1. Howard FM, Olopade OI. Epidemiology of triple-negative breast cancer. Cancer J 2021; 27: 8-16.
2.
Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin 2022; 72: 524-541.
3.
Thike AA, Cheok PY, Jara-Lazaro AR, et al. Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Modern Pathol 2010; 23: 123-133.
4.
NCCN Clinical Practice Guidelines in Oncology. Breast Cancer Version 4.2023.
5.
Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res 2020; 26: 2838-2848.
6.
Maqbool M, Bekele F, Fekadu G. Treatment strategies against triple-negative breast cancer: an updated review. Breast Cancer (Dove Med Press) 2022; 14: 15-24.
7.
Duan H, Liu Y, Gao Z, et al. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11: 55-70.
8.
WHO Classification of Tumours Editorial Board. Breast tumours vol 2 (5th ed.). International Agency for Research on Cancer, Lyon, France 2019.
9.
Zhang X, Powell K, Li L. Breast cancer stem cells: biomarkers, identification and isolation methods, regulating mechanisms, cellular origin, and beyond. Cancers (Basel) 2020; 12: 3765.
10.
Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 2000; 16: 182-187.
11.
Ferri ALM, Cavallaro M, Braida D, et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004; 131: 3805-3819.
12.
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872.
13.
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-1920.
14.
Stolzenburg S, Rots MG, Beltran AS, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 2012; 40: 6725-6740.
15.
Andey T, Bora-Singhal N, Chellappan SP, et al. Cationic lipoplexes for treatment of cancer stem cell-derived murine lung tumors. Nanomedicine 2019; 18: 31-43.
16.
Chen F, Zhu L, Hu J, et al. Bufalin attenuates triple negative breast cancer cell stemness by inhibiting the expression of SOX2/OCT4. Oncol Lett 2020; 20: 1-1.
17.
Zheng Y, Qin B, Li F, et al. Clinicopathological significance of Sox2 expression in patients with breast cancer: a meta-analysis. Int J Clin Exp Med 2015; 8: 22382-22392.
18.
Huang YH, Luo MH, Ni YB, et al. Increased SOX2 expression in less differentiated breast carcinomas and their lymph node metastases. Histopathology 2014; 64: 494-503.
19.
Piva M, Domenici G, Iriondo O, et al. SOX2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 2014; 6: 66-79.
20.
Liu P, Tang H, Song C, et al. SOX2 promotes cell proliferation and metastasis in triple negative breast cancer. Front Pharmacol 2018; 9: 942.
21.
Yao GD, Niu YY, Chen KX, et al. SOX2 gene expression and its role in triple negative breast cancer tissues. J Biol Regul Homeost Agents 2018; 32: 1399-1406.
22.
Zhou C, Wang D, Li J, et al. TGFB2-AS1 inhibits triple-negative breast cancer progression via interaction with SMARCA4 and regulating its targets TGFB2 and SOX2. Proc Natl Acad Sci U S A 2022; 119: e2117988119.
23.
Yomtoubian S, Lee SB, Verma A, et al. Inhibition of EZH2 catalytic activity selectively targets a metastatic subpopulation in triple-negative breast cancer. Cell Rep 2020; 30: 755-770.e6.
24.
Wolff AC, Somerfield MR, Dowsett M, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology – College of American Pathologists Guideline Update. Arch Pathol Lab Med 2023.
25.
Amin MB, Edge S, Greene F, et al. AJCC cancer staging manual (8th ed.). Springer, New York 2017.
26.
Szpor J, Witczak K, Storman M, et al. Breast carcinoma grading on core needle biopsy – to grade or not to grade? Pol J Pathol 2023; 74: 203-210.
27.
Lynch SP, Lei X, Chavez-MacGregor M, et al. Multifocality and multicentricity in breast cancer and survival outcomes. Annals Oncol 2012; 23: 3063-3069.
28.
Aziz S, Wik E, Knutsvik G, et al. Extra-nodal extension is a significant prognostic factor in lymph node positive breast cancer. PLoS One 2017; 12: e0171853.
29.
Saad Abdalla Al-Zawi A, Anichkina KA, Elamass M, et al. Correlation of Ki-67 proliferative index with oncotype DX recurrence score in hormone receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer with low-burden axillary nodal disease – a review of 137 cases. Pol J Pathol 2024; 75: 8-18.
30.
Niwa H, Ogawa K, Shimosato D, et al. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 2009; 460: 118-122.
31.
Wuebben EL, Rizzino A. The dark side of SOX2: cancer – a comprehensive overview. Oncotarget 2017; 8: 44917-44943.
32.
Ricardo S, Vieira AF, Gerhard R, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 2011; 64: 937-946.
33.
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021; 149: 778-789.
34.
Mirzaei S, Paskeh MDA, Entezari M, et al. SOX2 function in cancers: association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156: 113860.
35.
Vanner RJ, Remke M, Gallo M, et al. Quiescent Sox2+ cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 2014; 26: 33-47.
36.
Boumahdi S, Driessens G, Lapouge G, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014; 511: 246-250.
37.
Lee SH, Oh SY, Do SI, et al. SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer 2014; 111: 2122-2130.
38.
Zhao G, Wang X, Qu L, et al. The clinical and molecular characteristics of sex-determining region Y-Box 2 and its prognostic value in breast cancer: a systematic meta-analysis. Breast Care 2021; 16: 16-26.
39.
Kamarlis RK, Lubis MN, Hernowo BS, et al. Immunoexpression of P63 and SOX2 in triple-negative breast cancers, Indonesia. F1000Res 2018; 6: 1780.
40.
Gwak JM, Kim M, Kim HJ, et al. Expression of embryonal stem cell transcription factors in breast cancer: Oct4 as an indicator for poor clinical outcome and tamoxifen resistance. Oncotarget 2017; 8: 36305-36318.
41.
Leis O, Eguiara A, Lopez-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31: 1354-1365.
42.
Lengerke C, Fehm T, Kurth R, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 2011; 11: 42.
43.
Abd El-Maqsoud NMR, Abd El-Rehim DM. Clinicopathologic Implications of EpCAM and Sox2 Expression in Breast Cancer. Clin Breast Cancer 2014; 14: e1-e9.