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Abstract

Background: A growing body of evidence suggests that dysbiosis contributes to the onset and symp-
tomatology of irritable bowel syndrome (IBS) and other functional bowel disorders. Changes to the 
gastrointestinal microbiome may contribute to the underlying pathophysiology of IBS.
Methods: The present review summarizes the potential effects of microbiome changes on GI transit, 
intestinal barrier function, immune dysregulation and inflammation, gut–brain interactions and neuro-
psychiatric function.
Results: A multimodal approach to IBS management is recommended in accordance with current 
Canadian guidelines. Pharmacologic treatments are advised to target the presumed underlying patho-
physiological mechanism, such as dysregulation of GI transit, peristalsis, intestinal barrier function 
and pain signalling. The management plan for IBS may also include treatments directed at dysbiosis, 
including dietary modification and use of probiotics, which may promote the growth of beneficial 
bacteria, affect intestinal gas production and modulate the immune response; and the administration 
of periodic short courses of a nonsystemic antibiotic such as rifaximin, which may re-establish micro-
biota diversity and improve IBS symptoms.
Conclusion: Dysregulated host–microbiome interactions are complex and the use of microbiome-
directed therapies will necessarily be empiric in individual patients. A management algorithm com-
prising microbiome- and nonmicrobiome-directed therapies is proposed.

Keywords: Constipation; Diarrhea; Irritable bowel syndrome; Microbiome; Prebiotics; Probiotics

Introduction
The gastrointestinal (GI) microbiome comprises the organisms, 
including bacteria, viruses, fungi and archaea that reside along 
the length of the GI tract and interact with the host. Alterations 
to the complex host–microbiome ecology, such as changes in the 
type or quantity of micro-organisms or their interactions with the 
host immune system, are termed dysbiosis (1). As such, dysbiosis 
does not represent a single mechanism. Rather, it describes a 
dysregulation of what has been termed the ‘microbiota organ’ 
(1). This may include loss of microbial diversity, imbalance in the 

relative proportion of pathogenic and beneficial micro-organisms, 
or dysregulation of metabolic products (2–4). As with other 
organ systems, alterations in the structure and function of the 
microbiome will affect and be affected by the host’s genetics, sex, 
aging, immune function and environmental factors, such as diet 
and antibiotic exposure (5–7). Dysregulation of the microbiome 
may manifest clinically as disorders of the GI tract, as well as of dis-
tant organs, such as the liver, pancreas and brain (8,9).

There is emerging evidence to suggest that dysbiosis 
contributes to the onset and symptomatology of irritable bowel 
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syndrome (IBS) and other functional bowel disorders (10). 
While research is still in its preliminary stages, this line of in-
quiry has the potential to categorize IBS patients according the 
subtype of microbiome dysfunction and may lead to a more 
individualized treatment approach. This review summarizes the 
alterations in microbiome composition and function that may 
contribute to the pathophysiology of IBS and proposes a rational 
approach to managing dysbiosis to improve clinical outcomes.

Gut Microbiome
The Human Microbiome Project characterizes humans as 
‘supraorganisms’, or composites of the combined genomes of 
the host and the micro-organisms that live on or in the host 
(11). These micro-organisms outnumber human cells by a 
factor of 10. There are approximately 20,000 protein-coding 
genes that make up the human genome. The coding capacity of 
the microbial genome is estimated to be 150-fold higher (1), 
which serves to extend the range of traits or functions that the 
human genome has not evolved (11). These functions include 
the breakdown of dietary carbohydrates and proteins, produc-
tion of short-chain fatty acids (SCFA, e.g., butyrate, propionate, 
acetate), synthesis of vitamins and amino acids, production of 
bile acids, modulation of lipid metabolism and storage, and de-
toxification of carcinogenic compounds (12).

Most of the human microbiome is composed of organisms 
residing in the GI tract. The number and composition of micro-
biota lie along a continuum, with an estimated 10 to 1000 bac-
teria/gram in the stomach and duodenum, 104 to 107 bacteria/
gram in the jejunum and ileum, and 1011 to 1012 bacteria/gram 
in the colon (10,13). Two phyla, Firmicutes and Bacteroidetes, 
make up about 90% of the bacterial microbiome (12). The pre-
dominant genera in the intestinal lumen differ from those in the 
intestinal mucosa (14), a consideration when interpreting the 
results of fecal sampling.

