1. Ding C, Wu Y, Chen X, et al. Global, Regional, and National Burden and Attributable Risk Factors of Neurological Disorders: The Global Burden of Disease Study 1990–2019. Front Public Health 2022; 10, doi: 10.3389/fpubh.2022.952161.
2.
Ulmer U, Adamiec R. Psychomotor Disorders of the Ageing and Problems of Institutional Care in Poland. Fam Med Prim Care Rev 2023; 25: 227–231, doi: 10.5114/fmpcr.2023.127858.
3.
Lingor P, Demleitner AF, Wolff AW, et al. SARS-CoV-2 and Neurodegenerative Diseases: What We Know and What We Don’t. J Neural Transm 2022; 129: 1155–1167, doi: 10.1007/s00702-022-02500-w.
4.
McAlpine LS, Fesharaki-Zadeh A, Spudich S. Coronavirus Disease 2019 and Neurodegenerative Disease: What Will the Future Bring? Curr Opin Psychiatry 2021; 34: 177–185, doi :10.1097/YCO.0000000000000688.
5.
Zhang Q, Schultz JL, Aldridge GM, et al. COVID-19 Case Fatality and Alzheimer’s Disease. J Alzheimers Dis 2021; 84: 1447–1452, doi: 10.3233/JAD-215161.
6.
Zhang Q, Schultz JL, Aldridge GM, et al. Coronavirus Disease 2019 Case Fatality and Parkinson’s Disease. Mov Disord 2020; 35: 1914–1915, doi: 10.1002/mds.28325.
7.
Wysocki M. Zdrowie publiczne powinno być w centrum uwagi. Med Prakt 2021: 1–2 [cited 03.08.2023]. Available from URL: http://www.mp.pl/social/article/265134 (in Polish).
8.
Tanaka M, Toldi J, Vécsei L. Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int J Mol Sci 2020; 21: 2431, doi: 10.3390/ijms21072431.
9.
Hussain R, Zubair H, Pursell S, et al. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8: 177, doi: 10.3390/brainsci8090177.
10.
Asil SM, Ahlawat J, Barroso GG. et al. Nanomaterial Based Drug Delivery Systems for the Treatment of Neurodegenerative Diseases. Biomater Sci 2020; 8: 4109–4128, doi: 10.1039/d0bm00809e.
11.
Nowak D, Słupski W, Rutkowska M. Nowe strategie terapeutyczne choroby Alzheimera. Post Hig Med Dosw 2021; 75: 474–490, doi: 10.5604/01.3001.0014.9532 (in Polish).
12.
Abramov AY, Bachurin SO. Neurodegenerative Disorders – Searching for Targets and New Ways of Diseases Treatment. Med Res Rev 2021; 41: 2603–2605, doi: 10.1002/med.21794.
13.
Karpińska A, Gromadzka G. Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Post Hig Med Dosw 2013; 67: 45–53, doi: 10.5604/17322693.1129686 (in Polish).
14.
Dochniak M, Ekiert K. Żywienie w prewencji i leczeniu choroby Alzheimera i choroby Parkinsona. Piel Zdr Publ 2015; 5(2): 199–208 (in Polish).
15.
Zhao X, Zhang M, Li C, et al. Benefits of Vitamins in the Treatment of Parkinson’s Disease. Oxid Med Cell Longev 2019; 2019: e9426867, doi: 10.1155/2019/9426867.
16.
Atkore ST, Sahu MR, Rani L, et al. Could Vitamins Have a Positive Impact on the Treatment of Parkinson’s Disease? Brain Sci 2023; 13(2): 272, doi: 10.3390/brainsci13020272.
17.
Mielech A, Puścion-Jakubik A, Markiewicz-Żukowska R, et al. Vitamins in Alzheimer’s Disease – Review of the Latest Reports. Nutrients 2020; 12: 3458, doi: 10.3390/nu12113458.
18.
Zang X, Chen S, Zhu J, et al. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14, doi: 10.3389/fnagi.2022.872134.
19.
Gómez-Gómez ME, Zapico SC. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int J Mol Sci 2019; 20: 2842, doi: 10.3390/ijms20112842.
20.
Kwon HS, Koh SH. Neuroinflammation in Neurodegenerative Disorders: The Roles of Microglia and Astrocytes. Translational Neurodegeneration 2020; 9(42): 1–12, doi: 10.1186/s40035-020-00221-2.
21.
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020; 25(5789), doi: 10.3390/molecules25245789.
22.
Soria Lopez JA, González HM, Léger GC. Alzheimer’s Disease. Handb Clin Neurol 2019; 167: 231–255, doi: 10.1016/B978-0-12-804766-8.00013-3.
23.
Alzheimer’s Association. 2022 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2022; 18: 700–789, doi: 10.1002/alz.12638.
24.
