Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

A new perspective on cardiovascular function and dysfunction during endurance exercise: identifying the primary cause of cardiovascular risk

Amine Souissi
1
,
Ismail Dergaa
2
,
Samia Ernez Hajri
1
,
Karim Chamari
3, 4
,
Helmi Ben Saad
1

  1. Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
  2. Primary Health Care Corporation (PHCC), Doha, P.O. Box 26555, Qatar
  3. High Institute of Sport and Physical Education of Ksar-Said, University of La Manouba, Tunis, Tunisia
  4. Naufar Wellness & Recovery Center, Doha, Qatar
Biol Sport. 2024;41(4):131–144
Online publish date: 2024/04/09
Article file
- 13_03520_Article.pdf  [2.46 MB]
Get citation
 
PlumX metrics:
 
1. MacDougall JD, Reddan WG, Layton CR, Dempsey JA. Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J Appl Physiol. 1974; 36(5):538–44. Epub 1974/05/01. doi: 10.1152/jappl.1974.36.5.538. PubMed PMID: 4826315.
2. Nielsen B, Nybo L. Cerebral changes during exercise in the heat. Sports Med. 2003; 33(1):1–11. doi: 10.2165/00007256-200333010- 00001. PubMed PMID: 12477374.
3. Kenny GP, Niedre PC. The effect of exercise intensity on the post-exercise esophageal temperature response. Eur J Appl Physiol. 2002; 86(4):342–6. doi: 10.1007/s00421-001-0538-4. PubMed PMID: 11990748.
4. Souissi A, Yousfi N, Dabboubi R, Aloui G, Haddad M, Souissi N. Effect of acute melatonin administration on physiological response to prolonged exercise. Biol Rhythm Res. 2020; 51(6):980–7. doi: 10.1080/09291016.2019.1573462
5. Kellogg Jr D, Johnson J, Kosiba W. Competition between cutaneous active vasoconstriction and active vasodilation during exercise in humans. Am J Physiol. 1991 Oct; 261(4 Pt 2):H1184–9. doi: 10.1152/ajpheart.1991.261.4 .H1184. PMID: 1928401.
6. Murray R. Dehydration, hyperthermia, and athletes: science and practice. J Athl Train. 1996; 31(3):248–52. PubMed PMID: 16558408; PubMed Central PMCID: PMC1318513.
7. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974; 54(1):75–159. doi: 10.1152/physrev.1974.54.1.75. PubMed PMID: 4587247.
8. Johnson, JM and Proppe DW. Cardiovascular adjustments to heat stress. In Comprehensive Physiology, R. Terjung (Ed.). 2011. https://doi. org/10.1002/cphy.cp040111. doi: https://doi.org/10.1002/cphy.cp0 40111.
9. Taylor WF, Johnson JM, O’Leary D, Park MK. Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol Respir Environ Exerc Physiol. 1984; 57(1):191–6. doi: 10.1152 /jappl.1984.57.1.191. PubMed PMID: 6469780.
10. Souissi A, Haddad M, Dergaa I, Ben Saad H, Chamari K. A new perspective on cardiovascular drift during prolonged exercise. Life Sci. 2021; 287:120109. Epub 20211027. doi: 10.1016 /j.lfs.2021.120109. PubMed PMID: 34717912.
11. Saltin B, Stenberg J. Circulatory response to prolonged severe exercise. J Appl Physiol. 1964; 19(5):833–8. doi: 10.1152/jappl.1964.19.5.833. PubMed PMID: 14207729.
12. Crandall CG, Gonzalez-Alonso J. Cardiovascular function in the heat-stressed human. Acta Physiol (Oxf). 2010; 199(4):407–23. Epub 20100324. doi: 10.1111 /j.1748-1716.2010.02119.x. PubMed PMID: 20345414; PubMed Central PMCID: PMC3496876.
13. Johnson JM. Exercise and the cutaneous circulation. Exerc Sport Sci Rev. 1992; 20:59–97. PMID: 1623893.
14. Hargreaves M. Physiological limits to exercise performance in the heat. J Sci Med Sport. 2008; 11(1):66–71. Epub 20070827. doi: 10.1016/j. jsams.2007.07.002. PubMed PMID: 17720623.
15. Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997; 29(9):1240–9. doi: 10.1097/00005 768-199709000-00018. PubMed PMID: 9309637.
16. Kenney MJ, Fels RJ. Sympathetic nerve regulation to heating is altered in senescent rats. Am J Physiol Regul Integr Comp Physiol. 2002 Aug; 283(2):R513–20. doi: 10.1152/ajpregu.00683.2001. PMID: 12121865.
17. Periard JD, Caillaud C, Thompson MW. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. Eur J Appl Physiol. 2012; 112(6):1989–99. Epub 20110923. doi: 10.1007/s00421-011-2165-z. PubMed PMID: 21947407.
18. Souissi A, Dergaa I, Musa S, Saad HB, Souissi N. Effects of daytime ingestion of melatonin on heart rate response during prolonged exercise. Mov Sport Sci/Sci Mot. 2022(115):25–32. doi: https://doi .org/10.1051/sm/2021020
19. Tucker R, Rauch L, Harley YX, Noakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004 Jul; 448(4):422–30. doi: 10.1007/s00424-004-1267-4. Epub 2004 May 8. PMID: 15138825.