Microbial exposure begins in utero or during childbirth, with 
further microbiota expansion and diversification with exposure 
to food and the environment during early development (15,16). 
The microbiome composition is affected by the method of birth 
(vaginal, Caesarean section) and the type of feeding (breast, 
formula) (17,18). Many factors will influence which organisms 
are able to colonize the various ecological niches along the GI 
tract, such as intestinal function (e.g., acid production, peri-
stalsis, transit time, barrier function), nutrition, the timing of 
microbial acquisition, and species adaptability in light of com-
petitive pressures and the development of the host immune re-
sponse. Early colonizing species are typically aerobic organisms 
(e.g., Staphylococcus, Streptococcus), whereas late colonizers are 
generally anaerobes (e.g., Clostridium) (10).

The acquisition of the gut microbiome occurs in concert with the 
development of the infant’s innate and adaptive immune systems. 
Colonizing bacteria are the first antigens, which serve to activate the 

immature immune response, promote intestinal barrier function, 
establish immune tolerance and influence the infant’s response to 
potential allergens (19). Immune effects of colonizing bacteria in-
clude activation of immunoglobulin-A (IgA), and interaction with 
Toll-like receptors to activate effector cells, such as macrophages, B 
cells and T-helper (Th1, Th2) cells. Also stimulated are regulatory 
T cells (Treg), which are required for immune tolerance (20) and 
which have been implicated in the development of allergy, autoim-
munity and chronic inflammatory conditions (21). These findings 
suggest that dysregulation of host–microbiome interactions may 
play a key role in the etiopathogenesis of IBS.

Dysbiosis in IBS
IBS is a common GI disorder with an estimated prevalence in 
Canada of 6 to 12% depending on the criteria used (22,23). 
According to the most recent guidelines by the Canadian 
Association of Gastroenterology (CAG), the recommended 
diagnostic criteria for IBS are the Rome IV criteria, which re-
quire abdominal pain (≥1 day/week for ≥3 months) associated 
with defecation or a change in bowel habits (24). Subtypes are 
constipation-predominant (IBS-C; >25% hard stools, <25% loose 
stools), diarrhea-predominant (IBS-D; >25% loose stools, <25% 
hard stools), mixed (IBS-M; >25% loose stools, >25% hard stools) 
and unclassified (IBS-U; <25% loose stools, <25% hard stools).

There are conflicting data as to whether there are alterations 
in the number or relative proportion of bacterial enterotypes 
in IBS. A Prevotella-dominant enterotype has been negatively 
associated with IBS symptom severity (25); positively associ-
ated with IBS-D (26); and found to be no different in its expres-
sion in IBS versus healthy controls (27). Similarly, an increased 
Firmicutes-to-Bacteroidetes ratio has been reported in some but 
not all studies (28,29). In part, these inconsistent findings may 
be because the composition of the microbiome in eubiosis and 
dysbiosis has not been determined. There may also be differing 
results due to the populations studied (e.g., IBS subtype), how 
and in what part of the GI tract the samples were obtained, the 
molecular techniques used, or other factors (10,30).

The microbiome is generally stable in adulthood but can be 
perturbed following an acute GI infection, the most common risk 
factor for the development of IBS. The estimated prevalence of 
post-infection IBS (PI-IBS) is 4 to 32% (31,32). Changes to the 
microbiota in PI-IBS, such as depletion of butyrate-producing 
bacterial strains, suggest that similar alterations may occur in 
IBS (33,34). The use of broad-spectrum, systemic antibiotics is 
also associated with an increased risk of IBS and non-IBS bowel 
symptoms (35,36), but the effect of different antibiotics on mi-
crobiota depletion has not been extensively studied.

More controversial is the association between IBS and 
small intestinal bacterial overgrowth (SIBO) (reviewed in ref. 
(37)). A recent meta-analysis reported a higher prevalence 
of SIBO in IBS patients versus controls (odds ratio 4.7) (38). 
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Possible microbiota changes with SIBO include an increase in 
methane-producing bacteria, which may be associated with IBS 
symptoms such as abdominal distension, pain and flatulence 
(39); and an increase in sulfate-producing strains, which may 
be associated with visceral hypersensitivity (40). However, ac-
curate diagnosis of SIBO is a challenge (reviewed in [41]). The 
most common approach, hydrogen breath testing using glucose 
or lactulose substrate, has poor specificity and may be a more ac-
curate measure of transit time than bacterial counts in the small 
intestine (42). Hydrogen and methane-based breath testing may 
be obtained according to current consensus recommendations 
(43), however, the recent CAG guidelines suggest against per-
forming hydrogen breath testing in patients with IBS (24). Stool 
cultures have little value since the microbiome of the small intes-
tine differs greatly from that of the colon (14).

Numerous pathophysiological mechanisms may contribute 
to the development of IBS, notably gut dysmotility, changes 
in intestinal barrier permeability, immune activation and in-
flammation, abnormal brain–gut interactions, hypersensitivity 
to visceral stimuli and psychological stressors (10). Each of 
these mechanisms may be associated with specific changes 
to the microbiome, although it is more likely that the com-
plex interactions among various species, and how this ecology 
influences the host immune response, will ultimately better de-
scribe the genesis of symptoms in IBS and other bowel disorders. 
The following summarizes how the microbiome may contribute 
to varying degrees to the underlying mechanisms in IBS.

Gastrointestinal Transit
GI transit time is inversely related to bacterial abundance and di-
versity, as suggested by the increasing bacterial count from the 
duodenum to the colon. Stool consistency is positively associ-
ated with the Bacteroides-Firmicutes ratio and the abundance 
of methane-producing species (e.g., Methanobrevibacter smithii) 
(44). Bacterial CH4 production has been associated with slower 
GI transit and constipation (25,45), with some data indicating 
that M. smithii is more abundant in IBS-C (46,47). Two studies 
have reported that the nonsystemic antibiotic rifaximin acceler-
ated colon transit, which was associated with a reduction in CH4 
production and improvements in stool frequency and consist-
ency (48,49). A caveat is that CH4 production in clinical studies 
is generally estimated from breath methane testing, which may 
not accurately reflect CH4 production in the colon (50).

Intestinal Barrier Function
Intestinal barrier dysfunction and increased permeability have 
been implicated primarily in IBS-D and PI-IBS (51). It has been 
reported that alterations in intestinal permeability in IBS-D are 
associated with decreased expression of tight-junction proteins 
such as zonula occludens-1 (ZO-1) and occludin; reduced 

occludin expression was correlated with duration of IBS 
symptoms and abdominal pain severity scores (52).

Commensal bacteria may have direct effects on the mucosal 
layer and the intestinal epithelial cells that make up the intestinal 
barrier. Lactobacillus have been shown to increase the expression 
of mucin in intestinal cell lines, blocking the adherence of bac-
teria (Helicobacter pylori, Pseudomonas aeruginosa), fungi (e.g., 
Candida albicans) and parasites (e.g., Entamoeba histolytica) 
that degrade mucus (51). Re-establishing commensal bacte-
rial populations with probiotics can promote tight-junction and 
barrier repair (reviewed in ref. (53)). Some strains of adhesive 
lactobacilli and bifidobacteria have been shown in vitro to inhibit 
the adhesion of GI pathogens to intestinal cells through active 
mechanisms (reviewed in ref. (54)) and niche competition (55), 
and to inhibit cell invasion by pathogens (56). In vitro and animal 
models have indicated that commensals also have antimicrobial 
effects through the production of metabolites such as lactic 
acid, which has activity against Helicobacter pylori (57,58); 
bacteriocins, which inhibit colonization by Clostridium difficile 
(59), Staphylococcus aureus (60), Listeria monocytogenes (61), 
and vancomycin-resistant enterococci (62); and antimicrobial 
peptides (e.g., cathelicidin, defensins), which promote mucus 
synthesis and intestinal epithelial repair (63,64). Rifaximin has 
been shown to alter the attachment and internalization of path-
ogenic bacteria (65), which may be due in part to changes to the 
physiology of epithelial cells (66). In travellers’ diarrhea, rifaximin 
reduced the expression of bacterial virulence factors, an effect that 
appeared to be partially mediated by downregulation of matrix 
metalloproteinase (MMP)-9, an enzyme that degrades barrier 
function (67). In an animal model of colitis, rifaximin reduced 
bacterial translocation to mesenteric lymph nodes, which was 
associated with a reduction in proinflammatory cytokines (68). 
Some authors have suggested that impaired barrier function may 
not directly cause IBS symptoms, but may be associated with in-
flammation and altered sensorimotor function (69).

