eISSN: 2299-0046
ISSN: 1642-395X
Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii
Current issue Archive Manuscripts accepted About the journal Abstracting and indexing Subscription Contact Instructions for authors
SCImago Journal & Country Rank
6/2018
vol. 35
 
Share:
Share:
more
 
 
abstract:
Review paper

The position paper of the Polish Society of Allergology on climate changes, natural disasters and allergy and asthma

Cezary Pałczyński, Izabela Kupryś-Lipinska, Tomasz Wittczak, Ewa Jassem, Anna Breborowicz, Piotr Kuna

Adv Dermatol Alllergol 2018; XXXV (6): 552-562
Online publish date: 2017/11/08
View full text
Get citation
ENW
EndNote
BIB
JabRef, Mendeley
RIS
Papers, Reference Manager, RefWorks, Zotero
AMA
APA
Chicago
Harvard
MLA
Vancouver
 
The observed global climate change is an indisputable cause of the increased frequency of extreme weather events and related natural disasters. This phenomenon is observed all over the world including Poland. Moreover, Polish citizens as tourists are also exposed to climate phenomena that do not occur in our climate zone. Extreme weather events and related disasters can have a significant impact on people with allergic diseases, including asthma. These effects may be associated with the exposure to air pollution, allergens, and specific microclimate conditions. Under the auspices of the Polish Society of Allergology, experts in the field of environmental allergy prepared a statement on climate changes, natural disasters and allergy and asthma to reduce the risk of adverse health events provoked by climate and weather factors. The guidelines contain the description of the factors related to climate changes and natural disasters affecting the course of allergic diseases, the specific microclimate conditions and the recommendations of the Polish Society of Allergology for vulnerable population, patients suffering from asthma and allergy diseases, allergologists and authorities in the event of climate and weather hazards.
keywords:

allergy, asthma, climate changes, natural disasters

references:
IPCC – Intergovernmental Panel on Climate Change. https://www.ipcc,ch/
US Global Change Research Program. www.globalchange.gov
Lorenc H (ed). Klęski żywiołowe a bezpieczeństwo wewnętrzne kraju (Natural disasters and internal security of the state). Instytut Meteorologii I Gospodarki Wodnej. Państwowy Instytyt Badawczy. Warszawa 2012.
D’Amato G, Holgate ST, Pawankar R, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of World Allergy Organization. World Allergy Organ J 2015; 8: 1-52.
Shea K, Truckner RT, Weber RW, Peden DB. Climate change and allergic disease. J Allergy Clin Immunol 2008; 122: 443-53.
Cecchi V, D’Amato G, Ayres JG, et al. Projection of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 2010; 65: 1073-81.
Ziska LH, Beggs PJ. Anthropogenic climate change and allergen exposure. The role of plant biology. J Allergy Clin Immunol 2012; 129: 27-32.
Reinmuth-Selze K, Kampf CJ, Lucas C, et al. Air pollution and climate change effects on allergies in the Anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol 2017; 51: 4119-41.
European Climate Change Programme. ec.europa.eu
Adaptation to Climate Change in Europe. ec.europa.eu
Impacts of Europe’s Changing Clmate. ec.europa.eu
Adapting to Climate Change. Towards a European Framework for Action. eur-lex. europa.eu
Pope CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 2006; 56: 709-42.
Finleyson-Pitts BJ, Pitts J. Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego, 2000.
Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. 3rd ed, John Wiley and Sons, 2016.
Marino E, Caruso M, Campagna D, Polosa R. Impact of air quality on lung health: myth or reality? Ther Adv Chronic Dis 2015; 6: 286-98.
Goldizen FC, Sly PD, Knibbs LD. Respiratory effects of air pollution on children. Pediatr Pulmonol 2016: 52: 94-108.
Heizerling A, Hsu J, Fuyunen Y. Respiratory health effects of ultrafine particles in children. Water Air Soil Pollut 2016; 237: 32.
Knox RB, Suphioglu C, Taylor P, et al. Major grass pollen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution. Clin Exp Allergy 1997; 27: 246-51.
Ormstad H. Suspended particulate matter in indoor air: adjuvants and allergen carriers. Toxicology 2000; 152: 53-68.