20. Gordon R, Tillin NA, Tyler CJ. The effect of head and neck per-cooling on neuromuscular fatigue following exercise in the heat. Appl Physiol Nutr Metab. 2020; 45(11):1238–46. Epub 20200521. doi: 10.1139/apnm-2020 -0079. PubMed PMID: 32437624.
21. Racinais S, Periard JD, Karlsen A, Nybo L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med Sci Sports Exerc. 2015; 47(3):601–6. doi: 10 .1249/MSS.0000000000000428. PubMed PMID: 24977692; PubMed Central PMCID: PMC4342312.
22. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985). 1999 Mar; 86(3):1032–9. doi: 10.1152/jappl .1999.86.3.1032. PMID: 10066720.
23. Morrison SF. Central control of body temperature. F1000Res. 2016 May 12; 5:F1000 Faculty Rev-880. doi: 10 .12688/f1000research.7958.1. PMID: 27239289; PMCID: PMC4870994.
24. Johnson JM, Park MK. Effect of heat stress on cutaneous vascular responses to the initiation of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982; 53(3):744–9. doi: 10.1152/jappl.1982 .53.3.744. PubMed PMID: 7129999.
25. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol (1985). 2010 Oct; 109(4):1221–8. doi: 10.1152/japplphysiol.00298.2010. Epub 2010 May 6. PMID: 20448028; PMCID: PMC2963327.
26. Kenney WL, Johnson JM. Control of skin blood flow during exercise. Med Sci Sports Exerc. 1992; 24(3):303–12. PubMed PMID: 1549024.
27. Mack GW, Nose H, Takamata A, Okuno T, Morimoto T. Influence of exercise intensity and plasma volume on active cutaneous vasodilation in humans. Med Sci Sports Exerc. 1994; 26(2):209–16. doi: 10.1249/00005768-199402000 -00011. PubMed PMID: 8164538.
28. Smolander J, Saalo J, Korhonen O. Effect of work load on cutaneous vascular response to exercise. J Appl Physiol (1985). 1991 Oct; 71(4):1614–9. doi: 10.1152/jappl.1991.71.4.1614. PMID: 1757390.
29. Taylor WF, Johnson JM, Kosiba WA, Kwan CM. Graded cutaneous vascular responses to dynamic leg exercise. J Appl Physiol (1985). 1988 May; 64(5):1803–9. doi: 10.1152/jappl.1988.64.5.1803 . PMID: 3391884.
30. Fujii N, McGinn R, Stapleton JM, Paull G, Meade RD, Kenny GP. Evidence for cyclooxygenase-dependent sweating in young males during intermittent exercise in the heat. J Physiol. 2014; 592(23):5327–39. Epub 20141017. doi: 10.1113/jphysiol.2014.280651. PubMed PMID: 25326453; PubMed Central PMCID: PMC4262342.
31. Meade RD, Fujii N, Alexander LM, Paull G, Louie JC, Flouris AD, et al. Local infusion of ascorbate augments NO-dependent cutaneous vasodilatation during intense exercise in the heat. J Physiol. 2015; 593(17):4055–65. Epub 20150728. doi: 10.1113/ JP270787. PubMed PMID: 26110415; PubMed Central PMCID: PMC4575586.
32. Louie JC, Fujii N, Meade RD, Kenny GP. The interactive contributions of Na(+) /K(+) -ATPase and nitric oxide synthase to sweating and cutaneous vasodilatation during exercise in the heat. J Physiol. 2016; 594(12):3453–62. Epub 20160329. doi: 10.1113/JP271990. PubMed PMID: 26852741; PubMed Central PMCID: PMC4908024.
33. Fujii N, Zhang SY, McNeely BD, Nishiyasu T, Kenny GP. Heat shock protein 90 contributes to cutaneous vasodilation through activating nitric oxide synthase in young male adults exercising in the heat. J Appl Physiol (1985). 2017 Oct 1; 123(4):844–850. doi: 10.1152/japplphysiol.00446.2017. Epub 2017 Jul 27. PMID: 28751373; PMCID: PMC5668448.
34. McNamara TC, Keen JT, Simmons GH, Alexander LM, Wong BJ. Endothelial nitric oxide synthase mediates the nitric oxide component of reflex cutaneous vasodilatation during dynamic exercise in humans. J Physiol. 2014; 592(23):5317–26. Epub 20140925. doi: 10.1113/jphysiol.2014.272898. PubMed PMID: 25260636; PubMed Central PMCID: PMC4262341.
35. Welch G, Foote KM, Hansen C, Mack GW. Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment. J Appl Physiol (1985). 2009 Mar; 106(3):796–803. doi: 10.1152/japplphysiol.90809.2008. Epub 2009 Jan 8. PMID: 19131481; PMCID: PMC2660248.
36. Fujii N, Meade RD, Alexander LM, Akbari P, Foudil-Bey I, Louie JC, et al. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. J Appl Physiol (1985). 2016 Feb 1; 120(3):318–27. doi: 10 .1152/japplphysiol.00714.2015. Epub 2015 Nov 19. PMID: 26586908; PMCID: PMC4740499.
