1. Stange KC, Miller WL, Etz RS. The Role of Primary Care in Improving Population Health. Milbank Q 2023; 101(S1): 795–840, doi: 10.1111/1468-0009.12638.
2.
Dossett LA, Hudson JN, Morris AM, et al. The primary care provider (PCP)-cancer specialist relationship: A systematic review and mixed-methods meta-synthesis. CA: Cancer J Clin 2017; 67(2): 156–169, doi: 10.3322/caac.21385.
3.
Klabunde CN, Ambs A, Keating NL, et al. The role of primary care physicians in cancer care. J Gen Intern Med 2009; 24(9): 1029–1036, doi: 10.1007/s11606-009-1058-x.
4.
Lawrence RA, McLoone JK, Wakefield CE, et al. Primary Care Physicians’ Perspectives of Their Role in Cancer Care: A Systematic Review. J Gen Intern Med 2016; 31(10): 1222–1236, doi: 10.1007/s11606-016-3746-7.
5.
National Comprehensive Cancer Network National Comprehensive Cancer Network Compendium [cited 17.05.2025]. Available from URL: https://www.nccn.org/compendia-templates/compendia/biomarkers-compendium.
6.
Haanen J, Obeid M, Spain L, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(12): 1217–1238, doi: 10.1016/j.annonc.2022.10.001.
7.
Schneider BJ, Naidoo J, Santomasso BD, et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J Clin Oncol 2021; 39(36): 4073–4126, doi: 10.1200/JCO.21.01440.
8.
Thompson JA, Schneider BJ, Brahmer J, et al. NCCN Guidelines® Insights: Management of Immunotherapy-Related Toxicities, Version 2.2024. J Natl Compr Canc Netw 2024; 22(9): 582–592, doi: 10.6004/jnccn.2024.0057.
9.
Ribeiro MC, Martins E, Prazeres F. Why Do Primary Care Patients Change Their Physicians: An Overview of the Literature. Int J Environ Res Public Health 2025; 22(2): 285, doi: 10.3390/ijerph22020285.
10.
Tang SQ, Tang LL, Mao YP, et al. The Pattern of Time to Onset and Resolution of Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors in Cancer: A Pooled Analysis of 23 Clinical Trials and 8,436 Patients. Cancer Res Treat 2021; 53(2): 339–354, doi: 10.4143/crt.2020.790.
11.
Faucheux AT, Klepin HD, Levine BJ, et al. Impact of comorbidity burden on immune-related adverse events and survival among older adults with cancer on immunotherapy. J Clin Oncol 2023; 41(16_suppl.): 12061, doi: 10.1200/JCO.2023.41.16_suppl.12061.
12.
Guo AA, Knapp MP, Evans JK, et al. Impact of comorbidity on immune-related adverse events and survival in older cancer patients treated with immunotherapy. Future Oncol 2025; 21(14): 1–10, doi: 10.1080/14796694.2025.2502313.
13.
Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer 2021; 9(6): e002435, doi: 10.1136/jitc-2021-002435.
14.
Zhang S, Tang K, Wan G, et al. Cutaneous immune-related adverse events are associated with longer overall survival in advanced cancer patients on immune checkpoint inhibitors: A multi-institutional cohort study. J Am Acad Dermatol 2023; 88(5): 1024–1032, doi: 10.1016/j.jaad.2022.12.048.
15.
Sibaud V. Dermatologic Reactions to Immune Checkpoint Inhibitors: Skin Toxicities and Immunotherapy. Am J Clin Dermatol 2018; 19(3): 345–361, doi: 10.1007/s40257-017-0336-3.
16.
Coleman E, Ko C, Dai F, et al. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J Am Acad Dermatol 2019; 80(4): 990–997, doi: 10.1016/j.jaad.2018.10.062.
17.
Meng L, Wu H, Wu J, et al. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15(1): 3, doi: 10.1038/s41419-023-06389-5.
18.
Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29(5): 3044–3060, doi: 10.3390/curroncol29050247.
19.
Gennari A, André F, Barrios CH, et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol 2021; 32(12): 1475–1495, doi: 10.1016/j.annonc.2021.09.019.
20.