Namork E, Johansen BV, Lovik M. Detection of allergen absorbed in ambient air particles collected in four European cities. Toxicol Lett 2006; 165: 71-8.
Saxon A, Diaz-Sanchez D. Air pollution and allergy: you are what you breathe. Nat Immunol 2005; 6: 223-6.
Diaz-Sanchez D, Garcia MP, Wang M, et al. Nasal challenge with diesel-exhaust particles can induce sensitization to
a neoallergen in tha human mucosa. J Allergy Clin Immunol 1999; 104: 1183-8.
Pandys RJ, Solomon G, Kumer A, Balmes JR. Diesel exhaust and asthma. Hypotheses and molecular mechanism of action. Environ Health Perpect 2002; 110: 103-12.
Maes T, Proovost S, Lanckacker EA, et al. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 2010; 11: 7.
Provoost S, Maes T, Joos GF, Tournoy KG. Monocyte-derived dendritic cells recruitment and allergic Th2 responses after exposure to diesel particles are CCR2 dependent. J Allergy Clin Immunol 2012; 129: 483-91.
Devouassoux G, Saxon A, Metcalfe D, et al. Chemical constituents of diesel exhaust particles induce IL4 production, and histamine release by human basophils. J Allegy Clin Immunol 2002; 109: 847-53.
Hiura TS, Kaszubowski MP, Li N, Nel AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol 1999; 163: 5582-91.
Yang HM, Antonini JM, Barger MW, et al. Diesel exhaust particles supress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ Health Perspect 2001; 109: 515-21.
Li N, Buglak N. Convergence of air pollutant-induced redox-sensitive signals in the dendritic cells contributes to asthma pathogenesis. Toxicol Letters 2015; 237: 55-60.
Bayram H, Devalia JL, Sapsford RJ, et al. The effect of diesel exhaust particles on cell function and release inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol 1998; 18: 441-8.
Fukuoka A, Matsushita K, Morikawa T, et al. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy 2016; 46: 142-52.
Kang XD, Li N, Wang MY, et al. Adjuvants effects of ambient particulate matter monitored by proteomics of bronchoalveolar lavage fluid. Proteomics 2010; 10: 520-31.
Kanemitsu H, Nagasawa S, Sagai M, Mori Y. Complement activation by diesel exhaust particles (DEP). Biol Pharm Bull 1998; 21: 129-32.
Walters DM, Breysse PM, Schofield B, Wills-Karp M. Complement factor 3 mediates particulate matter-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol 2002; 27: 413-8.
Liu J, Ballaney M, Al-Dem U, et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and and IgE production in vivo. Toxicol Sci 2008; 102: 76-81.
Sofer T, Baccarelli A, Cantone L, et al. Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics 2013; 5: 147-54.
Tezza G, Mazzei F, Boner A. Epigenetics of allergy. Early Hum Dev 2013; 89: S20-1.
Naeher LP, Brauer M, Lipsett M, et al. Woodsmoke health effects: a review. Inhal Toxicol 2007; 19: 67-106.
Vedal S. Natural sources – wildland fires and volcanoes. In: Occupational and Environmental Lung Diseases. Tarlo SM, Cullinan P, Nemery B (eds), John Wiley and Sons, Chichester 2010.
Finlay SF, Moffat A, Gazzard R, et al. Health impacts of wildfires. PLoS Curr 2012; 4: e4f959951cce2c.
IPCC Fourth Assesment Report: Climate Change 2007. https://ipcc.ch/publications_and_data
McConnell R, Berkane K, Gilliland F, et al. Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002; 359: 386-91.
Gent JF, Triche EW, Holford TR, et al. Associations of low-level ozone and tin patricles with respiratory symptoms JAMA 2003; 290: 1859-76.
Tolbert PE, Mullholland JA, MacIntosh DJ, et al. Air quality and pediatric emergency emergency room visits for asthma in Atlanta, Georgia, USA. Am J Epidemiol 2000; 151: 798-810.
Lewis TC, Robins TG, Dvonch JT, et al. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Perspect 2005; 113: 1068-75.