El Tallawy HNA, Farghaly WMA, El Hamed MA, et al. Prevalence of Alzheimer Dementia in Upper Egypt (Desert Areas). Egypt J Neurol Psychiatry Neurosurg 2019; 55: 1–6, doi: 10.1186/s41983-019-0074-y.
25.
DeTure MA, Dickson DW. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol Neurodegeneration 2019; 14: 1–18, doi: 10.1186/s13024-019-0333-5.
26.
Willis AW, Roberts E, Beck JC, et al. Incidence of Parkinson Disease in North America. npj Parkinsons Dis 2022; 8: 1–7, doi: 10.1038/s41531-022-00410-y.
27.
Chen C, McDonald D, Blain A, et al. Parkinson’s disease neurons exhibit alterations in mitochondrial quality control proteins. npj Parkinsons Dis 2023; 9: 120, doi: 10.1038/s41531-023-00564-3.
28.
Kouli A, Torsney KM, Kuan WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker TB, Greenland JC, eds. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications; 2018, doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1.
29.
Carmichael K, Sullivan B, Lopez E, et al. Diverse Midbrain Dopaminergic Neuron Subtypes and Implications for Complex Clinical Symptoms of Parkinson’s Disease. Ageing Neurodegener Dis 2021; 1, doi: 10.20517/and.2021.07.
30.
MacMahon Copas AN, McComish SF, Fletcher JM, et al. The Pathogenesis of Parkinson’s Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes? Front Neurol 2021; 12: 666737, doi: 10.3389/fneur.2021.666737.
31.
Asson-Batres MA, Rochette-Egly C. The Biochemistry of Retinoid Signaling II The Physiology of Vitamin A – Uptake, Transport, Metabolism and Signaling. Subcellular Biochemistry (SCBI, vol. 81). Dordrecht: Springer; 2016, doi: https://doi.org/10.1007/978-94-024-0945-1.
32.
Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annu Rev Nutr 2020; 40: 247–272, doi: 10.1146/annurev-nutr-122319-034227.
33.
Stephensen CB, Lietz G. Vitamin A in Resistance to and Recovery from Infection: Relevance to SARS-CoV-2. Br J Nutr 2021; 126: 1663–1672, doi: 10.1017/S0007114521000246.
34.
Honarvar NM, Saedisomeolia A, Abdolahi M, et al. Molecular Anti-Inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer’s Disease: A Review of Current Evidence. J Mol Neurosci 2017; 61: 289–304, doi: 10.1007/s12031-016-0857-x.
35.
Lintig J, von. Eat Your Carrots! β-Carotene and Cholesterol Homeostasis. J Nutr 2020; 150: 2003–2005, doi: 10.1093/jn/nxaa189.
36.
Ledesma MD, Dotti CG. Peripheral Cholesterol, Metabolic Disorders and Alzheimer’s Disease. Front Biosci (Elite Ed) 2012; 4: 181–194, doi: 10.2741/e368.
37.
Lopes da Silva S, Vellas B, Elemans S, et al. Plasma Nutrient Status of Patients with Alzheimer’s Disease: Systematic Review and Meta-Analysis. Alzheimers Dement 2014; 10: 485–502, doi: 10.1016/j.jalz.2013.05.1771.
38.
Mullan K, Williams MA, Cardwell CR, et al. Serum Concentrations of Vitamin E and Carotenoids Are Altered in Alzheimer’s Disease: A Case-Control Study. Alzheimers Dement (NY) 2017; 3: 432–439, doi: 10.1016/j.trci.2017.06.006.
39.
Reinhardt S, Grimm MOW, Stahlmann C, et al. Rescue of Hypovitaminosis A Induces Non-Amyloidogenic Amyloid Precursor Protein (APP) Processing. Curr Alzheimer Res 2016; 13: 1277–1289, doi: 10.2174/1567205013666160603002105.
40.
Biyong EF, Tremblay C, Leclerc M, et al. Role of Retinoid X Receptors (RXRs) and Dietary Vitamin A in Alzheimer’s Disease: Evidence from Clinicopathological and Preclinical Studies. Neurobiol Dis 2021; 161: 105542, doi: 10.1016/j.nbd.2021.105542.
41.
Ding Y, Qiao A, Wang Z, et al. Retinoic Acid Attenuates Beta-Amyloid Deposition and Rescues Memory Deficits in an Alzheimer’s Disease Transgenic Mouse Model. J Neurosci 2008; 28: 11622–11634, doi: 10.1523/JNEUROSCI.3153-08.2008.
42.
Husson M, Enderlin V, Delacourte A, et al. Retinoic Acid Normalizes Nuclear Receptor Mediated Hypo-Expression of Proteins Involved in Beta-Amyloid Deposits in the Cerebral Cortex of Vitamin A Deprived Rats. Neurobiol Dis 2006; 23: 1–10, doi: 10.1016/j.nbd.2006.01.008.
43.
