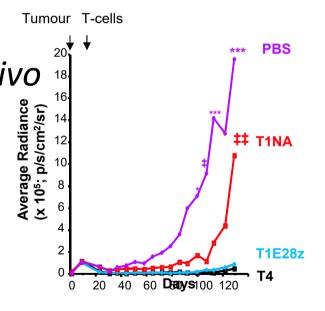

Expressing immunosuppressive molecules

• PDL1, PDL2, Adenosine

Attracting anti-inflammatory cells

• MDSCs, Tregs


Polarising macrophages to M2

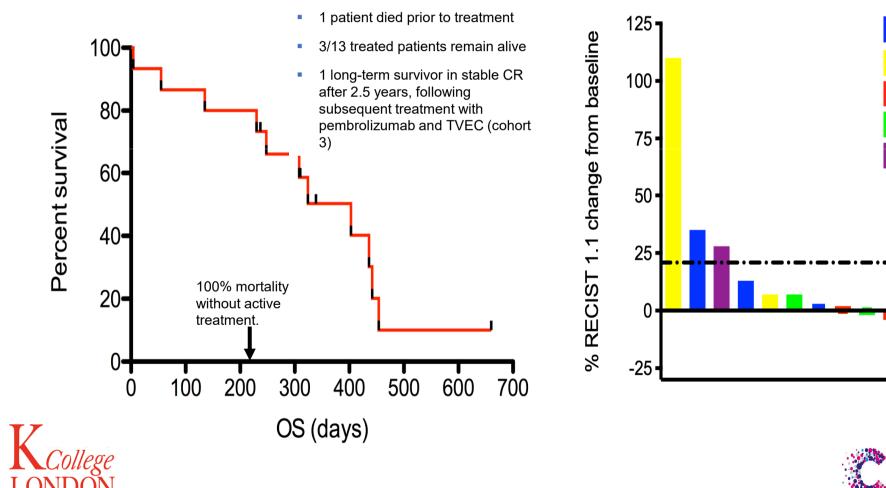


Solid Tumours – Clinical Trials

- Despite these problems, some trials are still going ahead
- In general results show CARs are well tolerated
- 100+ Phase I
 - Safety results in a number of indications
 - Few efficacy
- 42 Phase II
 - No results published

- Pan-ErbB targeted second generation CAR (T1E) for treating HNSCC
- Promising preclinical data in vivo
- Led to phase I trial

N=5-7 mice per group



- Single centre
- 3 + 3 dose-escalation
- Single dose intratumoural injection of CAR T-cells

1x10⁷

3x10⁷

1x10⁸

3x10⁸

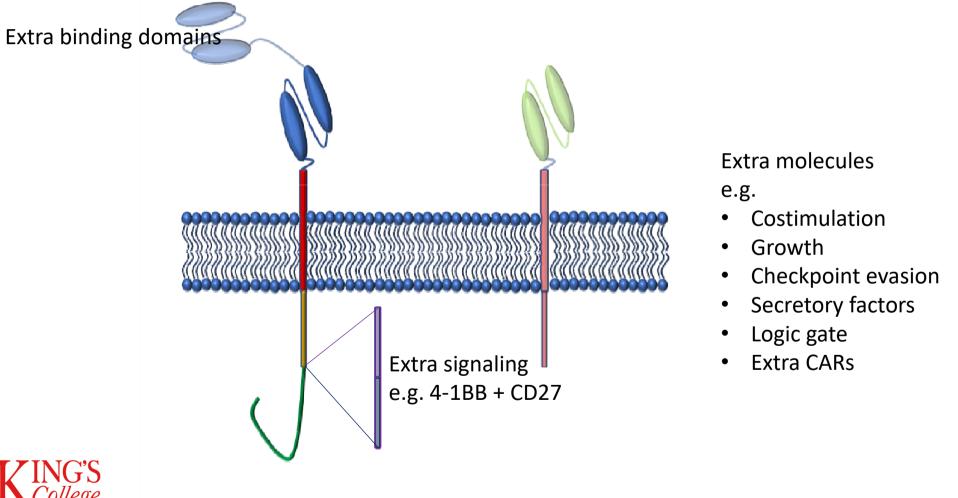
1x10⁹

Adverse Events

Patien t	Coho rt	Serious Adverse Event/ Reaction	CTCAE grade	Related to T4 immunothera py	Cohort Cohort	Dose 1 x 10 ⁷	Possibly related 4	Likely related	Definitely related			
1	1	Abnormal liver function tests, due to prescription of nortriptylene	3	No	Cohort 2 Cohort	3 x 10 ⁷	1	9				
6	2	Intra-tumoural pain due to disease progression	4	No	3 Cohort	3 x 10 ⁸	2	1	25			
10	3	Oral haemorrhage due to tumour biopsy prior to T4 immunotherapy	2	No	145							
15	5	Prolongation of hospitalisation – discharged at 48h	1	Yes								
17	5	Prolongation of hospitalisation – discharged at 48h	1	Yes	relat	 5 serious adverse events, two of which was related to T4 immunotherapy (SAR). 						
						otoxicity.	ease syndron	ne or				