Immune Dysregulation and Inflammation
Loss of barrier integrity may be associated with increased pas-
sage of commensal and pathogenic bacteria across the intestinal 
epithelium, resulting in immune activation and subclinical in-
flammation. Barrier translocation has been shown to be partly 
regulated by mast cells in IBS patients (70), although it is un-
clear if the number of mast cells is elevated in IBS or whether 
such increases are associated with symptoms (69). Of greater 
importance to IBS-related visceral hypersensitivity and abdom-
inal pain are the pro-inflammatory mediators produced by mast 
cells (e.g., histamine, proteases, prostaglandins, serotonin), and 
the proximity of mast cells to enteric nerves (71–74).

Dysbiosis may also be associated with alterations in the in-
nate immune response, notably increased expression of Toll-
like receptors (e.g., TLR-4 and -5) by macrophages and the 
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release of TLR-associated cytokines (e.g., interleukin-1β, IL-6, 
IL-8, tumour necrosis factor [TNF]-α) (75–77). Serum levels 
of IL-6, IL-8 and TNF-α have been proposed as an immune bi-
omarker of IBS (78) but this requires further validation.

The adaptive immune response has been less studied in IBS, al-
though a recent study found a significant increase in CD4+T cells 
expressing the gut-homing marker integrin β7 (79). In addition, 
there are data to suggest dysregulation of the normal balance of 
Th1/Th2 subsets, with IBS patients demonstrating elevated base-
line levels of proinflammatory cytokines, such as IL-1β, TNF-α 
and IL-6 (80). This profile of elevated IL-1β and TNF-α has been 
linked to abdominal cramps, pain, nausea/vomiting and delayed 
gastric emptying in functional dyspepsia (81) and may be a 
factor in IBS symptomatology. Gene polymorphisms affecting Th 
cytokines have also been reported to be overrepresented in IBS 
patients compared to controls (82). An emerging area of interest 
is epigenetic changes to pro-inflammatory factors (e.g., NF-κB, 
hypoxia-inducible factor) by SCFAs such as butyrate, which 
promotes Treg differentiation (83–85). Butyrate has been shown 
in vitro to inhibit the pro-inflammatory response (Th1 response, 
interferon-γ production), an effect that is partially mitigated by ac-
etate and propionate (86).

Gut–Brain Axis and Neuropsychiatric Function
The concept of a gut–brain axis with bidirectional commu-
nication between the central and enteric nervous systems 
(CNS, ENS) was introduced almost four decades ago (87). 
Psychological factors (e.g., stress, depression, anxiety) have 
long been accepted as contributing to IBS. A recent meta-
analysis found that levels of depression (standard mean dif-
ference 0.76) and anxiety (SMD 0.84) were higher in IBS 
patients compared to healthy controls (88). Chronic stress and 
depression are now known to alter the microbiota, increasing 
Escherichia coli, Pseudomonas and Enterobacteriaceae and 
decreasing Lactobacilli and Faecalibacteria (89,90).

Conversely, changes to the microbiota may affect neuropsy-
chiatric function via several possible mechanisms. Microbiota 
produce a variety of neurotransmitters, such as norepinephrine 
(Escherichia, Bacillus, Saccharomyces), serotonin (Escherichia, 
Streptococcus, Candida), γ-amino butyric acid (GABA) 
(Lactobacillus, Bifidobacterium), acetylcholine (Lactobacillus) 
and dopamine (Bacillus) (91). Lactobacillus has been shown 
in animal studies to increase GABA mRNA expression in the 
brain, an effect not found in vagotomized mice (92). A small 
study in healthy women reported that probiotic consumption 
was associated with changes in connectivity to the midbrain, a 
region involved in visceral pain sensitivity and emotional proc-
essing (93). Also noteworthy is the elevated level of serotonin 
produced by mast cells and enterochromaffin cells in the GI 
tract of IBS patients, which has been significantly correlated 
with abdominal pain severity (64).