37. Charkoudian N, Eisenach JH, Atkinson JL, Fealey RD, Joyner MJ. Effects of chronic sympathectomy on locally mediated cutaneous vasodilation in humans. J Appl Physiol (1985). 2002 Feb; 92(2):685–90. doi: 10.1152 /japplphysiol.00758.2001. PMID: 11796682.
38. Kellogg DL, Jr., Zhao JL, Wu Y. Roles of nitric oxide synthase isoforms in cutaneous vasodilation induced by local warming of the skin and whole body heat stress in humans. J Appl Physiol (1985). 2009 Nov; 107(5):1438–44. doi: 10 .1152/japplphysiol.00690.2009. Epub 2009 Sep 10. PMID: 19745188; PMCID: PMC2777790.
39. Kellogg DL, Jr., Liu Y, Kosiba IF, O’Donnell D. Role of nitric oxide in the vascular effects of local warming of the skin in humans. J Appl Physiol (1985). 1999 Apr; 86(4):1185–90. doi: 10 .1152/jappl.1999.86.4.1185. PMID: 10194201.
40. Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. Nitric oxide and neurally mediated regulation of skin blood flow during local heating.
41. Eijsvogels TM, Fernandez AB, Thompson PD. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol Rev. 2016 Jan; 96(1):99–125. doi: 10 .1152/physrev.00029.2014. PMID: 26607287; PMCID: PMC4698394.
42. Lord RN, Utomi V, Oxborough DL, Curry BA, Brown M, George KP. Left ventricular function and mechanics following prolonged endurance exercise: an update and meta-analysis with insights from novel techniques. Eur J Appl Physiol. 2018; 118(7):1291–9. Epub 20180605. doi: 10.1007/s00421 -018-3906-z. PubMed PMID: 29869711; PubMed Central PMCID: PMC6028893.
43. Middleton N, Shave R, George K, Whyte G, Hart E, Atkinson G. Left ventricular function immediately following prolonged exercise: A meta-analysis. Med Sci Sports Exerc. 2006; 38(4):681–7. doi: 10.1249/01.mss.0000210203 .10200.12. PubMed PMID: 16679983.
44. Kojda G, Hambrecht R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res. 2005 Aug 1; 67(2):187–97. doi: 10 .1016/j.cardiores.2005.04.032. PMID: 15935334.
45. Laurindo FR, Pedro Mde A, Barbeiro HV, Pileggi F, Carvalho MH, Augusto O, et al. Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ Res. 1994 Apr; 74(4):700–9. doi: 10 .1161/01.res.74.4.700. PMID: 7511072.
46. Lauer N, Suvorava T, Ruther U, Jacob R, Meyer W, Harrison DG, et al. Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res. 2005 Jan 1; 65(1):254–62. doi: 10.1016/j.cardiores.2004.09.010. PMID: 15621054.
47. Trinity JD, Broxterman RM, Richardson RS. Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med. 2016; 98:90–102. Epub 20160210. doi: 10.1016/j. freeradbiomed.2016.01.017. PubMed PMID: 26876648; PubMed Central PMCID: PMC4975999.
48. Kruk J, Aboul-Enein BH, Duchnik E. Exercise-induced oxidative stress and melatonin supplementation: current evidence. J Physiol Sci. 2021; 71(1):27. Epub 20210901. doi: 10.1186/ s12576-021-00812-2. PubMed PMID: 34470608; PubMed Central PMCID: PMC8409271.
49. Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 2020; 9(5):415–25. Epub 20200504. doi: 10.1016/j.jshs.2020.04.001. PubMed PMID: 32380253; PubMed Central PMCID: PMC7498668.
50. Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011; 51(5):942–50. Epub 20101216. doi: 10.1016/j. freeradbiomed.2010.12.009. PubMed PMID: 21167935.
51. Kawamura T, Muraoka I. Exerciseinduced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants (Basel). 2018; 7(9):119. Epub 20180905. doi: 10.3390/antiox7090119. PubMed PMID: 30189660; PubMed Central PMCID: PMC6162669.
52. Souissi A, Ben Maaouia G, Dergaa I, Ghram A, Ben Saad H. The fat burning ability of melatonin during submaximal exercise. Biol Rhythm Res. 2023; 54(3):307–21. doi:10.1080/09291016 .2022.2157531
53. Souissi A, Dergaa I, Chtourou H, Ben Saad H. The effect of daytime ingestion of melatonin on thyroid hormones responses to acute submaximal exercise in healthy active males: A pilot study. Am J Mens Health. 2022; 16(1):15579883211070383. doi: 10.1177/15579883211070383. PubMed PMID: 35060417; PubMed Central PMCID: PMC8785310.
54. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004; 4(3):181–9. doi: 10.1038/nri1312. PubMed PMID: 15039755.
55. Murdoch CE, Zhang M, Cave AC, Shah AM. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res. 2006 Jul 15; 71(2):208–15. doi: 10.1016/j.cardiores.2006.03.016. Epub 2006 Mar 27. PMID: 16631149.
56. Vitiello D, Boissière J, Doucende G, Gayrard S, Polge A, Faure P, et al. β-Adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger. J Appl Physiol (1985). 2011 Nov; 111(5):1242–8. doi: 10.1152 /japplphysiol.00449.2011. Epub 2011 Jun 30. PMID: 21719731.
57. Nie J, Close G, George KP, Tong TK, Shi Q. Temporal association of elevations in serum cardiac troponin T and myocardial oxidative stress after prolonged exercise in rats. Eur J Appl Physiol. 2010; 110(6):1299–303. Epub 20100814. doi: 10.1007/s00421 -010-1604-6. PubMed PMID: 20711602.
58. Vitiello D. Connexin 43 dephosphorylation: a potential underlying mechanism involved in exercise-induced cardiac fatigue. Austin Biol. 2016; 1(4):1018.
59. Tavernier B, Li JM, El-Omar MM, Lanone S, Yang ZK, Trayer IP, et al. Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J. 2001; 15(2):294–6. Epub 20001208. doi: 10.1096/fj.00-0433fje. PubMed PMID: 11156941.
60. Jee H, Jin Y. Effects of prolonged endurance exercise on vascular endothelial and inflammation markers. J Sports Sci Med. 2012; 11(4):719–26. Epub 20121201. PubMed PMID: 24150084; PubMed Central PMCID: PMC3763320.
61. Kruk J, Kotarska K, Aboul-Enein BH. Physical exercise and catecholamines response: benefits and health risk: possible mechanisms. Free Radic Res. 2020; 54(2–3):105–25. Epub 20200218. doi: 10.1080/10715762.2020.1726343. PubMed PMID: 32020819.
62. Krzeminski K, Buraczewska M, Miskiewicz Z, Dabrowski J, Steczkowska M, Kozacz A, et al. Effect of ultra-endurance exercise on left ventricular performance and plasma cytokines in healthy trained men. Biol Sport. 2016; 33(1):63–9. Epub 20151231. doi: 10.5604/20831862 .1189767. PubMed PMID: 26985136; PubMed Central PMCID: PMC4786588.
63. Massion PB, Feron O, Dessy C, Balligand JL. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res. 2003 Sep 5; 93(5):388–98. doi: 10.1161/01.RES.0000088351 .58510.21. PMID: 12958142.
64. Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther. 2000 Apr; 86(1):49–86. doi: 10.1016 /s0163-7258(99)00072-8. PMID: 10760546.
65. Cotton JM, Kearney MT, MacCarthy PA, Grocott-Mason RM, McClean DR, Heymes C, et al. Effects of nitric oxide synthase inhibition on Basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation. 2001; 104(19):2318–23. Epub 2001/11/07. doi: 10.1161 /hc4401 .098515. PubMed PMID: 11696472.
66. Ziolo MT, Katoh H, Bers DM. Positive and negative effects of nitric oxide on Ca(2+) sparks: influence of beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2001; 281(6):H2295–303. doi: 10.1152/ajpheart.2001 .281.6.H2295. PubMed PMID: 11709395.
67. Chakouri N, Reboul C, Boulghobra D, Kleindienst A, Nottin S, Gayrard S, et al. Stress-induced protein S-glutathionylation and phosphorylation crosstalk in cardiac sarcomeric proteins - Impact on heart function. Int J Cardiol. 2018; 258:207–16. doi: 10.1016 /j.ijcard.2017.12.004. PubMed PMID: 29544934.
68. Lord KC, Shenouda SK, McIlwain E, Charalampidis D, Lucchesi PA, Varner KJ. Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction. Cardiovasc Res. 2010 Jul 1; 87(1):111–8. doi: 10 .1093/cvr/cvq043. Epub 2010 Feb 5. PMID: 20139112; PMCID: PMC2883898.
69. Souissi A, Dergaa I, Romdhani M, Ghram A, Irandoust K, Chamari K, et al. Can melatonin reduce the severity of post-COVID-19 syndrome? EXCLI J. 2023 Feb 2; 22:173–187. doi: 10.17179/excli2023-5864. PMID: 36998709; PMCID: PMC10043401.
70. Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD. The role of nitric oxide in cardiac depression induced by interleukin-1 beta and tumour necrosis factor-alpha. Br J Pharmacol. 1995 Jan; 114(1):27–34. doi: 10.1111/j.1476-5381.1995. tb14901.x. PMID: 7536096; PMCID: PMC1510184.
71. Emami A, Tofighi A, Asri-Rezaei S, Bazargani-Gilani B. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br J Nutr. 2018; 119(4):381–90. doi: 10.1017/S000 7114517003774. PubMed PMID: 29498347.
72. Souissi A, Dergaa I. An overview of the potential effects of melatonin supplementation on athletic performance. Int J Sport Stud Hlth. 2021; 4(1):e121714. doi: 10.5812/intjssh .121714.
73. Hart E, Dawson E, Rasmussen P, George K, Secher NH, Whyte G, et al. Beta-adrenergic receptor desensitization in man: insight into post-exercise attenuation of cardiac function. J Physiol. 2006 Dec 1; 577(Pt 2):717–25. doi: 10.1113/jphysiol.2006.116426. Epub 2006 Sep 14. PMID: 16973702; PMCID: PMC1890446.
74. Banks L, Sasson Z, Busato M, Goodman JM. Impaired left and right ventricular function following prolonged exercise in young athletes: influence of exercise intensity and responses to dobutamine stress. J Appl Physiol (1985). 2010 Jan; 108(1):112–9. doi: 10.1152/japplphysiol.00898.2009. Epub 2009 Nov 5. PMID: 19892922.