Kehrl HR, Peden DB, Bull B, et al. Increased specific airway reactivity of persons with mild allergic asthma after 7.6 hours of exposure to 0.16 ppm ozone. J Allergy Clin Immunol 1999; 104: 1198-204.
Peden DB, Setzer RW Jr, Devlin RB. Ozone exposure has both a priming effect on allergen-induced responses and an intrinsic inflammatory action in the nasal airways of perennially allergic asthmatics. Am J Respir Care 1995; 151: 1336-45.
Peden DB, Boehlecke B, Horstman D, Devlin R. Prolonged acute exposure to 0.16 ppm ozone induces eosinophilic airway inflammation in asthmatic subjects with allergies. J Allergy Clin Immunol 1997; 100: 802-6.
McDonnel WF, Abbey DE, Nishimo N, Lebowitz MD. Long-term ambient ozone concentration and the incidence of asthma in non-smoking adults: the Ahsmog Study. Environ Res 1999; 80: 110-21.
Bayram H, Decalia JL, Khair OA, et al. Effect of loratadine on nitrogen dioxide (NO2)-induced changes in electrical resistance and release of inflammatory mediators from culture human bronchial epithelial cells. J Allergy Clin Immunol 1999; 104: 93-9.
Bayram H, Rusznak C, Khair OA, et al. Effect of ozone and nitrogen dioxide on the permeability of bronchial epithelial cell cultures of non-asthmatic and asthmatic subjects. Clin Exp Allergy 2002; 321: 285-92.
Bayram H, Sapsford RJ, Abdelaziz MM, Khair OA. Effect of ozone and nitrogen dioxide on the release of pro-inflammatory mediators from bronchial epithelial cells from non-atopic non-asthmatic subjects and atopic asthmatic patients in vitro. J Allergy Clin Immunol 2001; 107: 287-94.
Gehring U, Gruzieva D, Agius RM, et al. Air pollution exposure and lung function in children: ESCAPE project. Environ Health Perspect 2013; 121: 1357-64.
Uman R, McConnell R, Islam T, Avol EL. Associations of children’s lung function with ambient air pollution: joint effects of regional and near-roadway pollutants. Thorax 2014; 69: 540-7.
Blomberg A, Krishna MT, Bocchino V, et al. The inflammatory effects of 2ppm NO2 on the airways of healthy subjects. Am J Respir Dis Crit Care Med 1987; 156: 418-24.
Hansell AL, Oppenheimer C. Health hazards from volcaniic gases: a sytemic literature review. Arch Environ Health 2004; 59: 628-30.
Hansell AL, Horwell CJ, Oppenheimr C. The health hazards of volcanoes and geothermal areas. Occup Environ Med 2006; 63: 149-56.
Horwell CJ, Baxter PJ. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 2006; 69: 1-24.
Wiliamson BJ, Pastiroff S, Cressey G. Piezoelectric properties of quartz and crystobalite airborne particulates as
a cause of adverse health effects. Atmos Environ 2001; 35: 3539-42.
Buist AS, Johnson MR, Vollmer WM, et al. Acute effects of volcanic ash from Mount Saint Helens on lung function in children. Am Rev Respir Dis 1983; 127: 714-9.
Buist AS, Vollmer WM, Johnson LR, et al. A four year prospective study of respiratory effects of volcanic ash from Mt. St. Helens. Am Rev Respir Dis 1986; 133: 526-34.
Heggle TW. Geotourism and volcanoes: health hazards facing tourists at and geothermal destinations. Travel Med Infect Dis 2009; 7: 257-61.
Engelbrecht JP, McDonald EV, Gilles JA, et al. Characterizing mineral dust and other aerosols from the Middle East – Part 2. Grab samples and resuspensions. Inhal Toxicol 2009; 21: 327-36.
Draxler RR, Gilette DA, Kirkpatrick JS, Helller J. Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atm Environ 2001; 35: 4315-30.
Al-Hurban AE, Al-Ostad AN. Textural characteristics of dust fallout and potential effects on public health in Kuwait City and suburbs during March 2006-February 2007. Environ Earth Sci 2010; 60; 169-81.
