eISSN: 2449-8580
ISSN: 1734-3402
Family Medicine & Primary Care Review
Current issue Archive Manuscripts accepted About the journal Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
2/2024
vol. 26
 
Share:
Share:
Review paper

Are e-cigarettes really a healthier alternative to smoking?

Michał Zwoliński
1
,
Katarzyna Zemsta
1
,
Marta Szuleka
1
,
Weronika Sobota
1
,
Katarzyna Kamińska-Omasta
1
,
Przemysław Piskorz
1
,
Bartłomiej Kulesza
2
,
Ryszard Tomasiuk
3

  1. "Neurosurgery" Scientific Club, Faculty of Medical and Health Sciences, University of Radom, Radom, Poland
  2. Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
  3. Faculty of Medical and Health Sciences, University of Radom, Radom, Poland
Family Medicine & Primary Care Review 2024; 26(2): 267–273
Online publish date: 2024/06/17
Get citation
 
PlumX metrics:
 
1. Zuo J-J, Tao Z-Z, Chen C, et al. Characteristics of cigarette smoking without alcohol consumption and laryngeal cancer: overall and time-risk relation. A meta-analysis of observational studies. Eur Arch Otorhinolaryngol 2017; 274: 1617–1731, doi: 10.1007/s00405-016-4390-x.
2. Canistro D, Vivarelli F, Cirillo S, et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci Rep 2017; 7: 2028, doi: 10.1038/s41598-017-02317-8.
3. Gotts JE, Jordt S-E, McConnell R, et al. What are the respiratory effects of e-cigarettes? BMJ 2019; 366: l5275, doi: 10.1136/bmj.l5275.
4. Wang L, Wang Y, Chen J, et al. A Review of Toxicity Mechanism Studies of Electronic Cigarettes on Respiratory System. Int J Mol Sci 2022; 23: 5030, doi: 10.3390/ijms23095030.
5. Kosmider L, Sobczak A, Fik M, et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res 2014; 16: 1319–1326, doi: 10.1093/ntr/ntu078.
6. Tellez CS, Juri DE, Phillips LM, et al. Cytotoxicity and Genotoxicity of E-Cigarette Generated Aerosols Containing Diverse Flavoring Products and Nicotine in Oral Epithelial Cell Lines. Toxicol Sci 2021; 179: 220–258, doi: 10.1093/toxsci/kfaa174.
7. Komura M, Sato T, Yoshikawa H, et al. Propylene glycol, a component of electronic cigarette liquid, damages epithelial cells in human small airways. Respir Res 2022; 23: 216, doi: 10.1186/s12931-022-02142-2.
8. Jenssen BP, Walley SC. E-Cigarettes and Similar Devices. Pediatrics 2019; 143: e20183652, doi: 10.1542/peds.2018-3652.
9. Nguyen H, Kitzmiller J, Nguyen K, et al. Oral Carcinoma Associated with Chronic Use of Electronic Cigarettes. Otolaryngology 2017; 7(2): 304, doi: 10.4172/2161-119X.1000304.
10. Klawinski D, Hanna I, Breslin NK, et al. Vaping the Venom: Oral Cavity Cancer in a Young Adult with Extensive Electronic Cigarette Use. Pediatrics 2021; 147: e2020022301, doi: 10.1542/peds.2020-022301.
11. Tang M, Lee H-W, Weng M, et al. DNA Damage, DNA Repair and Carcinogenicity: Tobacco Smoke versus Electronic Cigarette Aerosol. Mutat Res Rev Mutat Res 2022; 789: 108409, doi: 10.1016/j.mrrev.2021.108409.
12. Ji EH, Sun B, Zhao T, et al. Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes. PLoS ONE 2016; 11: e0154447, doi: 10.1371/journal.pone.0154447.
13. Ji EH, Elzakra N, Chen W, et al. E-cigarette aerosols induce unfolded protein response in normal human oral keratinocytes. J Cancer 2019; 10: 6915–6924, doi: 10.7150/jca.31319.
14. Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6: 8, doi: 10.1038/s41392-020-00436-9.
15. Muppala S, Xiao R, Krukovets I, et al. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene 2017; 36: 5189–5198, doi: 10.1038/onc.2017.140.
16. Kolliopoulos C, Raja E, Razmara M, et al. Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output. J Biol Chem 2019; 294: 4119–4136, doi: 10.1074/jbc.RA118.004984.
17. Boschert V, Klenk N, Abt A, et al. The Influence of Met Receptor Level on HGF-Induced Glycolytic Reprogramming in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2020; 21: 471, doi: 10.3390/ijms21020471.
18. Hartmann S, Bhola NE, Grandis JR. HGF/Met Signaling in Head and Neck Cancer: Impact on the Tumor Microenvironment. Clin Cancer Res 2016; 22: 4005–4013, doi: 10.1158/1078-0432.CCR-16-0951.
19. Ha T-AN, Madison MC, Kheradmand F, et al. Laryngeal inflammatory response to smoke and vape in a murine model. Am J Otolaryngol 2019; 40: 89–92, doi: 10.1016/j.amjoto.2018.10.001.
20. Song S-Y, Na HG, Kwak SY, et al. Changes in Mucin Production in Human Airway Epithelial Cells After Exposure to Electronic Cigarette Vapor with or without Nicotine. Clin Exp Otorhinolaryngol 2021; 14: 303–311, doi: 10.21053/ceo.2020.01907.
21. Iskandar AR, Zanetti F, Kondylis A, et al. A lower impact of an acute exposure to electronic cigarette aerosols than to cigarette smoke in human organotypic buccal and small airway cultures was demonstrated using systems toxicology assessment. Intern Emerg Med 2019; 14: 863–883, doi: 10.1007/s11739-019-02055-x.
22. Alexander DJ, Collins CJ, Coombs DW, et al. Association of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol 2008; 20: 1179–1189, doi: 10.1080/08958370802207318.
23. Bonser LR, Zlock L, Finkbeiner W, et al. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J Clin Invest 2016; 126: 2367–2371, doi: 10.1172/JCI84910.
24. Kesimer M, Ford AA, Ceppe A, et al. Airway Mucin Concentration as a Marker of Chronic Bronchitis. N Engl J Med 2017; 377: 911–922, doi: 10.1056/NEJMoa1701632.
25. Livraghi-Butrico A, Grubb BR, Wilkinson KJ, et al. Contribution of mucus concentration and secreted mucins Muc5ac and Muc5b to the pathogenesis of muco-obstructive lung disease. Mucosal Immunol 2017; 10: 395–407, doi: 10.1038/mi.2016.63.
26. Horsley A, Rousseau K, Ridley C, et al. Reassessment of the importance of mucins in determining sputum properties in cystic fibrosis. J Cyst Fibros 2014; 13: 260–266, doi: 10.1016/j.jcf.2013.11.002.
27. Kirkham S, Kolsum U, Rousseau K, et al. MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 178: 1033–1039, doi: 10.1164/rccm.200803-391OC.
28. Lachowicz-Scroggins ME, Yuan S, Kerr SC, et al. Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am J Respir Crit Care Med 2016; 194: 1296–1299, doi: 10.1164/rccm.201603-0526LE.
29. Lima JM, de, Macedo CCS, Barbosa GV, et al. E-liquid alters oral epithelial cell function to promote epithelial to mesenchymal transition and invasiveness in preclinical oral squamous cell carcinoma. Sci Rep 2023; 13: 3330, doi: 10.1038/s41598-023-30016-0.
30. Welz C, Canis M, Schwenk-Zieger S, et al. Cytotoxic and Genotoxic Effects of Electronic Cigarette Liquids on Human Mucosal Tissue Cultures of the Oropharynx. J Environ Pathol Toxicol Oncol 2016; 35: 343–354, doi: 10.1615/JEnvironPatholToxicolOncol.2016016652.
31. Putzhammer R, Doppler C, Jakschitz T, et al. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells. PLoS ONE 2016; 11: e0157337, doi: 10.1371/journal.pone.0157337.
32. Möller W, Häußinger K, Ziegler-Heitbrock L, et al. Mucociliary and long-term particle clearance in airways of patients with immotile cilia. Respir Res 2006; 7: 10, doi: 10.1186/1465-9921-7-10.
33. Ito JT, Ramos D, Lima FF, et al. Nasal Mucociliary Clearance in Subjects with COPD After Smoking Cessation. Respir Care 2015; 60: 399–405, doi: 10.4187/respcare.03266.
34. Palazzolo DL, Nelson JM, Ely EA, et al. The Effects of Electronic Cigarette (ECIG)-Generated Aerosol and Conventional Cigarette Smoke on the Mucociliary Transport Velocity (MTV) Using the Bullfrog (R. catesbiana) Palate Paradigm. Front Physiol 2017; 8: 1023, doi: 10.3389/fphys.2017.01023.
35. Cetean S, Căinap C, Constantin A-M, et al. The importance of the granulocyte-colony stimulating factor in oncology. Clujul Med 2015; 88: 468–472, doi: 10.15386/cjmed-531.