75. Coates AM, King TJ, Currie KD, Tremblay JC, Petrick HL, Slysz JT, et al. Alterations in cardiac function following endurance exercise are not duration dependent. Front Physiol. 2020; 11:581797. Epub 20200918. doi: 10.3389/fphys.2020.581797. PubMed PMID: 33071833; PubMed Central PMCID: PMC7531437.
76. Silva SD, Jr., Jara ZP, Peres R, Lima LS, Scavone C, Montezano AC, et al. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction. PLoS One. 2017; 12(12):e0189535. Epub 20171212. doi: 10.1371/journal.pone .0189535. PubMed PMID: 29232407; PubMed Central PMCID: PMC5726656.
77. Burtscher J, Vanderriele P-E, Legrand M, Predel H-G, Niebauer J, O’Keefe JH, et al. Could repeated cardio-renal injury trigger late cardiovascular sequelae in extreme endurance athletes? Sports Med. 2022 Dec; 52(12):2821–2836. doi: 10.1007/s40279-022-01734-8. Epub 2022 Jul 18. PMID: 35851948; PMCID: PMC9691495.
78. Muller-Strahl G, Kottenberg K, Zimmer HG, Noack E, Kojda G. Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart. J Physiol. 2000; 522 Pt 2(Pt 2):311–20. doi: 10.1111/j.1469-7793.2000.00311.x. PubMed PMID: 10639106; PubMed Central PMCID: PMC2269760.
79. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993; 90(1):347–51. doi: 10.1073/pnas.90.1.347. PubMed PMID: 7678347; PubMed Central PMCID: PMC45657.
80. Keaney JF, Jr., Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol. 1996; 271(6 Pt 2):H2646–52. doi: 10.1152/ajpheart .1996.271.6.H2646. PubMed PMID: 8997327.
81. Reading S, Barclay J. The inotropic effect of nitric oxide on mammalian papillary muscle is dependent on the level of beta1-adrenergic stimulation. Can J Physiol Pharmacol. 2002 Jun; 80(6):569–77. doi: 10.1139/y02-085. PMID: 12117306.
82. Sierra APR, Martinez Galan BS, de Sousa CAZ, de Menezes DC, Branquinho JLO, Neves RL, et al. Exercise induced-cytokines response in marathon runners: Role of ACE I/D and BDKRB2 +9/-9 polymorphisms. Front Physiol. 2022; 13:919544. Epub 20220902. doi: 10.3389/fphys .2022.919544. PubMed PMID: 36117688; PubMed Central PMCID: PMC9479100.
83. Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J. Renal neurohormonal and vascular responses to dynamic exercise in humans. J Appl Physiol (1985). 1991 May; 70(5):2279–86. doi: 10 .1152/jappl.1991.70.5.2279. PMID: 1677937.
84. Aldigier J, Huang H, Dalmay F, Lartigue M, Baussant T, Chassain A, et al. Angiotensin-converting enzyme inhibition does not suppress plasma angiotensin II increase during exercise in humans. J Cardiovasc Pharmacol. 1993 Feb; 21(2):289–95. doi: 10.1097 /00005344-199302000-00015. PMID: 7679164.
85. Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Peptides. 2000; 91(1–3):21–7. doi: 10.1016 /s0167-0115(00)00136-1. PubMed PMID: 10967199.
86. Hanna IR, Taniyama Y, Szöcs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal. 2002 Dec; 4(6):899–914. doi: 10.1089/152308602762197443. PMID: 12573139.
87. Harrison DG, Cai H, Landmesser U, Griendling KK. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin Angiotensin Aldosterone Syst. 2003; 4(2):51–61. doi: 10.3317/jraas .2003.014. PubMed PMID: 12806586.
88. Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-Gonzalez G. Role of aldosterone and angiotensin II in insulin resistance: an update. Clin Endocrinol (Oxf). 2009; 71(1):1–6. Epub 20081205. doi: 10 .1111/j.1365-2265.2008.03498.x. PubMed PMID: 19138313.
89. Li LH, Kao WF, Chiu YH, Hou SK, Meng C, How CK. Impact of reninangiotensin-aldosterone system activation and body weight change on N-terminal pro-B-type natriuretic peptide variation in 100-km ultramarathon runners. J Chin Med Assoc. 2020; 83(1):48–54. doi: 10.1097/JCMA.0000000000000227. PubMed PMID: 31770190.
90. Miyata K, Rahman M, Shokoji T, Nagai Y, Zhang G-X, Sun G-P, et al. Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J Am Soc Nephrol. 2005 Oct; 16(10):2906–12. doi: 10.1681/ASN.2005040390. Epub 2005 Aug 31. PMID: 16135774.
91. Giam B, Kaye DM, Rajapakse NW. Role of renal oxidative stress in the pathogenesis of the cardiorenal syndrome. Heart Lung Circ. 2016; 25(8):874–80. Epub 20160416. doi: 10.1016/j.hlc.2016.02.022. PubMed PMID: 27132623.