Lyles MB, Fredrickson HI, Bednar AJ, et al. Medical geology. Dust exposure and potential health risk. In: Awards ceremony Speeches and Abstracts of the 18th Annual V.M. Goldschmidt Conference Vancouver, Canada. July 2008. Geochim Cosmochim Acta 2008; 72-526.
Chen PS, Tsai FT, Lin CK, et al. Ambient influenza and avian influenza virus during dust storm days and background days. Environ Health Perspect 2010; 118: 1211-6.
Kwaasi AA. Date palm and sandstorm allergens. Clin Exp Allergy 2003; 33: 419-26.
Kwaasi AA, Parhar RS, Al-Mohanna FA, et al. Aeroallergens and viable microbes in sandstorm dust. Potential triggers of allergic and nonallergic respiratory ailments. Allergy 1998; 53: 255-65.
Ichinose T, Yoshida S, Hiyoshi K, et al. The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation. Arch Environ Contam Toxicol 2008; 55: 348-57.
Watanabe M, Kura J, Igishi T, et al. Influence of Asian desert dust on lower respiratory tract symptoms in patients with asthma over 4 years. Yanago Acta Med 2012; 55: 41-8.
Watanabe M, Yamasaki A, Burioka N, et al. Correlation between Asian dust storms and worsening asthma in Western Japan. Allergol Int 2011; 60: 267-75.
Kanatani AE, Ito I, Al-Delaimy WK, et al. Toyama Asian desert dust and asthma study team. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am J Respir Dis Crit Care Med 2010; 182: 1475-81.
Chang CC, Lee IM, Tsai SS, Yang CY. Correlation of Asian dust storm events with daily clinic visits for allergic rhinitis in Taipei, Taiwan. J Toxicol Environ Health 2006; 69: 229-35.
Korenyi-Both AL, Molnar AC, Fidelus-Gort R. Al-Eskan disease desert storm pneumonitis. Mil Med 1992; 157: 452-62.
Fortuniak K. Miejska wyspa ciepła. Podstawy energetyczne, studia eksperymentalne, modele numeryczne i statystyczne. [Urban Heat Island. Energy-related Background, Experimental Studies, Numeric and Statistical Models]. Editorial Office of University of Łódź, 2003.
Bornstein RD. Observation of the urban heat island effect in New York City. J Appl Meteorol 1968; 7: 575-82.
Heat Island Impacts/Heat Island Effect/US EPA. https://www.epa/heat islands/heat-islands imapcts.
Lai LW, Chang WL. Urban heat island and air pollution – an emerging role for hospital respiratory admissions in urban area. J Environ Health 2010; 72: 32-5.
WHO Air quality guidelines for particulate matter, ozone, nitrogen oxide and sulphur dioxide. World Health Organization 2006.
Taylor PE, Flagan E, Miguel AG, et al. Release of allergens from respirable aerosols: a link between grass pollen and asthma. J Allergy Clin Immunol 2002; 109: 51-6.
Rogers CA, Wayne PM, Macklin EA, et al. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisifolia L.) pollen production. Environ Health Perspect 2006; 114: 865-69.
Emberlin J, Detandt M, Gehring R, et al. Responses in the start of Betula (birch) pollen season to recent changes in spring temperatures across Europe. Int J Biometeorol 2002; 46: 159-70.
Van Vliet AJH, Overeem A, De Groot RS, et al. The influence of temperature and climate change on the timing of pollen release in the Netherlands. In J Climatol 2002; 22: 1157-67.
Stach A, Garcia-Mozo H, Prieto-Baena JC, et al. Prevalence of Artemisia species pollinosis in Western Poland: impact of climate change on aerobiological trends 1995-2004. J Investig Allergol Clin Immunol 2007; 17: 39-47.
Ziello C, Sparks TH, Estrella N, et al. Changes to airborne pollen counts across Europe. PLoS One 2012; 7: e34076.
Cukic V. The influence of climate changes on respiratory allergic and infectious diseases. Health Med 2012; 6: 319-23.
D’Amato G, Cecchi L, Bonini S, et al. Allergenic pollen and pollen allergy in Europe. Allergy 2007; 62: 976-90.
Frenguelli G. Interactions between climate changes and allergenic plants. Monaldi Arch Chest Dis 2002; 57: 141-3.