Hendriks LE, Cortiula F, Mariamidze E, et al. ESMO Non-Oncogene-Addicted Non-Small Cell Lung Cancer Living Guideline v1.2. 2025. Available from URL: https://www.esmo.org/guidelines/living-guidelines/esmo-living-guideline-non-oncogene-addicted-metastatic-non-small-cell-lung-cancer.
21.
Michielin O, Akkooi ACJ, van, Ascierto PA, et al. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30(12): 1884–1901, doi: 10.1093/annonc/mdz411.
22.
Oaknin A, Bosse TJ, Creutzberg CL, et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(9): 860–877, doi: 10.1016/j.annonc.2022.05.009.
23.
Obermannová R, Alsina M, Cervantes A, et al. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(10): 992–1004, doi: 10.1016/j.annonc.2022.07.003.
24.
Cervantes A, Martinelli E. Updated treatment recommendation for third-line treatment in advanced colorectal cancer from the ESMO Metastatic Colorectal Cancer Living Guideline. Ann Oncol 2024; 35(2): 241–243, doi: 10.1016/j.annonc.2023.10.129.
25.
Lordick F, Carneiro F, Cascinu S, et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(10): 1005–1020, doi: 10.1016/j.annonc.2022.07.004.
26.
Machiels JP, René Leemans C, Golusinski W, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31(11): 1462–1475, doi: 10.1016/j.annonc.2020.07.011.
27.
Powles T, Albiges L, Bex A, et al. Renal cell carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2024; 35(8): 692–706, doi: 10.1016/j.annonc.2024.05.537.
28.
Vogel A, Bridgewater J, Edeline J, et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34(2): 127–140, doi: 10.1016/j.annonc.2022.10.506.
29.
Vogel A, Cervantes A, Chau I, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Footnotes Approved by the ESMO Guidelines Committee: August 2018. Ann Oncol 2018; 29: iv238–iv55, doi: 10.1093/annonc/mdy308.
30.
Haslam A, Olivier T, Prasad V. How many people in the US are eligible for and respond to checkpoint inhibitors: An empirical analysis. Int J Cancer 2025; 156(12): 2352–2359, doi: 10.1002/ijc.35347.
31.
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143(Pt 2): 113365, doi: 10.1016/j.intimp.2024.113365.
32.
Iranzo P, Callejo A, Assaf JD, et al. Overview of Checkpoint Inhibitors Mechanism of Action: Role of Immune-Related Adverse Events and Their Treatment on Progression of Underlying Cancer. Front Med 2022; 9, doi: 10.3389/fmed.2022.875974.
33.
Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 2015; 33(17): 1974–1982, doi: 10.1200/jco.2014.59.4358.
34.
Shibru B, Fey K, Fricke S, et al. Detection of Immune Checkpoint Receptors – A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021; 12: 694055, doi: 10.3389/fimmu.2021.694055.
35.
Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018; 48(3): 434–452, doi: 10.1016/j.immuni.2018.03.014.
36.
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012; 209(6): 1201–1217, doi: 10.1084/jem.20112741.
37.
Patsoukis N, Wang Q, Strauss L, et al. Revisiting the PD-1 pathway. Sci Adv 2020; 6(38): eabd2712, doi: 10.1126/sciadv.abd2712.
38.
Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): A versatile receptor for immune-based therapy. Semin Immunol 2019; 42: 101298, doi: 10.1016/j.smim.2019.101298.
39.
Van Coillie S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. Adv Exp Med Biol 2020; 1248: 7–32, doi: 10.1007/978-981-15-3266-5_2.
40.
Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol 2016; 39(1): 98–106, doi: 10.1097/coc.0000000000000239.
41.
Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 Signaling. Int J Mol Sci 2021; 22(10): 5282, doi: 10.3390/ijms22105282.
42.
Maruhashi T, Sugiura D, Okazaki IM, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity 2022; 55(5): 912–924, doi: 10.1016/j.immuni.2022.03.013.
43.
Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 1990; 171(5): 1393–1405, doi: 10.1084/jem.171.5.1393.
44.