36. Li H, Wang K, Huang H, et al. A meta-analysis of anti-interleukin-13 monoclonal antibodies for uncontrolled asthma. PLoS ONE 2019; 14: e0211790. https://doi.org/10.1371/journal.pone.0211790.
37. Nakamura Y, Miyata M, Ohba T, et al. Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to T(H)2-type immune responses and airway inflammation. J Allergy Clin Immunol 2008; 122: 1208–1214, doi: 10.1016/j.jaci.2008.09.022.
38. Singh SP, Gundavarapu S, Peña-Philippides JC, et al. Prenatal Secondhand Cigarette Smoke Promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation. J Immunol 2011; 187: 4542–4552, doi: 10.4049/jimmunol.1101567.
39. Mishra NC, Rir-Sima-Ah J, Langley RJ, et al. Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J Immunol 2008; 180: 7655–7663, doi: 10.4049/jimmunol.180.11.7655.
40. Lukens JR, Gross JM, Kanneganti T-D. IL-1 family cytokines trigger sterile inflammatory disease. Front Immunol 2012; 3: 315, doi: 10.3389/fimmu.2012.00315.
41. Idan C, Peleg R, Elena V, et al. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep 2015; 5: 14756, doi: 10.1038/srep14756.
42. Kulesza, B, Mazurek, M, Kurzepa, J. Can cannabidiol have an analgesic effect? Fundam Clin Pharmacol 2023; 1–9, doi: 10.1111/fcp.12947.
43. Hashemi Goradel N, Najafi M, Salehi E, et al. Cyclooxygenase-2 in cancer: a review. J Cell Physiol 2019; 234: 5683–5699, doi: 10.1002/jcp.27411.
44. Su L, Liu J, Yue Q, et al. Evaluation of the Effects of E-Cigarette Aerosol Extracts and Tobacco Cigarette Smoke Extracts on Human Gingival Epithelial Cells. ACS Omega 2023; 8: 10919–10929, doi: 10.1021/acsomega.2c07324.
45. Sundar IK, Javed F, Romanos GE, et al. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget 2016; 7: 77196–77204, doi: 10.18632/oncotarget.12857.
46. Higham A, Rattray NJW, Dewhurst JA, et al. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir Res 2016; 17: 56, doi: 10.1186/s12931-016-0368-x.
47. Wu Q, Jiang D, Minor M, et al. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS ONE 2014; 9: e108342, doi: 10.1371/journal.pone.0108342.
48. Hwang JH, Lyes M, Sladewski K, et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med 2016; 94: 667–679, doi: 10.1007/s00109-016-1378-3.
49. Lee H-W, Park S-H, Weng M, et al. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A 2018; 115: E1560–E1569, doi: 10.1073/pnas.1718185115.
50. Yu V, Rahimy M, Korrapati A, et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol 2016; 52: 58–65, doi: 10.1016/j.oraloncology.2015.10.018.
51. Wood RD, Doublié S. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair (Amst) 2016; 44: 22–32, doi: 10.1016/j.dnarep.2016.05.003.
52. Sun Y-W, Kosinska W, Guttenplan JB. E-cigarette Aerosol Condensate Enhances Metabolism of Benzo(a)pyrene to Genotoxic Products, and Induces CYP1A1 and CYP1B1, Likely by Activation of the Aryl Hydrocarbon Receptor. Int J Environ Res Public Health 2019; 16: 2468, doi: 10.3390/ijerph16142468.
53. Tommasi S, Caliri AW, Caceres A, et al. Deregulation of Biologically Significant Genes and Associated Molecular Pathways in the Oral Epithelium of Electronic Cigarette Users. Int J Mol Sci 2019; 20: 738, doi: 10.3390/ijms20030738.
54. Prgomet Z, Axelsson L, Lindberg P, et al. Migration and invasion of oral squamous carcinoma cells is promoted by WNT5A, a regulator of cancer progression. J Oral Pathol Med 2015; 44: 776–784, doi: 10.1111/jop.12292.
55. Fritz G, Henninger C. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response? Biomolecules 2015; 5: 2417–2434, doi: 10.3390/biom5042417.
56. Xu J, Huang H, Pan C, et al. Nicotine inhibits apoptosis induced by cisplatin in human oral cancer cells. Int J Oral Maxillofac Surg 2007; 36: 739–744, doi: 10.1016/j.ijom.2007.05.016.
