Family Medicine & Primary Care Review
eISSN: 2449-8580
ISSN: 1734-3402
Family Medicine & Primary Care Review
Current issue Archive Manuscripts accepted About the journal Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2025
vol. 27
 
Share:
Share:
Review paper

Dermatological complications resulting from Immune Checkpoint Inhibitors: a case for primary care physicians

Hanna Grabowska
1
,
Paulina Chmiel
2

  1. Collegium Medicum Medical Department, The Kardinal Stefan Wyszyński University
  2. First Department and Clinic of Cardiology, Medical University of Warsaw
Family Medicine & Primary Care Review 2025; 27(2): 334-343
Online publish date: 2025/07/16
Get citation
 
PlumX metrics:
 
1. Stange KC, Miller WL, Etz RS. The Role of Primary Care in Improving Population Health. Milbank Q 2023; 101(S1): 795–840, doi: 10.1111/1468-0009.12638.
2. Dossett LA, Hudson JN, Morris AM, et al. The primary care provider (PCP)-cancer specialist relationship: A systematic review and mixed-methods meta-synthesis. CA: Cancer J Clin 2017; 67(2): 156–169, doi: 10.3322/caac.21385.
3. Klabunde CN, Ambs A, Keating NL, et al. The role of primary care physicians in cancer care. J Gen Intern Med 2009; 24(9): 1029–1036, doi: 10.1007/s11606-009-1058-x.
4. Lawrence RA, McLoone JK, Wakefield CE, et al. Primary Care Physicians’ Perspectives of Their Role in Cancer Care: A Systematic Review. J Gen Intern Med 2016; 31(10): 1222–1236, doi: 10.1007/s11606-016-3746-7.
5. National Comprehensive Cancer Network National Comprehensive Cancer Network Compendium [cited 17.05.2025]. Available from URL: https://www.nccn.org/compendia-templates/compendia/biomarkers-compendium.
6. Haanen J, Obeid M, Spain L, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(12): 1217–1238, doi: 10.1016/j.annonc.2022.10.001.
7. Schneider BJ, Naidoo J, Santomasso BD, et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J Clin Oncol 2021; 39(36): 4073–4126, doi: 10.1200/JCO.21.01440.
8. Thompson JA, Schneider BJ, Brahmer J, et al. NCCN Guidelines® Insights: Management of Immunotherapy-Related Toxicities, Version 2.2024. J Natl Compr Canc Netw 2024; 22(9): 582–592, doi: 10.6004/jnccn.2024.0057.
9. Ribeiro MC, Martins E, Prazeres F. Why Do Primary Care Patients Change Their Physicians: An Overview of the Literature. Int J Environ Res Public Health 2025; 22(2): 285, doi: 10.3390/ijerph22020285.
10. Tang SQ, Tang LL, Mao YP, et al. The Pattern of Time to Onset and Resolution of Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors in Cancer: A Pooled Analysis of 23 Clinical Trials and 8,436 Patients. Cancer Res Treat 2021; 53(2): 339–354, doi: 10.4143/crt.2020.790.
11. Faucheux AT, Klepin HD, Levine BJ, et al. Impact of comorbidity burden on immune-related adverse events and survival among older adults with cancer on immunotherapy. J Clin Oncol 2023; 41(16_suppl.): 12061, doi: 10.1200/JCO.2023.41.16_suppl.12061.
12. Guo AA, Knapp MP, Evans JK, et al. Impact of comorbidity on immune-related adverse events and survival in older cancer patients treated with immunotherapy. Future Oncol 2025; 21(14): 1–10, doi: 10.1080/14796694.2025.2502313.
13. Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer 2021; 9(6): e002435, doi: 10.1136/jitc-2021-002435.
14. Zhang S, Tang K, Wan G, et al. Cutaneous immune-related adverse events are associated with longer overall survival in advanced cancer patients on immune checkpoint inhibitors: A multi-institutional cohort study. J Am Acad Dermatol 2023; 88(5): 1024–1032, doi: 10.1016/j.jaad.2022.12.048.
15. Sibaud V. Dermatologic Reactions to Immune Checkpoint Inhibitors: Skin Toxicities and Immunotherapy. Am J Clin Dermatol 2018; 19(3): 345–361, doi: 10.1007/s40257-017-0336-3.