Lenz M, Kruse P, Eichler A, et al. All-Trans Retinoic Acid Induces Synaptic Plasticity in Human Cortical Neurons. Elife 2021; 10: e63026, doi: 10.7554/eLife.63026.
44.
Zeng J, Chen L, Wang Z, et al. Marginal Vitamin A Deficiency Facilitates Alzheimer’s Pathogenesis. Acta Neuropathol 2017; 133: 967–982, doi: 10.1007/s00401-017-1669-y.
45.
Davinelli S, Ali S, Solfrizzi V, et al. Carotenoids and Cognitive Outcomes: A Meta-Analysis of Randomized Intervention Trials. Antioxidants (Basel) 2021; 10(223), doi: 10.3390/antiox10020223.
46.
Yuan C, Fondell E, Ascherio A, et al. Long-Term Intake of Dietary Carotenoids Is Positively Associated with Late-Life Subjective Cognitive Function in a Prospective Study in US Women. J Nutr 2020; 150: 1871–1879, doi: 10.1093/jn/nxaa087.
47.
Péneau S, Galan P, Jeandel C, et al. SU.VI.MAX 2 Research Group Fruit and Vegetable Intake and Cognitive Function in the SU.VI.MAX 2 Prospective Study. Am J Clin Nutr 2011; 94: 1295–1303, doi: 10.3945/ajcn.111.014712.
48.
Rutjes AW, Denton DA, Di Nisio M, et al. Vitamin and Mineral Supplementation for Maintaining Cognitive Function in Cognitively Healthy People in Mid and Late Life. Cochrane Database Syst Rev 2018; 12: CD011906, doi: 10.1002/14651858.CD011906.pub2.
49.
Marie A, Darricau M, Touyarot K, et al. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson’s Disease. J Parkinsons Dis 2021; 11: 949–970, doi: 10.3233/JPD-212671.
50.
Kim JH, Hwang J, Shim E, et al. Association of Serum Carotenoid, Retinol, and Tocopherol Concentrations with the Progression of Parkinson’s Disease. Nutr Res Pract 2017; 11: 114–120, doi: 10.4162/nrp.2017.11.2.114.
51.
Yang F, Wolk A, Håkansson N, et al. Dietary Antioxidants and Risk of Parkinson’s Disease in Two Population-Based Cohorts. Mov Disord 2017; 32: 1631–1636, doi: 10.1002/mds.27120.
52.
Wu LY, Chen JX, Chen GS, et al. Dietary β-Carotene and Vitamin A and Risk of Parkinson Disease: A Protocol for Systematic Review and Meta-Analysis. Medicine (Baltimore) 2022; 101: e31002, doi: 10.1097/MD.0000000000031002.
53.
Yin LH, Shen H, Diaz-Ruiz O, et al. Early Post-Treatment with 9-Cis Retinoic Acid Reduces Neurodegeneration of Dopaminergic Neurons in a Rat Model of Parkinson’s Disease. BMC Neurosci 2012; 13: 1–12, doi: 10.1186/1471-2202-13-120.
54.
Kunzler A, Ribeiro CT, Gasparotto J, et al. The Effects of Retinol Oral Supplementation in 6-Hydroxydopamine Dopaminergic Denervation Model in Wistar Rats. Neurochem Int 2019; 125: 25–34, doi: 10.1016/j.neuint.2019.02.002.
55.
Kunzler A, Kolling EA, da Silva-Jr JD, et al. Retinol (Vitamin A) Increases α-Synuclein, β-Amyloid Peptide, Tau Phosphorylation and RAGE Content in Human SH-SY5Y Neuronal Cell Line. Neurochem Res 2017; 42: 2788–2797, doi: 10.1007/s11064-017-2292-y.
56.
Salama H, Elsaka D, Diab M, et al. Effect of Vitamin C Supplementation on Glycemic Control in Type 2 Diabetic Patients: A Double-Blind, Prospective, Randomized, Controlled Trial in Egypt. Fam Med Prim Care Rev 2021; 23: 347–353, doi: 10.5114/fmpcr.2021.108202.
57.
Devaki SJ, Raveendran RL. Vitamin C: Sources, Functions, Sensing and Analysis [Internet]. Vitamin C. InTech; 2017. Available from URL: http://dx.doi.org/10.5772/intechopen.70162.
58.
Hansen SN, Tveden-Nyborg P, Lykkesfeldt J. Does Vitamin C Deficiency Affect Cognitive Development and Function? Nutrients 2014; 6: 3818–3846, doi: 10.3390/nu6093818.
59.
Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients 2017; 9, 1211, doi: 10.3390/nu9111211.
60.
Morris MC, Evans DA, Bienias JL, et al. Dietary Intake of Antioxidant Nutrients and the Risk of Incident Alzheimer Disease in a Biracial Community Study. JAMA 2002; 287: 3230–3237, doi: 10.1001/jama.287.24.3230.
61.
Kaliś K. Dwukierunkowe działanie witaminy C a degradacja i suplementacja. Post Hig Med Dosw 2015; 69: 1239–1244 (in Polish).
62.
Collins, AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer’s Disease. Antioxidants (Basel) 2022; 11: 213, doi: 10.3390/antiox11020213.
63.
Monacelli F, Acquarone E, Giannotti C, et al. Vitamin C, Aging and Alzheimer’s Disease. Nutrients 2017; 9: 670, doi: 10.3390/nu9070670.
64.
Dixit S, Bernardo A, Walker JM, et al. Vitamin C Deficiency in the Brain Impairs Cognition, Increases Amyloid Accumulation and Deposition, and Oxidative Stress in APP/PSEN1 and Normally Aging Mice. ACS Chem Neurosci 2015; 6: 570–581, doi: 10.1021/cn500308h.
65.
Kook SY, Lee KM, Kim Y, et al. High-Dose of Vitamin C Supplementation Reduces Amyloid Plaque Burden and Ameliorates Pathological Changes in the Brain of 5XFAD Mice. Cell Death Dis 2014; 5: e1083, doi: 10.1038/cddis.2014.26.
66.
Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary Intake of Antioxidants and Risk of Alzheimer Disease. JAMA 2002; 287: 3223–3229, doi: 10.1001/jama.287.24.3223.
67.
Agarwal P, Holland TM, Wang Y, et al. Association of Strawberries and Anthocyanidin Intake with Alzheimer’s Dementia Risk. Nutrients 2019; 11: 3060, doi: 10.3390/nu11123060.
68.
Luchsinger JA, Tang MX, Shea S, et al. Antioxidant Vitamin Intake and Risk of Alzheimer Disease. Arch Neurol 2003; 60: 203–208, doi: 10.1001/archneur.60.2.203.
69.
Zandi PP, Anthony JC, Khachaturian AS, et al. Cache County Study Group Reduced Risk of Alzheimer Disease in Users of Antioxidant Vitamin Supplements: The Cache County Study. Arch Neurol 200; 61: 82–88, doi: 10.1001/archneur.61.1.82.
70.
Liu H, Zhang Y, Hu Y, et al. Mendelian Randomization to Evaluate the Effect of Plasma Vitamin C Levels on the Risk of Alzheimer’s Disease. Genes Nutr 2021; 16: 1–17, doi: 10.1186/s12263-021-00700-9.
71.
Hughes KC, Gao X, Kim IY, et al. Intake of Antioxidant Vitamins and Risk of Parkinson’s Disease. Mov Disord 2016; 31: 1909–1914, doi: 10.1002/mds.26819.
72.
Belluzzi E, Bisaglia M, Lazzarini E, et al. Human SOD2 Modification by Dopamine Quinones Affects Enzymatic Activity by Promoting Its Aggregation: Possible Implications for Parkinson’s Disease. PLOS ONE 2012; 7: e38026, doi: 10.1371/journal.pone.0038026.
73.
Liu S, Zhao W, Li Y, et al. Improve Cognition of Depressive Patients through the Regulation of Basal Ganglia Connectivity: Combined Medication Using Shuganjieyu Capsule. J Psychiatr Res 2020; 123: 39–47, doi: 10.1016/j.jpsychires.2020.01.013.
74.
Ide K, Yamada H, Umegaki K, et al. Lymphocyte Vitamin C Levels as Potential Biomarker for Progression of Parkinson’s Disease. Nutrition 2015; 31: 406–408, doi: 10.1016/j.nut.2014.08.001.
75.
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain—Findings from Experimental Animal Models. Nutrients 2021; 13: 1685, doi: 10.3390/nu13051685.
76.
Spencer ES, Pitcher T, Veron G, et al. Positive Association of Ascorbate and Inverse Association of Urate with Cognitive Function in People with Parkinson’s Disease. Antioxidants 2020; 9: 906, doi: 10.3390/antiox9100906.
77.
Farina N, Llewellyn D, Isaac MGEKN, et al. Vitamin E for Alzheimer’s Dementia and Mild Cognitive Impairment. Cochrane Database Syst Rev 2017; 4: CD002854, doi: 10.1002/14651858.CD002854.pub5.
78.
Sung S, Yao Y, Uryu K, et al. Early Vitamin E Supplementation in Young but Not Aged Mice Reduces Abeta Levels and Amyloid Deposition in a Transgenic Model of Alzheimer’s Disease. FASEB J 2004; 18: 323–325, doi: 10.1096/fj.03-0961fje.
79.
Praticò D, Clark CM, Liun F, et al. Increase of Brain Oxidative Stress in Mild Cognitive Impairment: A Possible Predictor of Alzheimer Disease. Arch Neurol 2002; 59: 972–976, doi: 10.1001/archneur.59.6.972.
80.
Craft NE, Haitema TB, Garnett KM, et al. Carotenoid, Tocopherol, and Retinol Concentrations in Elderly Human Brain. J Nutr Health Aging 2004; 8: 156–162.
81.
Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and Vitamin C Supplement Use and Risk of Incident Alzheimer Disease. Alzheimer Dis Assoc Disord 1998; 12: 121–126, doi: 10.1097/00002093-199809000-00001.
82.
Morris MC, Evans DA, Tangney CC, et al. Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. Am J Clin Nutr 2005; 81: 508–514, doi: 10.1093/ajcn.81.2.508.
83.
Mangialasche F, Xu W, Kivipelto M, et al. Tocopherols and Tocotrienols Plasma Levels Are Associated with Cognitive Impairment. Neurobiol Aging 2012; 33: 2282–2290, doi: 10.1016/j.neurobiolaging.2011.11.019.
84.
Morris MC, Evans DA, Bienias JL, et al. Vitamin E and Cognitive Decline in Older Persons. Arch Neurol 2002; 59: 1125–1132, doi: 10.1001/archneur.59.7.1125.
85.
Dysken MW, Sano M, Asthana S, et al. Effect of Vitamin E and Memantine on Functional Decline in Alzheimer Disease: The TEAM-AD VA Cooperative Randomized Trial. JAMA 2014; 311: 33–44, doi: 10.1001/jama.2013.282834.
86.
Grodstein F, Chen J, Willett WC. High-Dose Antioxidant Supplements and Cognitive Function in Community-Dwelling Elderly Women. Am J Clin Nutr 2003; 77: 975–984, doi: 10.1093/ajcn/77.4.975.
87.
Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and Donepezil for the Treatment of Mild Cognitive Impairment. N Engl J Med 2005; 352: 2379–2388, doi: 10.1056/NEJMoa050151.
88.
Regner-Nelke L, Nelke C, Schroeter CB, et al. Enjoy Carefully: The Multifaceted Role of Vitamin E in Neuro-Nutrition. Int J Mol Sci 2021; 22: 10087, doi: 10.3390/ijms221810087.
89.
Comitato R, Nesaretnam K, Leoni G, et al. A Novel Mechanism of Natural Vitamin E Tocotrienol Activity: Involvement of ERbeta Signal Transduction. Am J Physiol Endocrinol Metab 2009; 297: E427–e437, doi: 10.1152/ajpendo.00187.2009.
90.
Nakaso K, Tajima N, Horikoshi Y, et al. The Estrogen Receptor β-PI3K/Akt Pathway Mediates the Cytoprotective Effects of Tocotrienol in a Cellular Parkinson’s Disease Model. BBA-MOL BASIS DIS 2014; 1842: 1303–1312, doi: 10.1016/j.bbadis.2014.04.008.
91.
Férnandez-Calle P, Molina JA, Jiménez-Jiménez FJ, et al. Serum Levels of Alpha-Tocopherol (Vitamin E) in Parkinson’s Disease. Neurology 1992; 42: 1064–1066, doi: 10.1212/wnl.42.5.1064.
92.
Dexter DT, Ward RJ, Wells FR, et al. Alpha-Tocopherol Levels in Brain Are Not Altered in Parkinson’s Disease. Ann Neurol 1992; 32: 591–593, doi: 10.1002/ana.410320420.
93.
Vatassery GT, Fahn S, Kuskowski MA. Alpha Tocopherol in CSF of Subjects Taking High-Dose Vitamin E in the DATATOP Study. Parkinson Study Group. Neurology 1998; 50: 1900–1902, doi: 10.1212/wnl.50.6.1900.
94.
de Rijk MC, Breteler MM, den Breeijen JH, et al. Dietary Antioxidants and Parkinson Disease. The Rotterdam Study. Arch Neurol 1997; 54: 762–765, doi: 10.1001/archneur.1997.00550180070015.
95.
Taghizadeh M, Tamtaji OR, Dadgostar E, et al. The Effects of Omega-3 Fatty Acids and Vitamin E Co-Supplementation on Clinical and Metabolic Status in Patients with Parkinson’s Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Neurochem Int 2017; 108: 183–189, doi: 10.1016/j.neuint.2017.03.014.
96.
Schirinzi T, Martella G, Imbriani P, et al. Dietary Vitamin E as a Protective Factor for Parkinson’s Disease: Clinical and Experimental Evidence. Front Neurol 2019; 10, doi: 10.3389/fneur.2019.00148
97.
Fahn S. A Pilot Trial of High-Dose Alpha-Tocopherol and Ascorbate in Early Parkinson’s Disease. Ann Neurol 1992; 32: S128–S132, doi: 10.1002/ana.410320722.
98.
Nakaso K, Horikoshi Y, Takahashi T, et al. Estrogen Receptor-Mediated Effect of δ-Tocotrienol Prevents Neurotoxicity and Motor Deficit in the MPTP Mouse Model of Parkinson’s Disease. Neurosci Lett 2016; 610: 117–122, doi: 10.1016/j.neulet.2015.10.062.
99.
DATATOP: A Multicenter Controlled Clinical Trial in Early Parkinson’s Disease. Parkinson Study Group. Arch Neurol 1989; 46: 1052–1060, doi: 10.1001/archneur.1989.00520460028009.
100.
Zhang SM, Hernán MA, Chen H, et al. Intakes of Vitamins E and C, Carotenoids, Vitamin Supplements, and PD Risk. Neurology 2002; 59: 1161–1169, doi: 10.1212/01.wnl.0000028688.75881.12.
101.
Logroscino G, Marder K, Cote L, et al. Dietary Lipids and Antioxidants in Parkinson’s Disease: A Population-Based, Case-Control Study. Ann Neurol 1996; 39: 89–94, doi: 10.1002/ana.410390113.
102.
Abbaspoor Z, Sadeghi M, Saki A, et al. The Relationship between Serum 25-Hydroxyvitamin D and Urinary Incontinence in Iranian Reproductive-Aged Women: A Cross-Sectional Study. Fam Med Prim Care Rev 2022; 24(1): 7–12, doi: 10.5114/fmpcr.2022.113006.
103.
IOM (Institute of Medicine). 2011. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): The National Academies Press; 2011. Available from URL: https://www.ncbi.nlm.nih.gov/books/NBK56070/.
104.
Littlejohns TJ, Henley WE, Lang IA, et al. Vitamin D and the Risk of Dementia and Alzheimer Disease. Neurology 2014; 83: 920–928, doi: 10.1212/WNL.0000000000000755.
105.
Kang J, Park M, Lee E, et al. The Role of Vitamin D in Alzheimer’s Disease: A Transcriptional Regulator of Amyloidopathy and Gliopathy. Biomedicines 2022; 10: 1824, doi: 10.3390/biomedicines10081824.
106.
Chakkera M, Ravi N, Ramaraju R, et al. The Efficacy of Vitamin D Supplementation in Patients with Alzheimer’s Disease in Preventing Cognitive Decline: A Systematic Review. Cureus 2022; 14, doi: 10.7759/cureus.31710.
107.
Yang T, Wang H, Xiong Y, et al. Vitamin D Supplementation Improves Cognitive Function Through Reducing Oxidative Stress Regulated by Telomere Length in Older Adults with Mild Cognitive Impairment: A 12-Month Randomized Controlled Trial. J Alzheimers Dis 2020; 78: 1509–1518, doi: 10.3233/JAD-200926.
108.
Bennett DA, Schneider JA, Buchman AS, et al. Overview and Findings from the Rush Memory and Aging Project. Curr Alzheimer Res 2012; 9: 646–663.
109.
Abe S, Ezaki O, Suzuki M. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Benefit Cognition in Frail Elderly Adults: A Randomized Controlled Trial. J Nutr Sci Vitaminol (Tokyo) 2017; 63: 133–140, doi: 10.3177/jnsv.63.133.
110.
Stein MS, Scherer SC, Ladd KS, et al. A Randomized Controlled Trial of High-Dose Vitamin D2 Followed by Intranasal Insulin in Alzheimer’s Disease. J Alzheimers Dis 2011; 26: 477–484, doi: 10.3233/JAD-2011-110149.
111.
Lai RH, Hsu CC, Yu BH, et al. Vitamin D Supplementation Worsens Alzheimer’s Progression: Animal Model and Human Cohort Studies. Aging Cell 2022; 21: e13670, doi: 10.1111/acel.13670.
112.
Pignolo A, Mastrilli S, Davì C, et al. Vitamin D and Parkinson’s Disease. Nutrients 2022; 14: 1220, doi: 10.3390/nu14061220.
113.
Fullard ME, Duda JE. A Review of the Relationship Between Vitamin D and Parkinson Disease Symptoms. Front Neurol 2020; 11: 454, doi: 10.3389/fneur.2020.00454.
114.
Chitsaz A, Maracy M, Basiri K, et al. 25-Hydroxyvitamin D and Severity of Parkinson’s Disease. Int J Endocrinol 2013; 2013: 689149, doi: 10.1155/2013/689149.
115.
Evatt ML, DeLong MR, Kumari M, et al. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neurol 2011; 68, doi: 10.1001/archneurol.2011.30.
116.
Evatt ML, Delong MR, Khazai N, et al. Prevalence of Vitamin d Insufficiency in Patients with Parkinson Disease and Alzheimer Disease. Arch Neurol 2008; 65: 1348–1352, doi: 10.1001/archneur.65.10.1348.
117.
Sleeman I, Aspray T, Lawson R, et al. The Role of Vitamin D in Disease Progression in Early Parkinson’s Disease. Journal of Parkinson’s Disease 2017; 7: 669–675, doi: 10.3233/JPD-171122.
118.
Liu Y, Zhang BS. Serum 25-Hydroxyvitamin D Predicts Severity in Parkinson’s Disease Patients. Neurol Sci 2014; 35: 67–71, doi: 10.1007/s10072-013-1539-x.
119.
Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, Double-Blind, Placebo-Controlled Trial of Vitamin D Supplementation in Parkinson Disease. Am J Clin Nutr 2013; 97: 1004–1013, doi: 10.3945/ajcn.112.051664.
120.
Peterson AL, Mancini M, Horak FB. The Relationship between Balance Control and Vitamin D in Parkinson’s Disease – a Pilot Study. Mov Disord 2013; 28: 1133–1137, doi: 10.1002/mds.25405.
121.
Moghaddasi M, Mamarabadi M, Aghaii M. Serum 25-Hydroxyvitamin D3 Concentration in Iranian Patients with Parkinson’s Disease. Iran J Neurol 2013; 12: 56–59.
122.
Kim JE, Oh E, Park J, et al. Serum 25-Hydroxyvitamin D3 Level May Be Associated with Olfactory Dysfunction in de Novo Parkinson’s Disease. J Clin Neurosci 2018; 57: 131–135, doi: 10.1016/j.jocn.2018.08.003.
123.
Jang W, Park J, Kim JS, et al. Vitamin D Deficiency in Parkinson’s Disease Patients with Orthostatic Hypotension. Acta Neurol Scand 2015; 132: 242–250, doi: 10.1111/ane.12390.
124.
Kwon KY, Jo KD, Lee M, et al. Low Serum Vitamin D Levels May Contribute to Gastric Dysmotility in de Novo Parkinson’s Disease. Neurodegener Dis 2016; 16: 199–205, doi: 10.1159/000441917.
125.
Knekt P, Kilkkinen A, Rissanen H, et al. Serum Vitamin D and the Risk of Parkinson’s Disease. Arch Neurol 2010; 67: 808–811, doi: 10.1001/archneurol.2010.120.
126.
Meamar R, Shaabani P, Tabibian SR, et al. The Effects of Uric Acid, Serum Vitamin D3, and Their Interaction on Parkinson’s Disease Severity. Parkinsons Dis 2015; 2015: 463483, doi: 10.1155/2015/463483.
127.
Kenborg L, Lassen CF, Ritz B, et al. Outdoor Work and Risk for Parkinson’s Disease: A Population-Based Case-Control Study. Occup Environ Med 2011; 68: 273–278, doi: 10.1136/oem.2010.057448.
128.
Kravietz A, Kab S, Wald L, et al. Association of UV Radiation with Parkinson Disease Incidence: A Nationwide French Ecologic Study. Environ Res 2017; 154: 50–56, doi: 10.1016/j.envres.2016.12.008.
129.
Peterson AL, Murchison C, Zabetian C, et al. Memory, Mood, and Vitamin D in Persons with Parkinson’s Disease. J Parkinsons Dis 2013; 3: 547–555, doi: 10.3233/JPD-130206.
130.
Luthra NS, Kim S, Zhang Y, et al. NINDS NET-PD Investigators Characterization of Vitamin D Supplementation and Clinical Outcomes in a Large Cohort of Early Parkinson’s Disease. J Clin Mov Disord 2018; 5: 7, doi: 10.1186/s40734-018-0074-6.
131.
Kim JS, Ryu SY, Yun I, et al. 1α,25-Dihydroxyvitamin D3 Protects Dopaminergic Neurons in Rodent Models of Parkinson’s Disease through Inhibition of Microglial Activation. J Clin Neurol 2006; 2: 252–257, doi: 10.3988/jcn.2006.2.4.252.
132.
Wang JY, Wu JN, Cherng TL, et al. Vitamin D(3) Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in Rats. Brain Res 2001; 904: 67–75, doi: 10.1016/s0006-8993(01)02450-7.
133.
Gezen-Ak D, Alaylıoğlu M, Genç G, et al. GC and VDR SNPs and Vitamin D Levels in Parkinson’s Disease: The Relevance to Clinical Features. Neuromolecular Med 2017; 19: 24–40, doi: 10.1007/s12017-016-8415-9.
134.
Hu W, Wang L, Chen B, et al. Vitamin D Receptor Rs2228570 Polymorphism and Parkinson’s Disease Risk in a Chinese Population. Neurosci Lett 2020; 717: 134722, doi: 10.1016/j.neulet.2019.134722.
135.
Gatto NM, Paul KC, Sinsheimer JS, et al. Vitamin D Receptor Gene Polymorphisms and Cognitive Decline in Parkinson’s Disease. J Neurol Sci 2016; 370: 100–106, doi: 10.1016/j.jns.2016.09.013.
136.
Wang J, Yang D, Yu Y, et al. Vitamin D and Sunlight Exposure in Newly-Diagnosed Parkinson’s Disease. Nutrients 2016; 8: 142, doi: 10.3390/nu8030142.
137.
Fu YW, Xu HS, Liu SJ. COVID-19 and Neurodegenerative Diseases. Eur Rev Med Pharmacol Sci 2022; 26: 4535–4544, doi: 10.26355/eurrev_202206_29093.
138.
Li C, Liu J, Lin J, et al. COVID-19 and Risk of Neurodegenerative Disorders: A Mendelian Randomization Study. Transl Psychiatry 2022; 12: 1–6, doi: 10.1038/s41398-022-02052-3.
139.
Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of Patients with COVID-19 in Germany: A Post-Mortem Case Series. Lancet Neurol 2020; 19: 919–929, doi: 10.1016/S1474-4422(20)30308-2.
140.
Li Y, Tan MS, Jiang T, et al. Microglia in Alzheimer’s Disease. Biomed Res Int 2014; 2014: 437483, doi: 10.1155/2014/437483.
141.
Smeyne RJ, Noyce AJ, Byrne M, et al. Infection and Risk of Parkinson’s Disease. J Parkinsons Dis 2021; 11(1): 31–43, doi: 10.3233/JPD-202279.
142.
Hosseinpour A, Daneshzad E, Dezfouli RA, et al. The Association Between Antioxidants and COVID-19 Outcomes: a Systematic Review on Observational Studies. Biol Trace Elem Res 2023; 201(11): 5098–5114, doi: 10.1007/s12011-023-03588-1.
143.
Jovic TH, Ali SR, Ibrahim N, Jessop ZM, et al. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020; 12: 2550, doi: 10.3390/nu12092550.
144.
Corrao S, Mallaci Bocchio R, Lo Monaco M, et al. Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementation during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients 2021; 13: 1261, doi: 10.3390/nu13041261.
145.
Al Sulaiman K, Aljuhani O, Saleh KB, et al. Ascorbic Acid as an Adjunctive Therapy in Critically Ill Patients with COVID-19: A Propensity Score Matched Study. Sci Rep 2021; 11: 17648, doi: 10.1038/s41598-021-96703-y.
146.
Gao D, Xu M, Wang G, et al. The Efficiency and Safety of High-Dose Vitamin C in Patients with COVID-19: A Retrospective Cohort Study. Aging (Albany NY) 2021; 13: 7020–7034, doi: 10.18632/aging.202557.
147.
Samad N, Dutta S, Sodunke TE, et al. Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review. JIR 2021; 14: 2091–2110, doi: 10.2147/JIR.S307333.
148.
Tavakol S, Seifalian AM. Vitamin E et al. High Dose as an Anti‐ferroptosis Drug and Not Just a Supplement for COVID‐19 Treatment. Biotechnol Appl Biochem 2022; 69: 1058–1060, doi: 10.1002/bab.2176.
149.
Owen KN, Dewald O. Vitamin E Toxicity. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023.
150.
Somi MH, Faghih Dinevari M, Taghizadieh A, et al. Effect of Vitamin A Supplementation on the Outcome Severity of COVID-19 in Hospitalized Patients: A Pilot Randomized Clinical Trial. Nutr Health 2022; 2601060221129144, doi: 10.1177/02601060221129144.
151.
Rohani M, Mozaffar H, Mesri M. Evaluation and comparison of vitamin A supplementation with standard therapies in the treatment of patients with COVID-19. EMHJ 2022; 28, 9: 673–681.
152.
Zhang Y, Li J, Yang M, et al. Effect of Vitamin D Supplementation on COVID-19 Patients: A Systematic Review and Meta-Analysis. Front Nutr 2023; 10: 1131103, doi: 10.3389/fnut.2023.1131103.
153.
Annweiler G, Corvaisier M, Gautier J et al. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients 2020; 12: 3377, doi: 10.3390/nu12113377.
154.
Castillo ME, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of Calcifediol Treatment and Best Available Therapy versus Best Available Therapy on Intensive Care Unit Admission and Mortality among Patients Hospitalized for COVID-19: A Pilot Randomized Clinical Study. J Steroid Biochem Mol Biol 2020; 203: 105751, doi: 10.1016/j.jsbmb.2020.105751.
155.
Beigmohammadi MT, Bitarafan S, Hoseindokht A, et al. The Effect of Supplementation with Vitamins A, B, C, D, and E on Disease Severity and Inflammatory Responses in Patients with COVID-19: A Randomized Clinical Trial. Trials 2021; 22: 1–9, doi: 10.1186/s13063-021-05795-4.
156.
Lammi C, Arnoldi A. Food-Derived Antioxidants and COVID-19. J Food Biochem 2021; 45: e13557, doi: 10.1111/jfbc.13557.
157.
Mrityunjaya M, Pavithra V, Neelam R, et al. Immune-Boosting, Antioxidant and Anti-Inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol 2020; 11: 570122, doi: 10.3389/fimmu.2020.570122.