Studies of fecal microbiota transfer (FMT) from IBS patients 
to rodents have reported the development of IBS features (ac-
celerated GI transit, intestinal barrier dysfunction, immune ac-
tivation) and symptoms (anxiety, hypersensitivity to colonic 
distension) following transplantation (94,95). Microbiota 
changes included an increase in Enterobacteriaceae and a de-
crease in bifidobacteria. Recent authors have proposed a mi-
crobial signature of psychological distress in IBS based on an 
association of Proteobacteria abundance with anxiety, depres-
sion and stress perception; decreased Lachnospiraceae with de-
pression and increased Bacteroidaceae with anxiety (96).

Therapeutic Strategies
The current Canadian practice guidelines recommend a number 
of therapeutic strategies to manage IBS (24). Psychological 
therapies include cognitive-behavioural therapy and hyp-
notherapy. Medical therapies include antispasmodics (e.g., 
dicyclomine, hyoscine, pinaverium) and antidepressants (e.g., 
tricyclics, selective serotonin reuptake inhibitors). In addition, 
the guidelines acknowledge that treatments directed at dysbiosis 
may also be beneficial. Such therapies may include the following:

Dietary Modification
There is very low-quality evidence to support a low FODMAP 
(fermentable oligosaccharides, disaccharides, monosaccharides, 
polyols) diet to alter colonic microbiota production of gases 
and SCFAs, and to improve abdominal pain, bloating, fre-
quency and urgency in IBS (24). The evaluation of the evi-
dence quality is based on the general difficulty of performing 
dietary studies. However, the full restriction phase of the diet is 
not recommended long-term and should be implemented with 
the guidance of a dietitian. Other recommended treatments 
are soluble fibre and psyllium, which provide bulk, are 
fermented to SCFAs and promote the growth of lactobacilli 
and bifidobacteria by lowering colonic pH (97). An elemental 
diet may also be beneficial in patients with bacterial overgrowth 
(98). Gluten-free diets and wheat bran supplementation do not 
appear to be helpful in the management of IBS.

Probiotics/Prebiotics
Probiotics appear to improve global symptoms, abdominal pain, 
bloating and flatulence scores based on meta-analysis (24). 
Although the effects of probiotics are modest, the safety profile is 
very good (99). However, despite numerous studies, there are sig-
nificant limitations to the evidence base, such as the use of widely 
variable strains or combinations of microbial species, and uncer-
tainty as to the viability and constituents of commercial products 
due to a lack of regulations to ensure product quality (24).

Prebiotics do not appear to improve GI symptoms in IBS 
patients, according to a recent meta-analysis (98). There was 
no difference with prebiotics versus placebo with respect to 
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abdominal pain, bloating and flatulence, although there was 
some improvement in flatulence severity.

Antibiotics
Broad-spectrum antibiotics (e.g., amoxicillin, rifaximin, 
ciprofloxacin) are commonly used in SIBO (100), and a number 
of studies have investigated broad-spectrum antibiotics in IBS, 
primarily to target bacterial overgrowth. Neomycin has been 
shown to improve IBS symptom scores (101) but most patients 
fail to respond to retreatment (102). Similarly, retreatment is 
often ineffective with doxycycline, amoxicillin/clavulanate and 
ciprofloxacin, an effect attributed to early development of anti-
biotic resistance (102,103). A further concern is systemic ad-
verse effects with these agents.