Lao Y, Shen D, Zhang W, et al. Immune Checkpoint Inhibitors in Cancer Therapy-How to Overcome Drug Resistance? Cancers (Basel) 2022; 14(15): 3575, doi: 10.3390/cancers14153575.
45.
Sun Y, Zhang Z, Jia K, et al. Autoimmune-related adverse events induced by immune checkpoint inhibitors. Curr Opin Immunol 2025; 94: 102556, doi: 10.1016/j.coi.2025.102556.
46.
Sangro B, Chan SL, Meyer T, et al. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. J Hepatol 2020; 72(2): 320–341, doi: 10.1016/j.jhep.2019.10.021.
47.
Druyts E, Boye M, Agg H, et al. Immune-related adverse events and efficacy outcomes in patients treated with immunotherapy: A systematic review and meta-analysis. J Clin Oncol 2020; 38(5_suppl.): 92–92, doi: 10.1200/JCO.2020.38.5_suppl.92.
48.
Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol 2020; 83(5): 1255–1268, doi: 10.1016/j.jaad.2020.03.132.
49.
Kaul S, Kaffenberger BH, Choi JN, et al. Cutaneous Adverse Reactions of Anticancer Agents. Dermatol Clin 2019; 37(4): 555–568, doi: 10.1016/j.det.2019.05.013.
50.
Patel AB, Pacha O. Skin Reactions to Immune Checkpoint Inhibitors. Adv Exp Med Biol 2018; 995: 117–129, doi: 10.1007/978-3-030-02505-2_5.
51.
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med 2019; 381(16): 1535–1546, doi: 10.1056/NEJMoa1910836.
52.
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 2015; 373(1): 23–34, doi: 10.1056/NEJMoa1504030.
53.
Curkovic NB, Bai K, Ye F, et al. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16(2): 340, doi: 10.3390/cancers16020340.
54.
Sibaud V. Dermatologic Reactions to Immune Checkpoint Inhibitors. Am J Clin Dermatol 2018; 19(3): 345–361, doi: 10.1007/s40257-017-0336-3.
55.
Apalla Z, Papageorgiou C, Lallas A, et al. Cutaneous Adverse Events of Immune Checkpoint Inhibitors: A Literature Review. Dermatol Pract Concept 2021; 11(1): e2021155, doi: 10.5826/dpc.1101a155.
56.
Maloney NJ, Ravi V, Cheng K, et al. Stevens‐Johnson syndrome and toxic epidermal necrolysis‐like reactions to checkpoint inhibitors: a systematic review. Int J Dermatol 2020; 59(6): e183–e188.
57.
Belum VR, Benhuri B, Postow MA, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016; 60: 12–25, doi: 10.1016/j.ejca.2016.02.010.
58.
Curry JL, Tetzlaff MT, Nagarajan P, et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol 2017; 44(2): 158–176, doi: 10.1111/cup.12858.
59.
Weber JS, Hodi FS, Wolchok JD, et al. Safety Profile of Nivolumab Monotherapy: A Pooled Analysis of Patients with Advanced Melanoma. J Clin Oncol 2017; 35(7): 785–792, doi: 10.1200/jco.2015.66.1389.
60.
Barrios DM, Phillips GS, Geisler AN, et al. IgE blockade with omalizumab reduces pruritus related to immune checkpoint inhibitors and anti-HER2 therapies. Ann Oncol 2021; 32(6): 736–745, doi: 10.1016/j.annonc.2021.02.016.
61.
Hofmann L, Forschner A, Loquai C, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer 2016; 60: 190–209, doi: 10.1016/j.ejca.2016.02.025.
62.
Lacouture ME, Sibaud V, Gerber PA, et al. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines. Ann Oncol 2021; 32(2): 157–170, doi: 10.1016/j.annonc.2020.11.005.
63.
Bottlaender L, Amini-Adle M, Maucort-Boulch D, et al. Cutaneous adverse events: a predictor of tumour response under anti-PD-1 therapy for metastatic melanoma, a cohort analysis of 189 patients. J Eur Acad Dermatol Venereol 2020; 34(9): 2096–2105, doi: 10.1111/jdv.16311.
64.
