eISSN: 1897-4317
ISSN: 1895-5770
Gastroenterology Review/Przegląd Gastroenterologiczny
Current issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
abstract:
Review paper

Resistance to death pathway induction as a potential targeted therapy in CRISPR/Cas-9 knock-out colorectal cancer cell lines

Malgorzata Adamiec-Organisciok
1
,
Magdalena Wegrzyn
1
,
Lukasz Cienciala
1
,
Ngoni Magate
1
,
Magdalena Skonieczna
1
,
Joanna Nackiewicz
2

1.
Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
2.
Faculty of Chemistry, University of Opole, Opole, Poland
Gastroenterology Rev
Online publish date: 2024/02/05
View full text Get citation
 
PlumX metrics:
Regulated cell death is a fundamental biological process that plays a crucial role in maintaining tissue homeostasis and eliminating damaged or unnecessary cells. Ferroptosis is an iron-dependent process, characterized by the accumulation of oxidized and damaged lipids, which leads to programmed cell death. Among the ferroptotic pathway genes regulating this process, GPX4, TFRC, ACSL4, FSP1, SLC7A11, and PROM2 could be considered. There are many well-known ferroptotic pathway regulators, which are discussed in this compact review. Cells with tissues of different origin display sensitive or resistant phenotypes to such regulators. In some cases, unexpected changes during cell treatment occurred, suggesting the possibility of regulating the death pathway. We assumed that possible changing of ferro-sensitivity to ferro-resistance in cells, especially in colorectal cancer cell lines, is responded for induced chemoresistance. Using novel techniques, such as CRISPR/Cas-9 genome editing, an induced phenotype “switching” is possible.
keywords:

regulated cell death, ferroptosis, glutathione peroxidase GPX4, antioxidant defence mechanisms, CRISPR/Cas-9 genome editing

Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.