1. Knight D, Aakre CA, Anstine CV, et al. Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review. Health Policy and Technology 2023; 12(8): 100824, doi: 10.1016/j.hlpt.2023.100824.
2.
Stenzinger A, Alber M, Allgäuer M, et al. Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling. Semin Cancer Biol 2022; 84: 129–143, doi: 10.1016/j.semcancer.2021.02.011.
3.
Syed AB, Zoga AC. Artificial intelligence in radiology: current technology and future directions. Semin Musculoskelet Radiol 2018; 22(5): 540–545.
4.
Chorney W, Wang H. Towards federated transfer learning in electrocardiogram signal analysis. Comput Biol Med 2024; 170: 107984, doi: 10.1016/j.compbiomed.2024.107984.
5.
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25(1): 24–29.
6.
Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Advances in Neural Information Processing Systems 2020; 33: 1877–1901.
7.
Gilson A, Safranek CW, Huang T, et al. How Does ChatGPT Perform on the United States Medical Licensing Examination (USMLE)? The Implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Med Educ 2023; 9: e45312, doi: 10.2196/45312.
8.
Garabet R, Mackey BP, Cross J, et al. ChatGPT-4 Performance on USMLE Step 1 Style Questions and Its Implications for Medical Education: A Comparative Study Across Systems and Disciplines. Med Sci Educ 2023; 34(1): 145–152, doi: 10.1007/s40670-023-01956-z.
9.
Hoffmann K, Schober J, Schäfer, et al. Tackling the reasons for GP shortage: The workload of GPs in rural and urban areas in Austria. A cross-sectional study within the framework of QUALICOPC: Kathryn Hoffmann. The European Journal of Public Health 2013; 23(Suppl. 1), doi: 10.1093/eurpub/ckt126.310.
10.
Harmon DM, Noseworthy PA, Yao X. The digitization and decentralization of clinical trials. Mayo Clin Proc 2023; 98(10): 1568–1578, doi: 10.1016/j.mayocp.2022.10.001.
11.
Thirunavukarasu AJ, Hassan R, Mahmood S, et al. Trialling a Large Language Model (ChatGPT) in General Practice with the Applied Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in Primary Care. JMIR Med Educ 2023; 9: e46599, doi: 10.2196/46599.
12.
Zalzal HG, Cheng J, Shah RK. Evaluating the Current Ability of ChatGPT to Assist in Professional Otolaryngology Education. OTO Open 2023; 7(4): e94, doi: 10.1002/oto2.94.
13.
Bonetti MA, Giorgino R, Gallo Afflitto G, et al. How Does ChatGPT Perform on the Italian Residency Admission National Exam Compared to 15,869 Medical Graduates? Ann Biomed Eng 2024; 52(4): 745–749, doi: 10.1007/s10439-023-03318-7.
14.
Jung LB, Gudera JA, Wiegand TLT, et al. ChatGPT Passes German State Examination in Medicine with Picture Questions Omitted. Dtsch Arztebl Int 2023; 120(21): 373–374, doi: 10.3238/arztebl.m2023.0113.
15.
Oztermeli AD, Oztermeli A. ChatGPT performance in the medical specialty exam: An observational study. Medicine (Baltimore) 2023; 102(32): e34673, doi: 10.1097/MD.0000000000034673.
16.
Wang H, Wu W, Dou Z, et al. Performance and exploration of ChatGPT in medical examination, records and education in Chinese: Pave the way for medical AI. Int J Med Inform 2023; 177: 105173, doi: 10.1016/j.ijmedinf.2023.105173.
17.
Zhu L, Mou W, Yang T, et al. ChatGPT can pass the AHA exams: Open-ended questions outperform multiple-choice format. Resuscitation 2023; 188: 109783, doi: 10.1016/j.resuscitation.2023.109783.
18.
Yanagita Y, Yokokawa D, Uchida S, et al. Accuracy of ChatGPT on Medical Questions in the National Medical Licensing Examination in Japan: Evaluation Study. JMIR Form Res 2023; 7: e48023, doi: 10.2196/48023.
19.
Teebagy S, Colwell L, Wood E, et al. Improved Performance of ChatGPT-4 on the OKAP Examination: A Comparative Study with ChatGPT-3.5. J Acad Ophthalmol 2023; 15(2): e184–e187, doi: 10.1055/s-0043-1774399.
20.
Ali R, Tang OY, Connolly ID, et al. Performance of ChatGPT, GPT-4, and Google Bard on a Neurosurgery Oral Boards Preparation Question Bank. Neurosurgery 2023; 93(5): 1090–1098, doi: 10.1227/neu.0000000000002551.
21.