Joseph RW, Cappel M, Goedjen B, et al. Lichenoid dermatitis in three patients with metastatic melanoma treated with anti-PD-1 therapy. Cancer Immunol Res 2015; 3(1): 18–22, doi: 10.1158/2326-6066.Cir-14-0134.
65.
Schaberg KB, Novoa RA, Wakelee HA, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol 2016; 43(4): 339–346, doi: 10.1111/cup.12666.
66.
Tetzlaff MT, Nagarajan P, Chon S, et al. Lichenoid Dermatologic Toxicity From Immune Checkpoint Blockade Therapy: A Detailed Examination of the Clinicopathologic Features. Am J Dermatopathol 2017; 39(2): 121–129, doi: 10.1097/dad.0000000000000688.
67.
Chou S, Hwang SJ, Carlos G, et al. Histologic Assessment of Lichenoid Dermatitis Observed in Patients with Advanced Malignancies on Antiprogramed Cell Death-1 (anti-PD-1) Therapy with or Without Ipilimumab. Am J Dermatopathol 2017; 39(1): 23–27, doi: 10.1097/dad.0000000000000587.
68.
Shi VJ, Rodic N, Gettinger S, et al. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti-Programmed Cell Death 1 and Anti-Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatol 2016; 152(10): 1128–1136, doi: 10.1001/jamadermatol.2016.2226.
69.
Goldinger SM, Stieger P, Meier B, et al. Cytotoxic Cutaneous Adverse Drug Reactions during Anti-PD-1 Therapy. Clin Cancer Res 2016; 22(16): 4023–4029, doi: 10.1158/1078-0432.Ccr-15-2872.
70.
Bonigen J, Raynaud-Donzel C, Hureaux J, et al. Anti-PD1-induced psoriasis: a study of 21 patients. J Eur Acad Dermatol Venereol 2017; 31(5): e254–e257, doi: 10.1111/jdv.14011.
71.
Johnson DB, Sullivan RJ, Ott PA, et al. Ipilimumab Therapy in Patients with Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol 2016; 2(2): 234–240, doi: 10.1001/jamaoncol.2015.4368.
72.
Menzies AM, Johnson DB, Ramanujam S, et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol 2017; 28(2): 368–376, doi: 10.1093/annonc/mdw443.
73.
Nikolaou V, Sibaud V, Fattore D, et al. Immune checkpoint-mediated psoriasis: A multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) group. J Am Acad Dermatol 2021; 84(5): 1310–1320, doi: 10.1016/j.jaad.2020.08.137.
74.
Ruiz-Bañobre J, Abdulkader I, Anido U, et al. Development of de novo psoriasis during nivolumab therapy for metastatic renal cell carcinoma: immunohistochemical analyses and clinical outcome. Apmis 2017; 125(3): 259–263, doi: 10.1111/apm.12658.
75.
Gutzmer R, Koop A, Meier F, et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur J Cancer 2017; 75: 24–32, doi: 10.1016/j.ejca.2016.12.038.
76.
Kawsar A, Edwards C, Patel P, et al. Checkpoint inhibitor-associated bullous cutaneous immune-related adverse events: a multicentre observational study. Br J Dermatol 2022; 187(6): 981–987, doi: 10.1111/bjd.21836.
77.
Siegel J, Totonchy M, Damsky W, et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol 2018; 79(6): 1081–1088, doi: 10.1016/j.jaad.2018.07.008.
78.
Chen CB, Wu MY, Ng CY, et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer Manag Res 2018; 10: 1259–1273, doi: 10.2147/cmar.S163391.
79.
Vivar KL, Deschaine M, Messina J, et al. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J Cutan Pathol 2017; 44(4): 381–384, doi: 10.1111/cup.12876.
80.
Saw S, Lee HY, Ng QS. Pembrolizumab-induced Stevens-Johnson syndrome in non-melanoma patients. Eur J Cancer 2017; 81: 237–239, doi: 10.1016/j.ejca.2017.03.026.
81.
Hwang SJ, Carlos G, Wakade D, et al. Ipilimumab-induced acute generalized exanthematous pustulosis in a patient with metastatic melanoma. Melanoma Res 2016; 26(4): 417–420, doi: 10.1097/cmr.0000000000000261.