16. Coleman E, Ko C, Dai F, et al. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: A single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J Am Acad Dermatol 2019; 80(4): 990–997, doi: 10.1016/j.jaad.2018.10.062.
17. Meng L, Wu H, Wu J, et al. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15(1): 3, doi: 10.1038/s41419-023-06389-5.
18. Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29(5): 3044–3060, doi: 10.3390/curroncol29050247.
19. Gennari A, André F, Barrios CH, et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol 2021; 32(12): 1475–1495, doi: 10.1016/j.annonc.2021.09.019.
20. Hendriks LE, Cortiula F, Mariamidze E, et al. ESMO Non-Oncogene-Addicted Non-Small Cell Lung Cancer Living Guideline v1.2. 2025. Available from URL: https://www.esmo.org/guidelines/living-guidelines/esmo-living-guideline-non-oncogene-addicted-metastatic-non-small-cell-lung-cancer.
21. Michielin O, Akkooi ACJ, van, Ascierto PA, et al. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019; 30(12): 1884–1901, doi: 10.1093/annonc/mdz411.
22. Oaknin A, Bosse TJ, Creutzberg CL, et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(9): 860–877, doi: 10.1016/j.annonc.2022.05.009.
23. Obermannová R, Alsina M, Cervantes A, et al. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(10): 992–1004, doi: 10.1016/j.annonc.2022.07.003.
24. Cervantes A, Martinelli E. Updated treatment recommendation for third-line treatment in advanced colorectal cancer from the ESMO Metastatic Colorectal Cancer Living Guideline. Ann Oncol 2024; 35(2): 241–243, doi: 10.1016/j.annonc.2023.10.129.
25. Lordick F, Carneiro F, Cascinu S, et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33(10): 1005–1020, doi: 10.1016/j.annonc.2022.07.004.
26. Machiels JP, René Leemans C, Golusinski W, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31(11): 1462–1475, doi: 10.1016/j.annonc.2020.07.011.
27. Powles T, Albiges L, Bex A, et al. Renal cell carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2024; 35(8): 692–706, doi: 10.1016/j.annonc.2024.05.537.
28. Vogel A, Bridgewater J, Edeline J, et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34(2): 127–140, doi: 10.1016/j.annonc.2022.10.506.
29. Vogel A, Cervantes A, Chau I, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Footnotes Approved by the ESMO Guidelines Committee: August 2018. Ann Oncol 2018; 29: iv238–iv55, doi: 10.1093/annonc/mdy308.
30. Haslam A, Olivier T, Prasad V. How many people in the US are eligible for and respond to checkpoint inhibitors: An empirical analysis. Int J Cancer 2025; 156(12): 2352–2359, doi: 10.1002/ijc.35347.
31. Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143(Pt 2): 113365, doi: 10.1016/j.intimp.2024.113365.
32. Iranzo P, Callejo A, Assaf JD, et al. Overview of Checkpoint Inhibitors Mechanism of Action: Role of Immune-Related Adverse Events and Their Treatment on Progression of Underlying Cancer. Front Med 2022; 9, doi: 10.3389/fmed.2022.875974.
33. Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 2015; 33(17): 1974–1982, doi: 10.1200/jco.2014.59.4358.
34. Shibru B, Fey K, Fricke S, et al. Detection of Immune Checkpoint Receptors – A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021; 12: 694055, doi: 10.3389/fimmu.2021.694055.
35. Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018; 48(3): 434–452, doi: 10.1016/j.immuni.2018.03.014.
36. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012; 209(6): 1201–1217, doi: 10.1084/jem.20112741.
37. Patsoukis N, Wang Q, Strauss L, et al. Revisiting the PD-1 pathway. Sci Adv 2020; 6(38): eabd2712, doi: 10.1126/sciadv.abd2712.
38. Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): A versatile receptor for immune-based therapy. Semin Immunol 2019; 42: 101298, doi: 10.1016/j.smim.2019.101298.
39. Van Coillie S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. Adv Exp Med Biol 2020; 1248: 7–32, doi: 10.1007/978-981-15-3266-5_2.
40. Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol 2016; 39(1): 98–106, doi: 10.1097/coc.0000000000000239.
41. Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 Signaling. Int J Mol Sci 2021; 22(10): 5282, doi: 10.3390/ijms22105282.
42. Maruhashi T, Sugiura D, Okazaki IM, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity 2022; 55(5): 912–924, doi: 10.1016/j.immuni.2022.03.013.
43. Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 1990; 171(5): 1393–1405, doi: 10.1084/jem.171.5.1393.
44. Lao Y, Shen D, Zhang W, et al. Immune Checkpoint Inhibitors in Cancer Therapy-How to Overcome Drug Resistance? Cancers (Basel) 2022; 14(15): 3575, doi: 10.3390/cancers14153575.
45. Sun Y, Zhang Z, Jia K, et al. Autoimmune-related adverse events induced by immune checkpoint inhibitors. Curr Opin Immunol 2025; 94: 102556, doi: 10.1016/j.coi.2025.102556.
46. Sangro B, Chan SL, Meyer T, et al. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. J Hepatol 2020; 72(2): 320–341, doi: 10.1016/j.jhep.2019.10.021.
47. Druyts E, Boye M, Agg H, et al. Immune-related adverse events and efficacy outcomes in patients treated with immunotherapy: A systematic review and meta-analysis. J Clin Oncol 2020; 38(5_suppl.): 92–92, doi: 10.1200/JCO.2020.38.5_suppl.92.
48. Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol 2020; 83(5): 1255–1268, doi: 10.1016/j.jaad.2020.03.132.
49. Kaul S, Kaffenberger BH, Choi JN, et al. Cutaneous Adverse Reactions of Anticancer Agents. Dermatol Clin 2019; 37(4): 555–568, doi: 10.1016/j.det.2019.05.013.
50. Patel AB, Pacha O. Skin Reactions to Immune Checkpoint Inhibitors. Adv Exp Med Biol 2018; 995: 117–129, doi: 10.1007/978-3-030-02505-2_5.
51. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med 2019; 381(16): 1535–1546, doi: 10.1056/NEJMoa1910836.
52. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 2015; 373(1): 23–34, doi: 10.1056/NEJMoa1504030.
53. Curkovic NB, Bai K, Ye F, et al. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16(2): 340, doi: 10.3390/cancers16020340.
54. Sibaud V. Dermatologic Reactions to Immune Checkpoint Inhibitors. Am J Clin Dermatol 2018; 19(3): 345–361, doi: 10.1007/s40257-017-0336-3.
55. Apalla Z, Papageorgiou C, Lallas A, et al. Cutaneous Adverse Events of Immune Checkpoint Inhibitors: A Literature Review. Dermatol Pract Concept 2021; 11(1): e2021155, doi: 10.5826/dpc.1101a155.
56. Maloney NJ, Ravi V, Cheng K, et al. Stevens‐Johnson syndrome and toxic epidermal necrolysis‐like reactions to checkpoint inhibitors: a systematic review. Int J Dermatol 2020; 59(6): e183–e188.
57. Belum VR, Benhuri B, Postow MA, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016; 60: 12–25, doi: 10.1016/j.ejca.2016.02.010.
58. Curry JL, Tetzlaff MT, Nagarajan P, et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol 2017; 44(2): 158–176, doi: 10.1111/cup.12858.
59. Weber JS, Hodi FS, Wolchok JD, et al. Safety Profile of Nivolumab Monotherapy: A Pooled Analysis of Patients with Advanced Melanoma. J Clin Oncol 2017; 35(7): 785–792, doi: 10.1200/jco.2015.66.1389.
60. Barrios DM, Phillips GS, Geisler AN, et al. IgE blockade with omalizumab reduces pruritus related to immune checkpoint inhibitors and anti-HER2 therapies. Ann Oncol 2021; 32(6): 736–745, doi: 10.1016/j.annonc.2021.02.016.
61. Hofmann L, Forschner A, Loquai C, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer 2016; 60: 190–209, doi: 10.1016/j.ejca.2016.02.025.
62. Lacouture ME, Sibaud V, Gerber PA, et al. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines. Ann Oncol 2021; 32(2): 157–170, doi: 10.1016/j.annonc.2020.11.005.
63. Bottlaender L, Amini-Adle M, Maucort-Boulch D, et al. Cutaneous adverse events: a predictor of tumour response under anti-PD-1 therapy for metastatic melanoma, a cohort analysis of 189 patients. J Eur Acad Dermatol Venereol 2020; 34(9): 2096–2105, doi: 10.1111/jdv.16311.