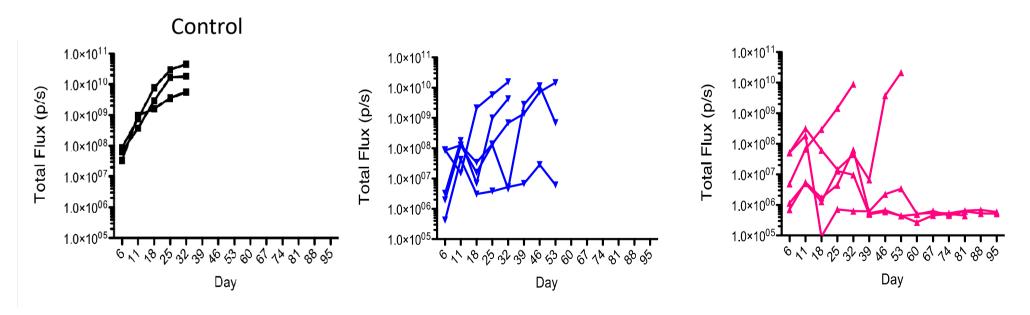
Solid Tumours - Summary

- Efficacy seen in haematological malignancies is not replicated in a solid tumour setting
- Many obstacles to overcome for potential successful treatment
- Some trials showing some efficacy
- A long way to go yet



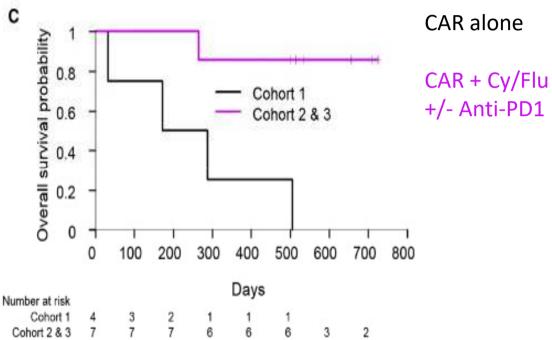
The Future of CARs

• Further engineering


"4th Generation" CARs

"4th Generation" CARs

• Success *in vitro* and *in vivo*, more testing required before testing in trials

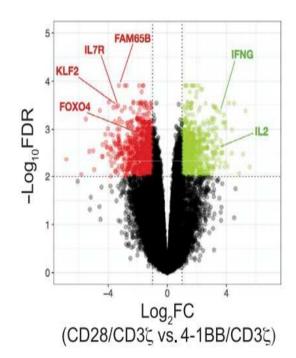

The Future of CARs

- Further engineering
- Combination therapy

Combination therapy

- Checkpoint Inhibitors
- Oncolytic viruses?
- Supportive therapy?

Heczey et al., Molecular Therapy


The Future of CARs

- Further Engineering
- Combination Therapy
- "Under the hood"

Under the Hood of CARs

- Metabolism
- 'Omics
 - Phosphoproteomics
 - Transcriptomics
 - Genomics
- Beyond CD4:CD8
 - Maintain memory phenotype?
- Immune Synapse
 - Different to TCR
- Make CARs more TCR-like?
 - More ITAMs?
 - Fewer ITAMs?

The Future of CARs

- Further Engineering
- Combination Therapy
- "Under the hood"

All together will result in a better understanding of tumour immunology leading to better therapeutics

CAR Commercialisation

- Success of CD19 targeted CARs greatly increased their value
- Cracking solid tumours will probably be even more lucrative
- \$Billions invested in CAR companies across the world

- CAR T-cells have shown success in haematological malignancies
- This success has not been replicated in a solid tumour setting
- More research and better understanding is required before solid tumour treatment will be effective

Control Sector Con

References

Reviews

- Mata & Gottschalk, Drugs (2019)
- Feins et al., American Journal of Haematology (2019)

Research

- Salter et al., Science Signalling (2018) [Proteomics]
- Locke et al., Lancet Oncology (2018) [Yescarta update]
- Davies et al., Molecular Medicine (2012) [T4 preclinical]
- Helson et al., Nature Communications (2018) [CAR Engineering]

Biomedical Research Centre Guy's & St Thomas' NHS Foundation Trust & King's College London

Acknowledgements

- CAR Mechanics
 - Dr. John Maher
 - Dr. Marc Davies
 - Dr. Lynsey Whilding
 - Dr. Caroline Hull
 - Dr. Pierre Antoine
 - Dr. Thomas Broughton
 - Dr. Adam Ajina
 - Antonella Adami
 - Leena Halim
 - Mustafa Taher

- Immunoengineerin
 - g
 - Dr. Sophie Papa
 - Dr. Olivier Martinez
 - Robert Page

• Dr. Fahima Kausar

- Dr. Tamara Muliaditan
- Dr. Maya Glover
- Appitha Arulappu

wellcome^{trust}

JP Moulton Charitable Foundatio