82.
Page B, Borradori L, Beltraminelli H, et al. Acute generalized exanthematous pustulosis associated with ipilimumab and nivolumab. J Eur Acad Dermatol Venereol 2018; 32(7): e256–e257, doi: 10.1111/jdv.14282.
83.
Couey MA, Bell RB, Patel AA, et al. Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. J Immunother Cancer 2019; 7(1):1 65, doi: 10.1186/s40425-019-0645-6.
84.
Nakamura Y, Tanaka R, Asami Y, et al. Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: A multi-institutional retrospective study. J Dermatol 2017; 44(2): 117–122, doi: 10.1111/1346-8138.13520.
85.
Larsabal M, Marti A, Jacquemin C, et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol 2017; 76(5): 863–870, doi: 10.1016/j.jaad.2016.10.044.
86.
Kawsar A, Hussain K, Muinonen-Martin AJ, et al. How to recognize and manage skin toxicities associated with immune checkpoint inhibitors: a practical approach. Br J Dermatol 2023; 189(Suppl. 1): i3–i10, doi: 10.1093/bjd/ljad257.
87.
Health NIo. Department of health and human services. Common Terminology criteria for adverse events (CTCAE) version 5.0 [cited 17.05.2025]. Available from URL: https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events.
88.
Easley J, Miedema B, O’Brien MA, et al. The Role of Family Physicians in Cancer Care: Perspectives of Primary and Specialty Care Providers. Curr Oncol 2017; 24(2): 75–80, doi: 10.3747/co.24.3447.
89.
Pickwell-Smith BA, So ACP, Board RE. Managing side effects of cancer immunotherapy for the acute physician. Br J Hosp Med (Lond) 2018; 79(7): 372–377, doi: 10.12968/hmed.2018.79.7.372.
90.
Shi L. The impact of primary care: a focused review. Scientifica (Cairo) 2012; 2012: 432892, doi: 10.6064/2012/432892.
91.
Grunfeld E. Primary care physicians and oncologists are players on the same team. J Clin Oncol 2008; 26(14): 2246–2247, doi: 10.1200/jco.2007.15.7081.
92.
Falade AS, Boulanger MC, Hsu K, et al. Learning About and Living with Toxicity: A Qualitative Study of Patients Receiving Immune Checkpoint Inhibitors for Melanoma or Lung Cancer and Their Caregivers. Res Sq 2024, doi: 10.21203/rs.3.rs-4576328/v1.
93.
Hoffner B, Vaughn R, Reed M, et al. The Advanced Practice Provider Perspective: Treating Patients with Immuno-Oncology Combination Therapy Across Tumor Types. J Adv Pract Oncol 2019; 10(4): 367–386, doi: 10.6004/jadpro.2019.10.4.5.
94.
Santistevan J, Long B, Koyfman A. Rash Decisions: An Approach to Dangerous Rashes Based on Morphology. J Emerg Med 2017; 52(4): 457–471, doi: 10.1016/j.jemermed.2016.10.027.
95.
Hardy V, Yue A, Archer S, et al. Role of primary care physician factors on diagnostic testing and referral decisions for symptoms of possible cancer: a systematic review. BMJ Open 2022; 12(1): e053732, doi: 10.1136/bmjopen-2021-053732.
96.
Koshi EJ, Young K, Mostales JC, et al. Complications of Corticosteroid Therapy: A Comprehensive Literature Review. J Pharm Technol 2022; 38(6): 360–367, doi: 10.1177/87551225221116266.
97.
Goodman RS, Johnson DB, Balko JM. Corticosteroids and Cancer Immunotherapy. Clin Cancer Res 2023; 29(14): 2580–2587, doi: 10.1158/1078-0432.Ccr-22-3181.
98.
Hatano Y, Matsuoka H, Lam L, et al. Side effects of corticosteroids in patients with advanced cancer: a systematic review. Support Care Cancer 2018; 26(12): 3979–3983, doi: 10.1007/s00520-018-4339-2.
99.
Martinez P, Sabatier JM. Rethinking corticosteroids use in oncology. Front Pharmacol 2025; 16: 1551111, doi: 10.3389/fphar.2025. 1551111.