Teranishi H, Katoh T, Kenda K, Haiashi S. Global warming and the earlier start of the Japanese-cedar (Cryptomeria japonica) pollen season in Toyama, Japan. Aerobiologia 2006; 22: 91-5.
Beggs PJ. Impact of climate change on aeroallergens: past and future. Clin Exp Allergy 2004; 34: 1507-13.
Bergmann KC, Zuberbier T, Augustin J, et al. Climate change and pollen allergy: cities and municipalities should take people suffering from pollen allergy into account when planting in public spaces. Allergo J 2012; 21: 103-8.
WHO. WHO guidelines for indoor air quality: dampness and mould. In: Hasseltine E, Rosen J. DK-2100 Copenhagen O, Denmark. World Health Organization – Regional Office for Europe 2009, 1-248.
Mendell MJ, Mirer AG, Cheung K, et al. Respiratory and allergic health effects of dampness-related agents: a review of epidemiologic evidence. Environ Health Perpect 2011; 119: 748-56.
Midoro-Horiuti T, Brooks EG, Goldblum RM. Pathogenesis-related proteins of plants as allergens. Ann Allergy Astma Immunol 2001; 87: 261-71.
Cortegnao I, Civentos E, Aceituno E, et al. Cloning and expression of a major allergen from Cupressus arisonica pollen, Cup a 3, a PR-5 protein expressed under polluted environment. Allergy 2004; 59: 485-90.
Motta AC, Marliere M, Peltre G, et al. Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grasspollen. Int Arch Allergy 2006; 139: 294-8.
Rogerieux F, Godfrin D, Senechal H, et al. Modification pf Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). Int Arch Allergy Immunol 2007; 143: 127-34.
Ghiani A, Aina R, Asero R, et al. Ragweed pollen collected along high-traffic roads shows a higher allergenicity than pollen sampled in vegetated areas. Allergy 2012; 67: 887-94.
Agrawal A. Effect of global warming on climate change, flora and fauna. J Ecophysiol Occup Health 2011; 11: 161-74.
Morrison LW, Porter SD, Donnels E, Korzukhin MD. Potential global range expansion of the invasive fire ant Solenopsis invicta. Biol Invasions 2004; 6: 183-91.
Rocklin I, Ninivagge DV, Hutchinson ML, Farajouahi A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practicioners. PLoS One 2013; 8: e60874.
Johanning E, Auger P, Morey PR, et al. Review of health hazards and prevention measures for response and recovery workers and volunteers after natural disasters, flooding, and water damage: mold and dampness. Environ Health Prev Med 2014; 19: 93-9.
Hoppe KA, Metwali N, Perry SS, et al. Assessment of airborne exposures and health in flooded homes undergoing renovation. Indoor Air 2012; 22: 446-56.
Rando RJ, Lefante JJ, Freyder LM, Jones RN. Respiratory health effects associated with restoration work in post-Hurricane Katrina New Orleans. J Environ Public Health 2012; 2012: 462-78.
Mazur LJ, Kim J. Spectrum of non-infectious health effects from mold. Pediatrics 2006; 118: 1909-26.
Lambrecht BN, Hammad H. Allergen and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol 2014; 134: 499-507.
Millien VO, Lu W, Shaw J, et al. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 2013; 341: 792-6.
Inamdar AA, Bennet JWA. A common fungal volatile organic compound induces the nitric oxide mediated inflammatory reponse to Drosophila melanogaster. Sci Rep 2014; 4: 3833.
Nielsen KF, Graevesen S, Nielsen PA, et al. Production of mycotoxins on artificially and naturally infested building materials 2. Mycopathologia 1999; 68: 207-18.
Peitzsch M, Sulyok M, Tauber M, et al. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, the Netherlands and Spain. J Environ Monit 2012; 14: 2044-53.
Tischer C, Chen CM, Heinrich J. Association between domestic mould and mould components, and asthma and allergy in children: a systematic review. Eur Respir J 2011; 38: 812-24.
Quick links
© 2019 Termedia Sp. z o.o. All rights reserved.
Developed by Bentus.
PayU - płatności internetowe