57. Liu Y, Li Q, Zhou L, et al. Cancer drug resistance: redox resetting renders a way. Oncotarget 2016; 7: 42740–42761, doi: 10.18632/oncotarget.8600.
58. Manyanga J, Ganapathy V, Bouharati C, et al. Electronic cigarette aerosols alter the expression of cisplatin transporters and increase drug resistance in oral cancer cells. Sci Rep 2021; 11: 1821, doi: 10.1038/s41598-021-81148-0.
59. Smolik M, Suraj J, Kurpinska A, et al. Transportery błonowe ABC i ich wielofunkcyjny charakter. Post Hig Med Dosw 2018; 72: 606–622, doi: 10.5604/01.3001.0012.1966.
60. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88: 102925, doi: 10.1016/j.bioorg.2019.102925.
61. Chen S-H, Chang J-Y. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019; 20: 4136, doi: 10.3390/ijms20174136.
62. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364–378, doi: 10.1016/j.ejphar.2014.07.025.
63. Karvar S. The role of ABC transporters in anticancer drug transport. Turk J Biol 2014; 38: 800–885, doi: 10.3906/biy-1407-3.
64. Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27: 14–29, doi: 10.1016/j.drup.2016.05.001.
65. Salturk Z, Çakır Ç, Sünnetçi G, et al. Effects of Electronic Nicotine Delivery System on Larynx: Experimental Study. J Voice 2015; 29: 560–563, doi: 10.1016/j.jvoice.2014.10.013.
66. Martinez JD, Easwaran M, Ramirez D, et al. Effects of Electronic (E)-cigarette Vapor and Cigarette Smoke in Cultured Vocal Fold Fibroblasts. Laryngoscope 2023; 133: 139–146, doi: 10.1002/lary.30073.
67. Lungova V, Wendt K, Thibeault SL. Exposure to e-cigarette vapor extract induces vocal fold epithelial injury and triggers intense mucosal remodeling. Dis Model Mech 2022; 15: dmm049476, doi: 10.1242/dmm.049476.
68. Song J-J, Go YY, Mun JY, et al. Effect of electronic cigarettes on human middle ear. Int J Pediatr Otorhinolaryngol 2018; 109: 67–71, doi: 10.1016/j.ijporl.2018.03.028.
69. Go YY, Mun JY, Chae S-W, et al. Comparison between in vitro toxicities of tobacco- and menthol-flavored electronic cigarette liquids on human middle ear epithelial cells. Sci Rep 2020; 10: 2544, doi: 10.1038/s41598-020-59290-y.
70. Song J-J, Go YY, Lee JK, et al. Transcriptomic analysis of tobacco-flavored E-cigarette and menthol-flavored E-cigarette exposure in the human middle ear. Sci Rep 2020; 10: 20799, doi: 10.1038/s41598-020-77816-2.
71. Souto MLS, Rovai ES, Villar CC, et al. Effect of smoking cessation on tooth loss: a systematic review with meta-analysis. BMC Oral Health 2019; 19: 245, doi: 10.1186/s12903-019-0930-2.
72. Pesce P, Menini M, Ugo G, et al. Evaluation of periodontal indices among non-smokers, tobacco, and e-cigarette smokers: a systematic review and network meta-analysis. Clin Oral Investig 2022; 26: 4701–4714, doi: 10.1007/s00784-022-04531-9.
73. Alanazi H, Park HJ, Chakir J, et al. Comparative study of the effects of cigarette smoke and electronic cigarettes on human gingival fibroblast proliferation, migration and apoptosis. Food Chem Toxicol 2018; 118: 390–398, doi: 10.1016/j.fct.2018.05.049.
74. Sancilio S, Gallorini M, Cataldi A, et al. Modifications in Human Oral Fibroblast Ultrastructure, Collagen Production, and Lysosomal Compartment in Response to Electronic Cigarette Fluids. J Periodontol 2017; 88: 673–680, doi: 10.1902/jop.2017.160629.
75. Catala-Valentin A, Bernard JN, Caldwell M, et al. E-Cigarette Aerosol Exposure Favors the Growth and Colonization of Oral Streptococcus mutans Compared to Commensal Streptococci. Microbiol Spectr 2022; 10: e0242121, doi: 10.1128/spectrum.02421-21.
76. Cichońska D, Kusiak A, Piechowicz L, et al. A pilot investigation into the influence of electronic cigarettes on oral bacteria. Post Dermatol Alergol 2021; 38: 1092–1098, doi: 10.5114/ada.2020.100335.
Copyright: © 2024 Family Medicine & Primary Care Review. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.