White J, Fu Q, Hays S, et al. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. arXiv 2023; arXiv:2302.11382 [cs.CL], doi: 10.48550/arXiv.2302.11382.
22.
Polak MP, Morgan D. Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering. arXiv 2023; arXiv:2303.05352 [cs.CL], doi: 10.48550/arXiv.2303.05352.
23.
Shin E, Ramanathan M. Evaluation of prompt engineering strategies for pharmacokinetic data analysis with the ChatGPT large language model. J Pharmacokinet Pharmacodyn 2024; 51(2): 101–108, doi: 10.1007/s10928-023-09892-6.
24.
Zhang W, Wang Q, Kong X, et al. Fine-tuning ChatGPT Achieves State-of-the-Art Performance for Chemical Text Mining. ChemRxiv 2023, doi: 10.26434/chemrxiv-2023-k7ct5.
25.
Latif E, Zhai X. Fine-tuning ChatGPT for Automatic Scoring. arXiv 2023; arXiv:2310.10072 [cs.CL], doi: 10.48550/arXiv.2310.10072.
26.
Fan Y, Jiang F, Li P, et al. GrammarGPT: Exploring Open-Source LLMs for Native Chinese Grammatical Error Correction with Supervised Fine-Tuning. arXiv 2023; arXiv:2307.13923 [cs.CL], doi: 10.48550/arXiv.2307.13923.
27.
Wu T, He S, Liu J, et al. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA. Journal of Automatica Sinica 2023; 10(5): 1122–1136.
28.
Tan Y, Min D, Li Y, et al. Evaluation of ChatGPT as a question answering system for answering complex questions. arXiv 2023; arXiv:2303.07992 [cs.CL], doi: 10.48550/arXiv.2303.07992.
29.
Zhou J, Ke P, Qiu X, et al. ChatGPT: potential, prospects, and limitations. Front Inform Technol Electron Eng 2023; 25(1–3): 1–6.
30.
Abuyaman O. Strengths and Weaknesses of ChatGPT Models for Scientific Writing About Medical Vitamin B12: Mixed Methods Study. JMIR Form Res 2023; 7: e49459, doi: 10.2196/49459.
31.
Ekin S. Prompt Engineering for ChatGPT: A Quick Guide To Techniques, Tips, and Best Practices. Authorea Preprints 2023, doi: 10.36227/techrxiv.22683919.v1.
32.
Chung HW, Hou L, Longpre S, et al. Scaling instruction-finetuned language models. arXiv 2022; arXiv:2210.11416 [cs.CL], doi: 10.48550/arXiv.2210.11416.
33.
Royal College of General Practitioners. MRCGP: Applied Knowledge Test (AKT). Available from URL: https://www.rcgp.org.uk/mrcgp-exams/applied-knowledge-test.
34.
Royal College of General Practitioners. Akt example questions. 2019. Available from URL: https://gp-training.hee.nhs.uk/cornwall/wp-content/uploads/sites/86/2021/04/RCGP-Sample-questions-2019-with-answers.pdf.
35.
Royal College of General Practitioners. MRCGP Applied Knowledge Test (AKT) Feedback Report AKT 48, April 2023. Available from URL: https://www.rcgp.org.uk/getmedia/e7ff7308-cd7a-4038-9bdf-fe179736f2e3/April-2023-AKT-feedback-report.pdf.
36.
Royal College of General Practitioners. MRCGP Applied Knowledge Test (AKT) Feedback Report AKT 49, October 2023. Available from URL: https://www.rcgp.org.uk/getmedia/36507354-f398-4b65-a79c-c0d45edfcac3/October-2023-AKT-Feedback-Report.pdf.
37.
Lee H. The rise of ChatGPT: Exploring its potential in medical education. Anat Sci Educ 2024; 17(5): 926–931, doi: 10.1002/ase.2270.
38.
Shin-Yee Wong R, Ming LC, Raja Ali RA. The Intersection of ChatGPT, Clinical Medicine, and Medical Education. JMIR Med Educ 2023; 9: e47274, doi: 10.2196/47274.
39.
Kaufmann T, Weng P, Bengs V, et al. A survey of reinforcement learning from human feedback. arXiv 2023; arXiv:2312.14925 [cs.CL], doi: 10.48550/arXiv.2312.14925.
40.
Shah NH, Entwistle D, Pfeffer MA. Creation and adoption of large language models in medicine. JAMA 2023; 330(9): 866–869.
41.
Jiang D, Ren X, Lin BY. Llm-blender: Ensembling large language models with pairwise ranking and generative fusion. arXiv 2023; arXiv:2306.02561 [cs.CL], doi: 10.48550/arXiv.2306.02561.