64. Joseph RW, Cappel M, Goedjen B, et al. Lichenoid dermatitis in three patients with metastatic melanoma treated with anti-PD-1 therapy. Cancer Immunol Res 2015; 3(1): 18–22, doi: 10.1158/2326-6066.Cir-14-0134.
65. Schaberg KB, Novoa RA, Wakelee HA, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol 2016; 43(4): 339–346, doi: 10.1111/cup.12666.
66. Tetzlaff MT, Nagarajan P, Chon S, et al. Lichenoid Dermatologic Toxicity From Immune Checkpoint Blockade Therapy: A Detailed Examination of the Clinicopathologic Features. Am J Dermatopathol 2017; 39(2): 121–129, doi: 10.1097/dad.0000000000000688.
67. Chou S, Hwang SJ, Carlos G, et al. Histologic Assessment of Lichenoid Dermatitis Observed in Patients with Advanced Malignancies on Antiprogramed Cell Death-1 (anti-PD-1) Therapy with or Without Ipilimumab. Am J Dermatopathol 2017; 39(1): 23–27, doi: 10.1097/dad.0000000000000587.
68. Shi VJ, Rodic N, Gettinger S, et al. Clinical and Histologic Features of Lichenoid Mucocutaneous Eruptions Due to Anti-Programmed Cell Death 1 and Anti-Programmed Cell Death Ligand 1 Immunotherapy. JAMA Dermatol 2016; 152(10): 1128–1136, doi: 10.1001/jamadermatol.2016.2226.
69. Goldinger SM, Stieger P, Meier B, et al. Cytotoxic Cutaneous Adverse Drug Reactions during Anti-PD-1 Therapy. Clin Cancer Res 2016; 22(16): 4023–4029, doi: 10.1158/1078-0432.Ccr-15-2872.
70. Bonigen J, Raynaud-Donzel C, Hureaux J, et al. Anti-PD1-induced psoriasis: a study of 21 patients. J Eur Acad Dermatol Venereol 2017; 31(5): e254–e257, doi: 10.1111/jdv.14011.
71. Johnson DB, Sullivan RJ, Ott PA, et al. Ipilimumab Therapy in Patients with Advanced Melanoma and Preexisting Autoimmune Disorders. JAMA Oncol 2016; 2(2): 234–240, doi: 10.1001/jamaoncol.2015.4368.
72. Menzies AM, Johnson DB, Ramanujam S, et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol 2017; 28(2): 368–376, doi: 10.1093/annonc/mdw443.
73. Nikolaou V, Sibaud V, Fattore D, et al. Immune checkpoint-mediated psoriasis: A multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) group. J Am Acad Dermatol 2021; 84(5): 1310–1320, doi: 10.1016/j.jaad.2020.08.137.
74. Ruiz-Bañobre J, Abdulkader I, Anido U, et al. Development of de novo psoriasis during nivolumab therapy for metastatic renal cell carcinoma: immunohistochemical analyses and clinical outcome. Apmis 2017; 125(3): 259–263, doi: 10.1111/apm.12658.
75. Gutzmer R, Koop A, Meier F, et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur J Cancer 2017; 75: 24–32, doi: 10.1016/j.ejca.2016.12.038.
76. Kawsar A, Edwards C, Patel P, et al. Checkpoint inhibitor-associated bullous cutaneous immune-related adverse events: a multicentre observational study. Br J Dermatol 2022; 187(6): 981–987, doi: 10.1111/bjd.21836.
77. Siegel J, Totonchy M, Damsky W, et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol 2018; 79(6): 1081–1088, doi: 10.1016/j.jaad.2018.07.008.
78. Chen CB, Wu MY, Ng CY, et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer Manag Res 2018; 10: 1259–1273, doi: 10.2147/cmar.S163391.
79. Vivar KL, Deschaine M, Messina J, et al. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J Cutan Pathol 2017; 44(4): 381–384, doi: 10.1111/cup.12876.
80. Saw S, Lee HY, Ng QS. Pembrolizumab-induced Stevens-Johnson syndrome in non-melanoma patients. Eur J Cancer 2017; 81: 237–239, doi: 10.1016/j.ejca.2017.03.026.