Rifaximin is a nonsystemic antibiotic that has been shown 
in multiple clinical trials to be effective in improving global 
IBS symptoms, bloating, abdominal pain and stool con-
sistency (104,105). Rifaximin was recently approved for 
nonconstipation IBS in Canada, and is recommended for the 
treatment of IBS by the American College of Gastroenterology 
(106). A metagenomic analysis of patients with GI and liver 
diseases reported that rifaximin was associated with a signif-
icant increase in Lactobacilli without significant alterations 
in the overall gut ecology (107). A second analysis in 
nonconstipation IBS reported an increase in bacterial diversity 
with rifaximin, including a reduction in Clostridium and a shift 
in the Firmicutes/Bacteroidetes ratio (108). These changes 
in the composition of the microbiota may contribute to an 
anti-inflammatory effect at the level of the intestinal mucosa 

(106). Several authors have noted that rifaximin is an agonist 
of the pregnane X receptor (PXR) (109), which inhibits nu-
clear factor (NF)-κB and its transcription of proinflammatory 
cytokines, such as TNF-α. Rifaximin has been shown to 
downregulate NF-κB genes and improve recovery from colitis 
symptoms in PXR-humanized animal models but not in PXR-
null mice (110), suggesting that the anti-inflammatory effect 
is mediated by PXR. In addition, rifaximin appears to have 
direct effects on bacterial metabolism, colonic methane pro-
duction and the expression of virulence factors (48,111,112), 
as well as effects on host mucosal inflammation and bacterial 
attachment (112). Repeated courses of rifaximin do not ap-
pear to significantly alter the antibiotic sensitivity of micro-
biota (113).

Fecal Microbiota Transplantation (FMT)
This approach is novel and not currently recommended out-
side of clinical trials. Two recent trials have reported conflicting 
results. A double-blind study in patients with moderate-to-
severe IBS reported symptom relief (>75 points on the IBS 
Symptom Severity Score) in 65% of active-treatment patients 
versus 43% of controls (114). In contrast, a study involving a 
similar population found that FMT was effective in altering 
the microbiome but there were greater improvements in 
symptom and quality of life scores with placebo (115). These 
differences may be due to the patient populations, the study 
methodology or the microbial diversity or donor samples, 
which has been shown to be a predictor of successful trans-
plantation (116).

Figure 1. Proposed therapeutic approach to managing the microbiome in IBS. It should be noted that the actual management approach to any given IBS 
patient will depend on multiple factors; the therapeutic strategies shown should not imply that microbiome-related approaches should be tried before 
nonmicrobiome related therapies. A multimodal approach comprising dietary/lifestyle, medical, and/or psychological therapies may be required (24).

40 Journal of the Canadian Association of Gastroenterology, 2021, Vol. 4, No. 1

maurycy.chruszcz
Podświetlony

maurycy.chruszcz
Podświetlony



Clinical Management
IBS is currently managed according to the predominant 
symptoms of pain, diarrhea (IBS-D) or constipation (IBS-
C), with pharmacologic treatments targeting the presumed 
underlying dysfunction, such as GI transit (e.g., loperamide, 
eluxadoline, laxatives), peristalsis (antispasmodics), epithe-
lial ion channels (linaclotide) or pain signalling (e.g., tricyclic 
antidepressants). This approach is necessarily empiric since 
the underlying pathophysiology is unknown, may differ in 
subgroups of patients or may evolve over time in individual 
patients.

Therapies that address the dysbiosis associated with IBS 
may be added to this management plan (Figure 1). Dietary 
modifications and the use of probiotics may promote the 
growth of beneficial Lactobacilli and Bifidobacteria, alter in-
testinal gas production (CH4, H2) and modulate the immune 
response. Periodic short courses of the antibiotic rifaximin may 
also be effective in reducing the pro-inflammatory products of 
pathogenic bacteria and in re-establishing microbiota diversity, 
which may improve abdominal distension, pain and stool con-
sistency (114–116).

Despite emerging evidence of the importance of dysbiosis 
in the pathophysiology of IBS, it should be noted that there 
is no consensus on how dysbiosis should be characterized. At 
present, eubiosis can only be defined retrospectively as changes 
to the microbiome that are presumed to underlie symptom im-
provement in individual patients rather than as a prospective 
goal of therapy. Preliminary attempts to develop a test for fecal 
dysbiosis have been unsuccessful (117), although fecal bacte-
rial profiling may one day prove useful in predicting responders 
to treatments that target dysbiosis, such as a low FODMAP 
diet (118). Thus, modulation of the microbiome will require 
an individualized and empiric strategy of dietary modification, 
probiotics and/or use of nonsystemic antibiotics in an effort to 
modify the complex ecology of dysregulated microbiome–host 
interactions in IBS patients.
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