eISSN: 2084-9869
ISSN: 1233-9687
Polish Journal of Pathology
Current issue Archive Manuscripts accepted About the journal Supplements Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
2/2017
vol. 68
 
Share:
Share:
more
 
 
abstract:
Original paper

Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits

Paweł Myciński, Joanna Zarzecka, Agnieszka Skórska-Stania, Agnieszka Jelonek, Krzysztof Okoń, Maria Wróbel

Pol J Pathol 2017; 68 (2): 153-161
Online publish date: 2017/09/01
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits).

The following study groups were formed:

– group A (study group, 9 animals) – in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide;

– group B (study group, 9 animals) – in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39;

– group K (control, 18 animals) – the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing.

The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment.

The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better regeneration of the bone tissue. A statistical analysis of the study results revealed the increased resorptive activity of the composite in group B, which may have been due to its higher polylactide content. Simultaneously, we observed that healing of osseous defects filled with ceramic-polylactide composites in 80/20 and 61/39 ratios was comparable.
keywords:

ceramic-polylactide composite, bone substitutes, bone regeneration, osteogenesis

references:
Ehmke B., Erpenstein H. Atlas chirurgii periodontologicznej. Konopka T (ed.). Urban & Partner; Wroclaw 2008; 201-215.
Knychalska-Karwan Z, Ślósarczyk A. Hydroksyapatyt w stomatologii. Krakmedia, Kraków 1996; 48-56.
Osaka A, Miura Y, Takeuchi K, et al. Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. J Mater Sci Mater Med 1991; 2: 51-55.
Khoury F. Zabiegi augmentacyjne w implantologii. Dijakiewicz M (eds.). Wydawnictwo Kwintesencja, Warszawa 2011; 32-40.
Lloyd AW. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol 2002; 13: 18-21.
Laskus-Perendyk A, Mateńko D. Odbudowa ubytków kostnych z użyciem polimeru HTR. Opis przypadku. Czas Stomatol 1996; 3: 162-165.
Ślósarczyk A, et al. Biomateriały ceramiczne. In: Biocybernetyka i inżynieria biomedyczna 2000. Nałęcz M (ed.). Polska Akademia Nauk 2003; IV: 128-142.
Świeczko-Żurek B. Biomateriały. Wydawnictwo Politechniki Gdańskiej, Gdańsk 2009; 115-134.
Szyszkowska A, Krawczyk P. Materiały stosowane do odbudowy ubytków kostnych w stomatologii – praca poglądowa. Implantoprotetyka 2008; 4: 21-24.
Chłopek J. Kompozyty w medycynie. Kompozyty 2001; 1: 50-54.
Lee SJ, Lim GJ, Lee JW, et al. In vitro evaluation of a poli (lactide-co-glycolide) – collagen composite scaffold for bone regeneration. Biomaterials 2006; 27: 3466-3472.
Włodarski KH, Włodarski PK, Galus R. Bioaktywne kompozyty w regeneracji kości. Przegląd Ortop Traumatol Rehab 2008; 10: 201-210.
Di Silvio L, Dalby MJ, Bonfield W. Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 2002; 23: 101-107.
Rosół P. Analiza trwałości implantów z kompozytów polimerowych. Praca doktorska, Akademia Górniczo-Hutnicza, Kraków 2006.
Yang XB, Webb D, Blaker J, et al. Evaluation of human bone marrow stromal cell growth on biodegradable polymer/bioglass composites. Biochem Biophys Res Comm 2006; 342: 1098-1107.
Zhang Y, Tanner KE, Gurav N, Di Silvio L. In vitro osteoblastic response to 30 vol % hydroxyapatite-polyethylene composite. J Biomed Mater Res 2007; 81: 409-417.