92. Hättasch R, Spethmann S, de Boer RA, Ruifrok WP, Schattke S, Wagner M, et al. Galectin-3 increase in endurance athletes. Eur J Prev Cardiol. 2014 Oct; 21(10):1192–9. doi: 10.1177/2047487313492069. Epub 2013 May 30. PMID: 23723328.
93. Shaheen HAA, Mohamed MA, Basset FHA, Rashed MH, Theruvan NB, Mosbah SA. Heart failure prediction in athletic heart remodeling among long distance runners. World J Cardiovasc Dis. 2022; 12(1):1–10. doi: 10.4236/ wjcd.2022.121001.
94. Wilson M, O’Hanlon R, Prasad S, Oxborough D, Godfrey R, Alpendurada F, et al. Biological markers of cardiac damage are not related to measures of cardiac systolic and diastolic function using cardiovascular magnetic resonance and echocardiography after an acute bout of prolonged endurance exercise. Br J Sports Med. 2011; 45(10):780–4. Epub 20091023. doi: 10.1136/bjsm .2009.064089. PubMed PMID: 19854761.
95. Donnellan E, Phelan D. Biomarkers of cardiac stress and injury in athletes: What Do they mean? Curr Heart Fail Rep. 2018; 15(2):116–22. doi: 10.1007 /s11897-018-0385-9. PubMed PMID: 29520707.
96. Park SA, Hyun YM. Neutrophil extravasation cascade: What can we learn from two-photon intravital imaging? Immune Netw. 2016 Dec; 16(6):317–321. doi: 10.4110/in.2016 .16.6.317. Epub 2016 Dec 22. PMID: 28035206; PMCID: PMC5195840.
97. Gao Z, Liu Z, Wang R, Zheng Y, Li H, Yang L. Galectin-3 is a potential mediator for atherosclerosis. J Immunol Res. 2020 Feb 14; 2020:5284728. doi: 10.1155/2020/5284728. PMID: 32149158; PMCID: PMC7042544.
98. Karlsson A, Follin P, Leffler H, Dahlgren C. Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood. 1998; 91(9):3430–8. PubMed PMID: 9558402.
99. Almkvist J, Faldt J, Dahlgren C, Leffler H, Karlsson A. Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun. 2001; 69(2):832–7. doi: 10.1128/IAI.69.2.832–837.2001. PubMed PMID: 11159975; PubMed Central PMCID: PMC97959.
100. Cohen S, Burns R. Pathways of the pulp, 8th ed St. Louis CV Mosby Co St Louis Misso. 2002;64146.
101. Suzuki K. Involvement of neutrophils in exercise-induced muscle damage and its modulation. Gen Intern Med Clin Innov. 2018;3:1–8. doi: 10.15761 /GIMCI.1000170.
102. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34(4):246–51. doi: 10.1136 /bjsm.34.4.246. PubMed PMID: 10953894; PubMed Central PMCID: PMC1724218.
103. Gehlken C, Suthahar N, Meijers WC, de Boer RA. Galectin-3 in heart failure: An update of the last 3 years. Heart Fail Clin. 2018;14(1):75–92. doi: 10.1016/j.hfc.2017.08.009. PubMed PMID: 29153203.
104. Suthahar N, Meijers WC, Sillje HHW, Ho JE, Liu FT, de Boer RA. Galectin-3 Activation and inhibition in heart failure and cardiovascular disease: An update. theranostics. 2018;8(3):593–609. Epub 20180101. doi: 10.7150/thno .22196. PubMed PMID: 29344292; PubMed Central PMCID: PMC5771079.
105. Akimoto Y, Ikehara S, Yamaguchi T, Kim J, Kawakami H, Shimizu N, et al. Galectin expression in healing wounded skin treated with low-temperature plasma: Comparison with treatment by electronical coagulation. Arch Biochem Biophys. 2016;605:86–94. Epub 20160128. doi: 10.1016/j.abb .2016.01.012. PubMed PMID: 26827730.
106. González GE, Cassaglia P, Truant SN, Fernández MM, Wilensky L, Volberg V, et al. Int J Cardiol. 2014 Oct 20;176(3):1423–5. doi: 10.1016/j. ijcard.2014.08.011. Epub 2014 Aug 8. PMID: 25150483.
107. Hattasch R, Spethmann S, de Boer RA, Ruifrok WP, Schattke S, Wagner M, et al. Galectin-3 increase in endurance athletes. Eur J Prev Cardiol. 2014;21(10):1192–9. Epub 20130530. doi: 10.1177 /2047487313492069. PubMed PMID: 23723328.
108. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, et al. Regulation of alternative macrophage activation by galectin-3. J Immunol. 2008;180(4):2650–8. doi: 10.4049 /jimmunol.180.4.2650. PubMed PMID: 18250477.
109. Chen Y, Fu W, Zheng Y, Yang J, Liu Y, Qi Z, et al. Galectin 3 enhances platelet aggregation and thrombosis via Dectin-1 activation: a translational study. Eur Heart J. 2022;43(37):3556–74. doi: 10.1093 /eurheartj/ehac034. PubMed PMID: 35165707; PubMed Central PMCID: PMC9989600.
110. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12(10):610–23. Epub 20160830. doi: 10.1038/ nrneph.2016.113. PubMed PMID: 27573728.
111. Calleja-Romero A, Vicente-Rodriguez G, Garatachea N. Acute effects of long-distance races on heart rate variability and arterial stiffness: A systematic review and meta-analysis. J Sports Sci. 2022;40(3):248–70. Epub 20211031. doi: 10.1080 /02640414.2021.1986276. PubMed PMID: 34720045.
112. Ohman EM, Teo KK, Johnson AH, Collins PB, Dowsett DG, Ennis JT, et al. Abnormal cardiac enzyme responses after strenuous exercise: alternative diagnostic aids. Br Med J (Clin Res Ed). 1982;285(6354):1523–6. doi: 10.1136/bmj.285.6354.1523. PubMed PMID: 6814629; PubMed Central PMCID: PMC1500473.
113. Zambrano A, Tintut Y, Demer LL, Hsu JJ. Potential mechanisms linking high-volume exercise with coronary artery calcification. Heart. 2023;109(15):1139–45. Epub 20230712. doi: 10.1136 /heartjnl-2022-321986. PubMed PMID: 36702539; PubMed Central PMCID: PMC10356745.
114. DeFina LF, Radford NB, Barlow CE, Willis BL, Leonard D, Haskell WL, et al. Association of all-cause and cardiovascular mortality with high levels of physical activity and concurrent coronary artery calcification. JAMA Cardiol. 2019;4(2):174–81. doi: 10.1001/jamacardio.2018.4628. PubMed PMID: 30698608; PubMed Central PMCID: PMC6439619.
115. Luger A, Deuster PA, Debolt JE, Loriaux DL, Chrousos GP. Acute exercise stimulates the renin-angiotensinaldosterone axis: adaptive changes in runners. Horm Res. 1988;30(1):5–9. doi: 10.1159/000181017. PubMed PMID: 2851526.
116. Kovesdy CP, Quarles LD. The role of fibroblast growth factor-23 in cardiorenal syndrome. Nephron Clin Pract. 2013;123(3–4):194–201. Epub 20130806. doi: 10.1159/000353593. PubMed PMID: 23942553; PubMed Central PMCID: PMC5079534.
117. Gromotowicz A, Szemraj J, Stankiewicz A, Zakrzeska A, Mantur M, Jaroszewicz E et al. Study of the mechanisms of aldosterone prothrombotic effect in rats. J Renin Angiotensin Aldosterone Sys. 2011;12(4):430–439.
118. Brilla CG. Renin–angiotensin– aldosterone system and myocardial fibrosis. Cardiovasc Research. 2000; 47(1):1–3.
119. Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, et al. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab. 2014;307(5):E426–36. Epub 2014 0722. doi: 10.1152/ajpendo .00264.2014. PubMed PMID: 25053401; PubMed Central PMCID: PMC4154070.
120. Squizzato A, Van Zaane B, Gerdes VE, Büller HR. The influence of pituitary, adrenal, and parathyroid hormones on hemostasis and thrombosis. Semin Thromb Hemost. 2011 Feb;37(1):41–8. doi: 10.1055/s-0030-1270070. Epub 2011 Jan 19. PMID: 21249603.
121. Lombardi G, Ziemann E, Banfi G, Corbetta S. physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. Int J Mol Sci. 2020;21(15):5388. Epub 20200729. doi: 10.3390/ijms2115 5388. PubMed PMID: 32751307; PubMed Central PMCID: PMC7432834.
122. de Vicente LG, Pinto AP, Munoz VR, Rovina RL, da Rocha AL, Gaspar RC, et al. Tlr4 participates in the responses of markers of apoptosis, inflammation, and ER stress to different acute exercise intensities in mice hearts. Life Sci. 2020;240:117107. Epub 20191127. doi: 10.1016/j.lfs.2019.117107. PubMed PMID: 31785241.
123. Cristi-Montero C, Sanchez-Collado P, Veneroso C, Cuevas MJ, Gonzalez-Gallego J. Effect of an acute exercise bout on Toll-like receptor 4 and inflammatory mechanisms in rat heart. Rev Med Chil. 2012;140(10):1282–8. doi: 10.4067/S0034-98872012 001000007. PubMed PMID: 23559285.
124. Wang R-p, Yao Q, Xiao Y-b, Zhu S-b, Yang L, Feng J-m, et al. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress. 2011 Sep;14(5):567–75. doi: 10 .3109/10253890.2011.571729. Epub 2011 Jun 15. PMID: 21675862.
125. Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011 Apr 29;108(9):1122–32. doi: 10.1161 /CIRCRESAHA.110.226928. PMID: 21527742.
126. de Vicente LG, Pinto AP, da Rocha AL, Pauli JR, de Moura LP, Cintra DE, et al. Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine. 2020;136:155273. Epub 20200912. doi: 10.1016/j.cyto.2020.155273. PubMed PMID: 32932194.
127. Ding N, Chen G, Hoffman R, Loughran PA, Sodhi CP, Hackam DJ, et al. Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet. 2014; 7(5):615–24. Epub 20140721. doi: 10.1161/CIRCGENETICS .113.000398. PubMed PMID: 25049041; PubMed Central PMCID: PMC4270899.
128. Semple JW, Italiano JE, Jr., Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. doi: 10.1038/ nri2956. PubMed PMID: 21436837.