81. Hwang SJ, Carlos G, Wakade D, et al. Ipilimumab-induced acute generalized exanthematous pustulosis in a patient with metastatic melanoma. Melanoma Res 2016; 26(4): 417–420, doi: 10.1097/cmr.0000000000000261.
82. Page B, Borradori L, Beltraminelli H, et al. Acute generalized exanthematous pustulosis associated with ipilimumab and nivolumab. J Eur Acad Dermatol Venereol 2018; 32(7): e256–e257, doi: 10.1111/jdv.14282.
83. Couey MA, Bell RB, Patel AA, et al. Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. J Immunother Cancer 2019; 7(1):1 65, doi: 10.1186/s40425-019-0645-6.
84. Nakamura Y, Tanaka R, Asami Y, et al. Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: A multi-institutional retrospective study. J Dermatol 2017; 44(2): 117–122, doi: 10.1111/1346-8138.13520.
85. Larsabal M, Marti A, Jacquemin C, et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol 2017; 76(5): 863–870, doi: 10.1016/j.jaad.2016.10.044.
86. Kawsar A, Hussain K, Muinonen-Martin AJ, et al. How to recognize and manage skin toxicities associated with immune checkpoint inhibitors: a practical approach. Br J Dermatol 2023; 189(Suppl. 1): i3–i10, doi: 10.1093/bjd/ljad257.
87. Health NIo. Department of health and human services. Common Terminology criteria for adverse events (CTCAE) version 5.0 [cited 17.05.2025]. Available from URL: https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events.
88. Easley J, Miedema B, O’Brien MA, et al. The Role of Family Physicians in Cancer Care: Perspectives of Primary and Specialty Care Providers. Curr Oncol 2017; 24(2): 75–80, doi: 10.3747/co.24.3447.
89. Pickwell-Smith BA, So ACP, Board RE. Managing side effects of cancer immunotherapy for the acute physician. Br J Hosp Med (Lond) 2018; 79(7): 372–377, doi: 10.12968/hmed.2018.79.7.372.
90. Shi L. The impact of primary care: a focused review. Scientifica (Cairo) 2012; 2012: 432892, doi: 10.6064/2012/432892.
91. Grunfeld E. Primary care physicians and oncologists are players on the same team. J Clin Oncol 2008; 26(14): 2246–2247, doi: 10.1200/jco.2007.15.7081.
92. Falade AS, Boulanger MC, Hsu K, et al. Learning About and Living with Toxicity: A Qualitative Study of Patients Receiving Immune Checkpoint Inhibitors for Melanoma or Lung Cancer and Their Caregivers. Res Sq 2024, doi: 10.21203/rs.3.rs-4576328/v1.
93. Hoffner B, Vaughn R, Reed M, et al. The Advanced Practice Provider Perspective: Treating Patients with Immuno-Oncology Combination Therapy Across Tumor Types. J Adv Pract Oncol 2019; 10(4): 367–386, doi: 10.6004/jadpro.2019.10.4.5.
94. Santistevan J, Long B, Koyfman A. Rash Decisions: An Approach to Dangerous Rashes Based on Morphology. J Emerg Med 2017; 52(4): 457–471, doi: 10.1016/j.jemermed.2016.10.027.
95. Hardy V, Yue A, Archer S, et al. Role of primary care physician factors on diagnostic testing and referral decisions for symptoms of possible cancer: a systematic review. BMJ Open 2022; 12(1): e053732, doi: 10.1136/bmjopen-2021-053732.
96. Koshi EJ, Young K, Mostales JC, et al. Complications of Corticosteroid Therapy: A Comprehensive Literature Review. J Pharm Technol 2022; 38(6): 360–367, doi: 10.1177/87551225221116266.
97. Goodman RS, Johnson DB, Balko JM. Corticosteroids and Cancer Immunotherapy. Clin Cancer Res 2023; 29(14): 2580–2587, doi: 10.1158/1078-0432.Ccr-22-3181.
98. Hatano Y, Matsuoka H, Lam L, et al. Side effects of corticosteroids in patients with advanced cancer: a systematic review. Support Care Cancer 2018; 26(12): 3979–3983, doi: 10.1007/s00520-018-4339-2.
99. Martinez P, Sabatier JM. Rethinking corticosteroids use in oncology. Front Pharmacol 2025; 16: 1551111, doi: 10.3389/fphar.2025. 1551111.
Copyright: © 2025 Family Medicine & Primary Care Review. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.