Marciniak J, Kaczmarek M, Ziębowicz A. Biomateriały w stomatologii. Wydawnictwo Politechniki Śląskiej, Gliwice 2008.
Rogers W. Sterilisation of Polymer Healthcare Products. Rapra Technology 2005.
Rozema FR, Bos RR, Boering G, et al. The effects of different steam-sterilization programs on material properties of poly (L-lactide). J Appl Biomater 1991; 2: 23-28.
Rutala WA. Disinfection, Sterilization and Antisepsis In Health Care. Polyscience Publications, New York 1998.
Gogolewski S. Biomateriały ceramiczne. In: Biocybernetyka i inżynieria biomedyczna 2000. Nałęcz M (ed.). Polska Akademia Nauk 2003; IV: 257-330.
Gogolewski S, Mainil-Varlet P, Dillon JG. Sterility, mechanical properties, and molecular stability of polylactide internal-fixation devices treated with low-temperature plasmas. J Biomed Mater Res 1996; 32: 227-235.
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000; 21: 2335-2346.
Komlev VS, Barinova SM, Koplik EV. A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials 2002; 23: 3449-3454.
Zapała J, Wyszyńska-Pawelec G. Teraźniejszość i przyszłość chirurgii rekonstrukcyjnej czaszki twarzowej. In: Biotechnologiczne i medyczne podstawy ksenotransplantacji. Smorąg Z (ed.). Ośrodek Wydawnictw Naukowych, Poznań 2006.
Zapała J. Patologia urazowa nerwu wzrokowego w klinice i doświadczeniu. Rozprawa habilitacyjna, Uniwersytet Jagielloński, Kraków 1999.
Zarzecka J. Wykorzystanie zawiesiny autologicznych keratynocytów hodowanych in vitro w gojeniu ran błony śluzowej jamy ustnej. Rozprawa habilitacyjna, Uniwersytet Jagielloński, Kraków 2008.
Koźlik M, Wójcicki P, Rychlik D. Preparaty kościozastępcze. Dent Med Probl 2011; 4: 547-553.
Van Heest A, Swiontkowski M. Bone-graft substitutes. Lancet 1999; 353: 28-29.
Chruściel-Nogalska M, Światłowska M. Przebieg gojenia ubytków kostnych szczęki i żuchwy i jego wpływ na ukształtowanie podłoża protetycznego w oparciu o piśmiennictwo. Protet Stomatol 2001; 51: 197-201.
Maciejewska I, Nowakowska J, Bereznowski Z. Osteointegracja wszczepów zębowych – etapy gojenia kości. Protet Stomatol 2006; 3: 214-219.
Dawidowicz A, et al. Zastosowanie mikroanalizy pierwiastkowej do oceny osteoindukcji i osteokondukcji dokostnych implantów hydroksyapatytowych. Polimery Med. 2005; 1: 1-19.
Chłopek J, Morawska-Chochół A, Rosół P. Mechanizm regeneracji tkanki kostnej po implantacji kompozytu z polimeru resorbowalnego modyfikowanego hydroksyapatytem. Inż Biomater 2006; 58-60: 98-101.
Magdziarz OI. Wpływ kopolimeru kwasu mlekowego z kwasem glikolowym [P(LLA/GLA)] napełnionego hydroksyapatytem (HA) na gojenie ubytków kostnych żuchwy królików. Rozprawa doktorska. Śląska Akademia Medyczna, Zabrze 2005.
Zhang JC, Lu HY, Lv GY, et al. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int J Oral Maxillofac Surg 2010; 39: 469-477.
Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci 2004: 314-319.
Ignjatovic N, Savic V, Najman S, et al. Analysis of in vivo substitution of bone tissue by HAp/PLLA composite biomaterial with poly-L-lactide different molecular weight using FT-IR spectroscopy. Mater Sci Forum 2000; 352: 143-150.
Najman S, Dordevic L, Savic V, et al. Biological evaluation of hydroxyapatite/poly-L-lactide/ composite biomaterials with poly-L-lactide of different molecular weights intraperitonealy implanted into mice. Biomed Mater Eng 2004; 14: 61-70.
FEATURED PRODUCTS
Quick links
© 2018 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe