1. Al-Rawi N, Sultan A, Rajai B, et al. The Effectiveness of Artificial Intelligence in Detection of Oral Cancer. Int Dent J 2022; 72: 436-447.
2.
Jubair F, Al-Karadsheh O, Malamos D, Al Mahdi S, Saad Y, Hassona Y. A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Dis 2022; 28: 1123-1130.
3.
Warin K, Suebnukarn S. Deep learning in oral cancer – a systematic review. BMC Oral Health 2024; 24: 212.
4.
Weber A, Enderle-Ammour K, Kurowski K, et al. AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology. Cancers (Basel) 2024; 16: 689.
5.
Yang SY, Li SH, Liu JL, et al. Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning. J Dent Res 2022; 101: 1321-1327.
6.
Camalan S, Mahmood H, Binol H, et al. Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results. Cancers (Basel) 2021; 13 1291.
7.
Musulin J, Štifanić D, Zulijani A, Ćabov T, Dekanić A, Car Z. An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue. Cancers (Basel) 2021; 13: 1784.
8.
Tanriver G, Soluk Tekkesin M, Ergen O. Automated Detection and Classification of Oral Lesions Using Deep Learning to Detect Oral Potentially Malignant Disorders. Cancers (Basel) 2021; 13: 2766.
9.
Deo BS, Pal M, Panigrahi PK, Pradhan A. An ensemble deep learning model with empirical wavelet transform feature for oral cancer histopathological image classification. Int J Data Sci Anal 2024; 20: 1005-1022.
10.
10. Marzouk R, Eatedal A, Sami D, et al. Deep Transfer Learning Driven Oral Cancer Detection and Classification Model. Computers, Materials and Continua 2022; 3: 3905-3920.
11.
Das M, Dash R, Mishra SK. Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network. Int J Environ Res Public Health 2023; 20: 2131.
12.
Gomes RFT, Schmith J, Figueiredo RM, et al. Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images. Int J Environ Res Public Health 2023; 20: 3894.
13.
Myriam H, Abdelaziz AA, El-Sayed M, et al. Advanced meta-heuristic algorithm based on Particle Swarm and Al-biruni Earth Radius optimization methods for oral cancer detection. IEEE Access 2023; 11: 23681-23700.
14.
Song B, Kc DR, Yang RY, Li S, Zhang C, Liang R. Classification of Mobile-Based Oral Cancer Images Using the Vision Transformer and the Swin Transformer. Cancers (Basel) 2024; 16: 987.
15.
Confer MP, Falahkheirkhah K, Surendran S, et al. Rapid and Label-Free Histopathology of Oral Lesions Using Deep Learning Applied to Optical and Infrared Spectroscopic Imaging Data. J Pers Med 2024; 14: 304.
16.
Oral Cancer Histopathological Image Dataset Link: https:// www.kaggle.com/datasets/ashenafifasilkebede/dataset (Access: Jul 2023).
17.
Multi Cancer Dataset Link: https://www.kaggle.com/datasets/ obulisainaren/multi-cancer (Access: Jul 2023).
18.
NDB-UFES dataset Link: https://data.mendeley.com/datasets/ bbmmm4wgr8/4 (Access: Jul 2023).
19.
Ahmad M, Irfan MA, Sadique U, et al. Multi-Method Analysis of Histopathological Image for Early Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning and Hybrid Techniques. Cancers (Basel) 2023; 15: 5247.
20.
Redie DK, Bilgaiyan S, Sagnika S. Oral cancer detection using transfer learning-based framework from histopathology images. J Electronic Imaging 2023; 32: 053004-053004.
21.
Abbas T, Fatima A, Shahzad T, Alharbi M, Khan MA, Ahmed A. Multidisciplinary cancer disease classification using adaptive FL in healthcare industry 5.0. Sci Rep 2024; 14: 18643.
22.
Rajadurai S, Perumal K, Ijaz MF, Chowdhary CL. PrecisionLymphoNet: Advancing Malignant Lymphoma Diagnosis via Ensemble Transfer Learning with CNNs. Diagnostics (Basel) 2024; 14: 469.