eISSN: 2449-8238
ISSN: 2392-1099
Clinical and Experimental Hepatology
Current issue Archive Manuscripts accepted About the journal Editorial board Abstracting and indexing Subscription Contact Instructions for authors Ethical standards and procedures
SCImago Journal & Country Rank
4/2018
vol. 4
 
Share:
Share:
more
 
 
abstract:
Original paper

N-acetylcysteine protects hepatocytes from hypoxia-related cell injury

Jan Heil
,
Daniel Schultze
,
Peter Schemmer
,
Helge Bruns

Clin Exp HEPATOL 2018; 4, 4: 260–266
Online publish date: 2018/12/03
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
Aim of the study
Hepatocyte transplantation has been discussed as an alternative to liver transplantation in selected cases of acute and chronic liver failure and metabolic diseases. Immediately after infusion of hepatocytes, hypoxia-related cell injury is inevitable. N-acetylcysteine (NAC) has been suggested to attenuate hypoxic damage. This study’s objective was to evaluate NAC’s protective effect in a model of hypoxia-related hepatocyte injury.

Material and methods
HepG2 cells were used as a model for hepatocytes and were cultured under standardized hypoxia or normoxia for 24 hours with or without NAC. Growth kinetics were monitored using trypan blue staining. The activation of apoptotic pathways was measured using quantitative real-time PCR for Bcl-2/Bax and p53. The proportions of vital, apoptotic and necrotic cells were verified by fluorescence activated cell sorting using annexin V-labelling. The expression of hypoxia inducible factor 1 (HIF-1) was measured indirectly using its downstream target vascular endothelial growth factor A (VEGF-A).

Results
After NAC, cell proliferation increased under both hypoxia and normoxia by 528% and 320% (p < 0.05), while VEGF-A expression decreased under normoxia by 67% and 37% (p < 0.05). Compared to cells treated without NAC under hypoxia, the Bcl-2/Bax ratio increased significantly in cells treated with NAC. This finding was confirmed by an increased number of vital cells in FACS analysis.

Conclusions
NAC protects hepatocytes from hypoxic injury and ultimately activates anti-apoptotic pathways.

keywords:

hypoxia, N-acetylcysteine, HepG2, hepatocyte transplantation

Quick links
© 2022 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.