129. Coates AM, Petrick HL, Millar PJ, Burr JF. Exercise alters cardiac function independent of acute systemic inflammation in healthy men. Am J Physiol Heart Circ Physiol. 2021;320(5):H1762–H73. Epub 20210312. doi: 10.1152/ ajpheart.00809.2020. PubMed PMID: 33710926.
130. Downing LJ, Strieter RM, Kadell AM, Wilke CA, Austin JC, Hare BD, et al. IL-10 regulates thrombus-induced vein wall inflammation and thrombosis. J Immunol. 1998;161(3):1471–6. PubMed PMID: 9686613.
131. Pajkrt D, van der Poll T, Levi M, Cutler DL, Affrime MB, van den Ende A, et al. Interleukin-10 inhibits activation of coagulation and fibrinolysis during human endotoxemia. Blood. 1997;89(8):2701–5. PubMed PMID: 9108387.
132. Villacorta H, Maisel AS. Soluble ST2 Testing: A Promising biomarker in the management of heart failure. Arq Bras Cardiol. 2016;106(2):145–52. Epub 20160115. doi: 10.5935 /abc.20150151. PubMed PMID: 26761075; PubMed Central PMCID: PMC4765013.
133. Horjus DL, Nieuwland R, Boateng KB, Schaap MC, van Montfrans GA, Clark JF, et al. Creatine kinase inhibits ADP-induced platelet aggregation. Sci Rep. 2014;4(1):6551. Epub 20141009. doi: 10.1038/srep06551 . PubMed PMID: 25298190; PubMed Central PMCID: PMC4190537.
134. Kratz A, Lewandrowski KB, Siegel AJ, Chun KY, Flood JG, Van Cott EM, et al. Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol. 2002;118(6):856–63. doi: 10.1309/14TY-2TDJ-1X0Y-1V6V. PubMed PMID: 12472278.
135. Reid SA, Speedy DB, Thompson JM, Noakes TD, Mulligan G, Page T, et al. Study of hematological and biochemical parameters in runners completing a standard marathon. Clin J Sport Med. 2004;14(6):344–53. doi: 10.1097/00042752-200411000- 00004. PubMed PMID: 15523206.
136. Bird SR, Linden M, Hawley JA. Acute changes to biomarkers as a consequence of prolonged strenuous running. Ann Clin Biochem. 2014 Mar;51(Pt 2):137–50. doi: 10.1177/0004563213492147. Epub 2013 Sep 2. PMID: 24000373.
137. Sakita S, Kishi Y, Numano F. Acute vigorous exercise attenuates sensitivity of platelets to nitric oxide. Thromb Res. 1997;87(5):461–71. doi: 10.1016/ s0049-3848(97)00162-x. PubMed PMID: 9306620.
138. Delaney MK, Kim K, Estevez B, Xu Z, Stojanovic-Terpo A, Shen B, et al. Differential roles of the NADPH-Oxidase 1 and 2 in Platelet activation and thrombosis. Arterioscler Thromb Vasc Biol. 2016;36(5):846–54. Epub 20160317. doi: 10.1161/ATVBAHA .116.307308. PubMed PMID: 26988594; PubMed Central PMCID: PMC4850088.
139. Smith JE. Effects of strenuous exercise on haemostasis. Br J Sports Med. 2003;37(5):433–5. doi: 10.1136/bjsm.37.5.433. PubMed PMID: 14514536; PubMed Central PMCID: PMC1751362.
140. Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD. Effect of strenuous exercise on platelet activation state and reactivity. Circulation. 1993;88(4 Pt 1):1502–11. doi: 10 .1161/01.cir.88.4.1502. PubMed PMID: 8403298.
141. el-Sayed MS. Effects of exercise on blood coagulation, fibrinolysis and platelet aggregation. Sports Med. 1996;22(5):282–98. doi: 10.2165/00007256-199622050- 00002. PubMed PMID: 8923646.
142. Dawson E, George K, Shave R, Whyte G, Ball D. Does the human heart fatigue subsequent to prolonged exercise? Sports Med. 2003;33(5):365–80. doi: 10.2165/00007256-200333050 -00003. PMID: 12696984.
143. Poole JC. The effect of certain fatty acids on the coagulation of plasma in vitro. Br J Exp Pathol. 1955;36(3):248–53. PubMed PMID: 13239980; PubMed Central PMCID: PMC2082531.
144. El-Sayed MS, Ali N, El-Sayed Ali Z. Aggregation and activation of blood platelets in exercise and training. Sports Med. 2005;35(1):11–22. doi: 10.2165/00007256-200535010 -00002. PubMed PMID: 15651910.
145. Gresslien T, Agewall S. Troponin and exercise. Int J Cardiol. 2016;221:609–21. Epub 20160628. doi: 10.1016/j.ijcard.2016.06.243. PubMed PMID: 27420587.
146. Dergaa I, Chamari K, Zmijewski P, Ben Saad H. From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biol Sport. 2023;40(2):615–22. Epub 20230315. doi: 10.5114/ biolsport.2023.125623. PubMed PMID: 37077800; PubMed Central PMCID: PMC10108763.
147. Dergaa I, Zakhama L, Dziri C, Saad HB. Enhancing scholarly discourse in the age of artificial intelligence: A guided approach to effective peer review process. Tunis Med 2023; 101(10):721–6.
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.